首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleolin is a major nucleolar protein implicated in many aspects of ribosomal biogenesis, including early events such as processing of the large 35S preribosomal RNA. We found that the Arabidopsis (Arabidopsis thaliana) parallel1 (parl1) mutant, originally identified by its aberrant leaf venation, corresponds to the Arabidopsis nucleolin gene. parl1 mutants display parallel leaf venation, aberrant localization of the provascular marker Athb8:beta-glucuronidase, the auxin-sensitive reporter DR5:beta-glucuronidase, and auxin-dependent growth defects. PARL1 is highly similar to the yeast (Saccharomyces cerevisiae) nucleolin NUCLEAR SIGNAL RECOGNITION 1 (NSR1) multifunctional protein; the Arabidopsis PARL1 gene can rescue growth defects of yeast nsr1 null mutants. This suggests that PARL1 protein may have roles similar to those of the yeast nucleolin in nuclear signal recognition, ribosomal processing, and ribosomal subunit accumulation. Based on the range of auxin-related defects in parl1 mutants, we propose that auxin-dependent organ growth and patterning is highly sensitive to the efficiency of nucleolin-dependent ribosomal processing.  相似文献   

2.
We have identified the Arabidopsis ortholog of barley RAR1 as a component of resistance specified by multiple nucleotide binding/Leu-rich repeat resistance (R) genes recognizing different bacterial and oomycete pathogen isolates. Characterization of partially and fully defective rar1 mutations revealed that wild-type RAR1 acts as a rate-limiting regulator of early R gene-triggered defenses, determining the extent of pathogen containment, hypersensitive plant cell death, and an oxidative burst at primary infection sites. We conclude that RAR1 defense signaling function is conserved between plant species that are separated evolutionarily by 150 million years. RAR1 encodes a protein with two zinc binding (CHORD) domains that are highly conserved across eukaryotic phyla, and the single nematode CHORD-containing homolog, Chp, was found previously to be essential for embryo viability. An absence of obvious developmental defects in null Arabidopsis rar1 mutants favors the notion that, in contrast, RAR1 does not play a fundamental role in plant development.  相似文献   

3.
4.
Arabidopsis amp1 mutants show pleiotropic phenotypes, including altered shoot apical meristems, increased cell proliferation, polycotyly, constitutive photomorphogenesis, early flowering time, increased levels of endogenous cytokinin, and increased cyclin cycD3 expression. We have isolated the AMP1 gene by map-based cloning. The AMP1 cDNA encodes a 706;-amino acid polypeptide with significant similarity to glutamate carboxypeptidases. The AMP1 mRNA was expressed in all tissues examined, with higher expression in roots, stems, inflorescences, and siliques. Microarray analysis identified four mRNA species with altered expression in two alleles of amp1, including upregulation of CYP78A5, which has been shown to mark the shoot apical meristem boundary. The similarity of the AMP1 protein to glutamate carboxypeptidases, and in particular to N-acetyl alpha-linked acidic dipeptidases, suggests that the AMP1 gene product modulates the level of a small signaling molecule that acts to regulate a number of aspects of plant development, in particular the size of the apical meristem.  相似文献   

5.
6.
Arabidopsis thaliana APO1 is required for the accumulation of the chloroplast photosystem I and NADH dehydrogenase complexes and had been proposed to facilitate the incorporation of [4Fe-4S] clusters into these complexes. The identification of maize (Zea mays) APO1 in coimmunoprecipitates with a protein involved in chloroplast RNA splicing prompted us to investigate a role for APO1 in splicing. We show here that APO1 promotes the splicing of several chloroplast group II introns: in Arabidopsis apo1 mutants, ycf3-intron 2 remains completely unspliced, petD intron splicing is strongly reduced, and the splicing of several other introns is compromised. These splicing defects can account for the loss of photosynthetic complexes in apo1 mutants. Recombinant APO1 from both maize and Arabidopsis binds RNA with high affinity in vitro, demonstrating that DUF794, the domain of unknown function that makes up almost the entirety of APO1, is an RNA binding domain. We provide evidence that DUF794 harbors two motifs that resemble zinc fingers, that these bind zinc, and that they are essential for APO1 function. DUF794 is found in a plant-specific protein family whose members are all predicted to localize to mitochondria or chloroplasts. Thus, DUF794 adds a new example to the repertoire of plant-specific RNA binding domains that emerged as a product of nuclear-organellar coevolution.  相似文献   

7.
8.
AGAMOUS, a key player in floral morphogenesis, specifies reproductive organ identities and regulates the timely termination of stem cell fates in the floral meristem. Here, we report that strains carrying mutations in three genes, HUA1, HUA2, and HUA ENHANCER4 (HEN4), exhibit floral defects similar to those in agamous mutants: reproductive-to-perianth organ transformation and loss of floral determinacy. HEN4 codes for a K homology (KH) domain-containing, putative RNA binding protein that interacts with HUA1, a CCCH zinc finger RNA binding protein in the nucleus. We show that HUA1 binds AGAMOUS pre-mRNA in vitro and that HEN4, HUA1, and HUA2 act in floral morphogenesis by specifically promoting the processing of AGAMOUS pre-mRNA. Our studies underscore the importance of RNA processing in modulating plant development.  相似文献   

9.
10.
11.
12.
13.
The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses.  相似文献   

14.
15.
Chen H  Zhang B  Hicks LM  Xiong L 《PloS one》2011,6(10):e26661
Abiotic stress, such as drought and high salinity, activates a network of signaling cascades that lead to the expression of many stress-responsive genes in plants. The Arabidopsis FIERY1 (FRY1) protein is a negative regulator of stress and abscisic acid (ABA) signaling and exhibits both an inositol polyphosphatase and a 3',5'-bisphosphate nucleotidase activity in vitro. The FRY1 nucleotidase degrades the sulfation byproduct 3'-phosphoadenosine-5'-phosphate (PAP), yet its in vivo functions and particularly its roles in stress gene regulation remain unclear. Here we developed a LC-MS/MS method to quantitatively measure PAP levels in plants and investigated the roles of this nucleotidase activity in stress response and plant development. It was found that PAP level was tightly controlled in plants and did not accumulate to any significant level either under normal conditions or under NaCl, LiCl, cold, or ABA treatments. In contrast, high levels of PAP were detected in multiple mutant alleles of FRY1 but not in mutants of other FRY1 family members, indicating that FRY1 is the major enzyme that hydrolyzes PAP in vivo. By genetically reducing PAP levels in fry1 mutants either through overexpression of a yeast PAP nucleotidase or by generating a triple mutant of fry1 apk1 apk2 that is defective in the biosynthesis of the PAP precursor 3'-phosphoadenosine-5'-phosphosulfate (PAPS), we demonstrated that the developmental defects and superinduction of stress-responsive genes in fry1 mutants correlate with PAP accumulation in planta. We also found that the hypersensitive stress gene regulation in fry1 requires ABH1 but not ABI1, two other negative regulators in ABA signaling pathways. Unlike in yeast, however, FRY1 overexpression in Arabidopsis could not enhance salt tolerance. Taken together, our results demonstrate that PAP is critical for stress gene regulation and plant development, yet the FRY1 nucleotidase that catabolizes PAP may not be an in vivo salt toxicity target in Arabidopsis.  相似文献   

16.
17.
18.
19.
20.
Little is known about the molecular processes that govern female gametophyte (FG) development and function, and few FG-expressed genes have been identified. We report the identification and phenotypic analysis of 31 new FG mutants in Arabidopsis. These mutants have defects throughout development, indicating that FG-expressed genes govern essentially every step of FG development. To identify genes involved in cell death during FG development, we analyzed this mutant collection for lines with cell death defects. From this analysis, we identified one mutant, gfa2, with a defect in synergid cell death. Additionally, the gfa2 mutant has a defect in fusion of the polar nuclei. We isolated the GFA2 gene and show that it encodes a J-domain-containing protein. Of the J-domain-containing proteins in Saccharomyces cerevisiae (budding yeast), GFA2 is most similar to Mdj1p, which functions as a chaperone in the mitochondrial matrix. GFA2 is targeted to mitochondria in Arabidopsis and partially complements a yeast mdj1 mutant, suggesting that GFA2 is the Arabidopsis ortholog of yeast Mdj1p. These data suggest a role for mitochondria in cell death in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号