首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (< 30 m) fringing marshes with sandy substrates that are well flushed by tides. These characteristics distinguish living shorelines from the larger meadow marshes in which most of the current knowledge about created marshes was developed. The value of living shorelines for providing both erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit.  相似文献   

2.
Narrow fringing salt marshes dominated by Spartina alterniflora occur naturally along estuarine shorelines and provide many of the same ecological functions as more extensive marshes. These fringing salt marshes are sometimes incorporated into shoreline stabilization efforts. We obtained data on elevation, salinity, sediment characteristics, vegetation and fish utilization at three study sites containing both natural fringing marshes and nearby restored marshes located landward of a stone sill constructed for shoreline stabilization. During the study, sediment accretion rates in the restored marshes were approximately 1.5- to 2-fold greater than those recorded in the natural marshes. Natural fringing marsh sediments were predominantly sandy with a mean organic matter content ranging between 1.5 and 6.0%. Average S. alterniflora stem density in natural marshes ranged between 130 and 222 stems m−2, while mean maximum stem height exceeded 64 cm. After 3 years, one of the three restored marshes (NCMM) achieved S. alterniflora stem densities equivalent to that of the natural fringing marshes, while percentage cover and maximum stem heights were significantly greater in the natural than in the restored marshes at all sites. There was no significant difference in the mean number of fish, crabs or shrimp captured with fyke nets between the natural and restored marshes, and only the abundance of Palaemonetes vulgaris (grass shrimp) was significantly greater in the natural marshes than in the restored ones. Mean numbers of fish caught per 5 m of marsh front were similar to those reported in the literature from marshes adjacent to tidal creeks and channels, and ranged between 509 and 634 fish net−1. Most of the field data and some of the sample analyses were obtained by volunteers as they contributed 223 h of the total 300 h spent collecting data from three sites in one season. The use of fyke nets required twice as many man-hours as any other single task. Vegetation and sediment parameters were sensitive indicators of marsh restoration success, and volunteers were capable of contributing a significant portion of the labor needed to collect these parameters. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

3.
Fourteen dredged material marshes andfourteen natural marshes along the Texas, USA, coastare compared on the basis of 1) edge: area ratios, 2)relative exposure index values, 3) elevation profiles,4) elevation of Spartina alterniflora, 5) soilorganic carbon content, 6) soil silt-clay content, and7) belowground plant biomass. Although edge: areacomparisons cannot detect certain types of differencesin geomorphology, comparisons clearly show thatdredged material marshes, on average, have fewer pondsand flooded depressions than natural marshes. Comparisons of relative exposure index values suggestthat wave protection structures associated with somedredged material marshes may be overbuilt. Elevationprofiles illustrate the potential for structures suchas berms to lead to differences between dredgedmaterial marshes and natural marshes, but they alsoshow the high variability in elevation profiles thatexists among both dredged material and naturalmarshes. S. alternifloraelevations in dredgedmaterial marshes are not significantly different fromthose of natural marshes. Soil organic carbon andsilt-clay content of dredged material marshes are notsignificantly different from those of natural marshes. Although belowground biomass of dredged materialmarshes is significantly lower than that of naturalmarshes, regression analysis suggests that belowgroundbiomass will increase over time. Findings reportedhere suggest several points that should be consideredduring planning and design of dredged material marshesin Texas: 1) if an objective of marsh construction isto mimic natural marsh geomorphology, methods toincrease the amount of unconnected edge need to bedeveloped, 2) methods of effectively summarizinggeomorphic characteristics need further development,and 3) there is some evidence suggesting thatprotective structures may be over-built, and the needfor substantial structural protection should bebalanced against the costs of structures and risk ofsite failure during project design. Lastly, a methodfor increasing the amount of unconnected edge thatinvolves excavation of bay bottom before placement ofdredged material is suggested.  相似文献   

4.
Recent salt marsh and barrier island restoration efforts in the northern Gulf of Mexico have focused on optimizing self-sustaining attributes of restored marshes to provide maximum habitat value and storm protection to vulnerable coastal communities. Salt marshes in this region are dominated by Spartina alterniflora and Avicennia germinans, two species that are valued for their ability to stabilize soils in intertidal salt marshes. We conducted a controlled greenhouse study to investigate the influences of substrate type, nutrient level, and marsh elevation on the growth and biomass allocation of S. alterniflora and A. germinans, and the consequent effects on soil development and stability. S. alterniflora exhibited optimal growth and survival at the lowest elevation (? 15 cm below the water surface) and was sensitive to high soil salinities at higher elevations (+ 15 cm above the water surface). A. germinans performed best at intermediate elevations but was negatively affected by prolonged inundation at lower elevations. We found that although there was not a strong effect of substrate type on plant growth, the development of stressful conditions due to the use of suboptimal materials would likely be exacerbated by placing the soil at extreme elevations. Soil shear strength was significantly higher in experimental units containing either S. alterniflora or A. germinans compared to unvegetated soils, suggesting that plants effectively contribute to soil strength in newly placed soils of restored marshes. As marsh vegetation plays a critical role in stabilizing shorelines, salt marsh restoration efforts in the northern Gulf of Mexico and other storm impacted coasts should be designed at optimal elevations to facilitate the establishment and growth of key marsh species.  相似文献   

5.
Aboveground biomass, macro‐organic matter (MOM), and wetland soil characteristics were measured periodically between 1983 and 1998 in a created brackish‐water marsh and a nearby natural marsh along the Pamlico River estuary, North Carolina to evaluate the development of wetland vegetation and soil dependent functions after marsh creation. Development of aboveground biomass and MOM was dependent on elevation and frequency of tidal inundation. Aboveground biomass of Spartina alterniflora, which occupied low elevations along tidal creeks and was inundated frequently, developed to levels similar to the natural marsh (750 to 1,300 g/m2) within three years after creation. Spartina cynosuroides, which dominated interior areas of the marsh and was flooded less frequently, required 9 years to consistently achieve aboveground biomass equivalent to the natural marsh (600 to 1,560 g/m2). Aboveground biomass of Spartina patens, which was planted at the highest elevations along the terrestrial margin and seldom flooded, never consistently developed aboveground biomass comparable with the natural marsh during the 15 years after marsh creation. MOM (0 to 10 cm) generally developed at the same rate as aboveground biomass. Between 1988 and 1998, soil bulk density decreased and porosity and organic C and N pools increased in the created marsh. Like vegetation, wetland soil development proceeded faster in response to increased inundation, especially in the streamside zone dominated by S. alterniflora. We estimated that in the streamside and interior zones, an additional 30 years (nitrogen) to 90 years (organic C, porosity) are needed for the upper 30 cm of created marsh soil to become equivalent to the natural marsh. Wetland soil characteristics of the S. patens community along upland fringe will take longer to develop, more than 200 years. Development of the benthic invertebrate‐based food web, which depends on organic matter enrichment of the upper 5 to 10 cm of soil, is expected to take less time. Wetland soil characteristics and functions of created irregularly flooded brackish marshes require longer to develop compared with regularly flooded salt marshes because reduced tidal inundation slows wetland vegetation and soil development. The hydrologic regime (regularly vs. irregularly flooded) of the “target” wetland should be considered when setting realistic expectations for success criteria of created and restored wetlands.  相似文献   

6.
李家兵  张秋婷  张丽烟  仝川 《生态学报》2016,36(12):3628-3638
2014年4月,选择闽江口鳝鱼滩湿地中未被入侵的短叶茳芏群落(A)、互花米草入侵斑块边缘(B)以及互花米草入侵斑块中央(C)为研究对象,基于时空互代研究方法,探讨了互花米草入侵序列下湿地土壤碳氮空间分布特征的差异。结果表明,互花米草入侵显著降低了土壤的NO_3~--N含量(P0.05),但整体增加了NH_4~+-N含量,这与其入侵后导致湿地土壤颗粒组成发生显著变化(砂砾含量增加33.81%),进而促进了土壤的矿化作用和硝化作用,并有助于硝态氮的垂直淋失有关。互花米草入侵整体增加了土壤的碳氮含量和C/N比,与入侵进程和入侵前相比,互花米草入侵后湿地土壤的碳储量分别增加了8.73%和24.37%,氮储量则分别增加了10.22%和17.87%,这主要与其对闽江口湿地植物群落格局、养分生物循环以及强促淤作用引起的土壤颗粒组成等显著改变有关。研究发现,闽江口互花米草入侵对短叶茳芏湿地土壤碳氮含量的影响相对于江苏盐城、长江口以及杭州湾湿地的影响可能更为显著,其互花米草入侵较大改变了土壤中陆源和海源有机质的来源比例,使得入侵后湿地土壤养分的自源性增强。  相似文献   

7.
The ribbed mussel, Geukensia demissa, is highly dependent on the cordgrass Spartina alterniflora for amelioration from environmental stress and substrate stabilization. Spartina alterniflora is a foundation species in marshes, and G. demissa is typically associated with cordgrass beds. Marshes in the southern Gulf of St. Lawrence are experiencing erosion and degradation, presumably as a result of increases in sea level, which increases salinity exposure and negatively impacts S. alterniflora. The population structure of the ribbed mussel, Geukensia demissa, was studied at nine sites in six estuaries in the southern Gulf of St. Lawrence in Nova Scotia, Canada, where marsh degradation is occurring. Mussel length was used as a proxy for age of G. demissa in three salt marsh zones characterized by density and elevation of Spartina alterniflora: (1) a lower zone in which the S. alterniflora was dead, but where the basal mat was coherent, (2) a zone of living, but low density S. alterniflora at the margin of the living marsh, and (3) a zone of dense S. alterniflora one to three meters back from the edge. Mussel length was significantly different across the three zones in seven of the nine sites. Mean length decreased as elevation increased, and small mussels (i.e., 1–3 cm) were absent at seven sites. The smallest mussels occurred in the dense S. alterniflora zone, higher in the marsh. Mussel length in the two western sites did not differ between zones, and small mussels (i.e., 1–3 cm) were present, but rare. The absence of small mussels in seven of the nine sites, and the size frequency distribution at remaining sites, suggests a lack of recent recruitment and a long-term threat to the survival of G. demissa. Salt marsh degradation and the death of S. alterniflora have negatively impacted G. demissa recruitment, and population decline is evident.  相似文献   

8.
We analyzed variations in the life span of the invasive cordgrass Spartina densiflora at low marshes of SW Iberian Peninsula, and identified the abiotic factors limiting the plant in the absence of competition. With these objectives, clump survivorship, flowering, and growth of S. densiflora were studied in two natural populations at different low marsh elevations during more than three years, and at a transplant experiment in comparison with the native Spartina maritima. The life spans of both cordgrasses changed depending on small variations of a few centimeters in elevation. S. maritima, which tolerates better than S. densiflora the stressful abiotic environment of lower marshes, showed a significant lower distribution limit for its perennial habit, with survivorship longer than three years (from 1997 to 2000), than the neophyte (+1.57 m SHZ vs. +2.00 m SHZ). S. densiflora clumps flowered before dying at mostly all elevations, showing low relative growth rates. In contrast, clumps of S. maritima, with non-viable seeds, only flowered when they were three years old at higher elevations in the low marsh. Our results have applications for salt marshes bioengineering projects and to prevent S. densiflora from invading European marshes since our data improve the knowledge of its colonization mechanisms through salt marsh zonation and so identify those portions of restored and native marshes most susceptible to invasion due to the establishment of perennial populations.  相似文献   

9.
高会  翟水晶  孙志高  何涛  田莉萍  胡星云 《生态学报》2018,38(17):6136-6142
2016年1—12月,选择闽江河口鳝鱼滩的短叶茳芏湿地、互花米草湿地以及二者的交错带湿地为研究对象,采用定位研究方法探讨了互花米草入侵影响下湿地土壤有效硅含量的时空变化特征。结果表明:互花米草入侵影响下3块湿地土壤有效硅含量随时间推移整体呈波动上升趋势;互花米草入侵显著提高了鳝鱼滩湿地30—60 cm土层土壤有效硅含量(P0.01),与短叶茳芏湿地相比,交错带湿地和互花米草湿地30—60 cm土层土壤有效硅含量分别增加了8.56%和19.97%,逐步线性回归分析表明土温和电导是影响其变化的重要因素(P0.01)。研究互花米草入侵影响下湿地土壤有效硅含量的变化特征,对于揭示湿地生态系统生源要素硅生物地球化学循环过程以及互花米草入侵及其扩张机制具有重要意义。  相似文献   

10.
As sea level rise and human activities erode coastal wetlands, managers rebuild or preserve wetlands that can perform the ecosystem services of a natural system. One increasingly common mitigation activity is the construction of rock sills in the low marsh zone to stabilize marsh elevation. Sills dramatically alter the physical structure of marshes by changing elevation, adding hard substrate and potentially altering the spatial structure of benthic algal communities in and adjacent to the low marsh. We documented differences in benthic algal abundance at the seaward marsh edge in silled and unsilled marshes in North Carolina. We found that sills were associated with reduced standing stocks of benthic algal primary production and reduced macroalgal taxonomic richness, and this difference was driven primarily by differences in macroalgal abundance. We experimentally tested the effect of macroalgal abundance on cordgrass (Spartina alterniflora) growth in the low zone of an unmanipulated marsh, and found that macroalgal removal had no effect on final cordgrass abundance. Our study suggests that salt marsh management through the construction of sills in low marsh zones impacts benthic primary production in the low marsh zone, but that benthic algal production does not affect cordgrass growth over a growing season.  相似文献   

11.
Densities of nekton and other fauna were measured inthree created salt marshes to examine habitatdevelopment rate. All three marshes were located onPelican Spit in Galveston Bay, Texas, USA and werecreated on dredged material from the Gulf IntracoastalWaterway. The youngest marsh was planted on 1-mcenters in July of 1992. At the time sampling wasinitiated in fall 1992, the marshes were 9, 5, andless than 1 year in age; sampling continued in thefall and spring through spring 1994. Animaldensities were measured within the vegetation at twoelevations using an enclosure sampler. In the fall of1992, 4 months following the planting of the 92Marsh,densities of most marsh organisms were lower in thismarsh compared with the older two marshes. Significantly lower densities were observed fordominant crustaceans (including three species of grassshrimps, two species of commercially-important penaeidshrimps, thinstripe hermit crabs Clibanarius vittatus,and juvenile blue crabs Callinectes sapidus), adominant fish (Gobionellus boleosoma), and thedominant mollusc (Littoraria irrorata). By the fallof 1993, however, densities of most nekton specieswere similar among the three created salt marshes. Incontrast, reduced densities of less mobile epifauna(C. vittatusand L. irrorata) persisted in the 92Marshthroughout the 2 years of sampling. The patterns ofnekton utilization exhibited in these marshes suggestthat the 92Marsh reached its maximum habitat supportfunction for these animals in less than 1 year. Comparisons of the older marshes with natural marshesin the bay system, however, suggest that all three ofthese created marshes are functioning at lower levelsthan natural marshes in terms of supporting productionof commercially important fishery species such aspenaeid shrimps and C. sapidus.  相似文献   

12.
The effective restoration of wetland habitats requires understanding the establishment requirements, growth responses, and expansion dynamics of targeted plant species. This is particularly true when restoring areas that have been previously managed for other activities, such as agriculture, which can have legacy effects on the local environment. We investigated environmental factors (specifically hydrology and soil physicochemical conditions) that may influence the establishment, growth and expansion of Schoenoplectus californicus in a tidal freshwater marsh restoration site in the Sacramento–San Joaquin Delta, California, USA. This study site was previously leveed, drained, and utilized for agricultural production. A 1997 levee breach restored tidal connectivity and wetland vegetation has re-established in portions of the area. Our approach coupled an intensively-sampled transect study in S. californicus-dominated marshes with a spatially-extensive survey of S. californicus lateral expansion rates and elevation. Lateral expansion of S. californicus marsh edge was significantly less in lower elevation areas (0.61 ± 0.04 m NAVD88), whereas the marsh edge at higher elevations (0.84 ± 0.03 m NAVD88) exhibited greater expansion, often at rates greater than 1.0 m year?1. These elevation means correspond to percentages of time that the marsh surface was flooded of 100 and 94 %, respectively. Although marsh edge expansion was influenced by elevation and the resultant hydrology, other factors, such as physical exposure of marsh shorelines and compacted agricultural soils also appear to be important. However, once established, S. californicus appears to be able to ameliorate high soil bulk densities over time as the advancing marsh platform develops.  相似文献   

13.
《Ecological Engineering》2007,29(3):245-248
Although much research has focused upon the negative impacts of invasive Spartina alterniflora upon salt marshes dominated by other Spartina spp., little is known about its impacts upon native Scirpus mariqueter marshes. In 1997, S. alterniflora was introduced to the Jiuduansha Shoals, Yangtze Estuary, China, to accelerate the formation of marsh habitat via accretionary processes, with the larger goal of drawing waterfowl away from wetlands near the Pudong International Airport, Shanghai, China. In 2000, a nature reserve was established on the Jiuduansha Shoals, making the impact upon the native S. mariqueter community a high priority for research. Our objective was to quantify the impacts of introduced S. alterniflora and Phragmites australis to the native S. mariqueter-dominated community at this site in four elevation zones, as compared with a nearby natural shoal. We found that species diversity was greater in the lower elevations with the engineering, through elimination of the natural dominance of S. mariqueter. We also found that diversity was lessened in the higher elevations, due to rapid growth and exclusion by the planted S. alterniflora in conjunction with the native P. australis. Moreover, we found that the growth of the native S. mariqueter was stimulated when S. alterniflora was planted nearby. It is quite likely that the net effect of these ecological processes will be to accelerate further accretion, leading to an eventual replacement of the S. mariqueter-dominated community in the long-term. Future management approaches should focus upon harvesting, grazing, and perimeter-ditching the S. alterniflora to avoid this situation.  相似文献   

14.
The Yangtze River delta is characterized by rapidly accreting sediments that form tidal flats that are quickly colonized by emergent vegetation including Scirpus mariqueter and the invasive species Spartina alterniflora. We measured soil surface elevation, water table depth, soil salinity, water content and compaction in the tidal flat, the Scirpus and Spartina zones and their borders to identify relationships between environmental factors and colonization by Scirpus and Spartina. With increasing elevation from tidal flat to Spartina, inundation frequency and duration, moisture and depth to water table decreased whereas soil salinity, temperature and compaction increased. High soil moisture and groundwater and low salinity were the characteristics of the tidal flat and its border with Scirpus. The Spartina zone and its border with Scirpus were characterized by greater salinity and elevation relative to the other zones. Our findings suggest that soil salinity controls patterns of plant zonation in the newly formed tidal salt marshes whereas elevation is of secondary importance. Our results suggest that patterns of vegetation zonation in tidal marshes of the Yangtze River delta are controlled by environmental factors, especially (low) salinity that favors colonization by Scirpus in the lower elevations of the marsh.  相似文献   

15.
Intertidal salt marshes are considered harsh habitats where relatively few stress-resistant species survive. Most studies on non-native species in marshes describe terrestrial angiosperms. We document that a non-native marine macroalga, Gracilaria vermiculophylla, is abundant throughout Virginia’s Atlantic coastline. We sampled eight marshes, characterized by low slopes and by the presence of the tube-building polychaete Diopatra cuprea on adjacent mudflats, which have been shown previously to be associated with G. vermiculophylla. G. vermiculophylla was found in 71% of the sampled quadrats on the border between the mudflat and tall Spartina alterniflora, 51% within the tall S. alterniflora zone, and 12% further inland. We also tagged G. vermiculophylla from two habitats: (1) unattached G. vermiculophylla within marshes and (2) G. vermiculophylla ‘incorporated’ onto D. cuprea tubes on the adjacent mudflats. Of the incorporated thalli, 3–9% ended up in the marsh, demonstrating connectivity between habitats. In addition, 21% of unattached thalli remained for 2 weeks within the marsh, suggesting that entanglement around marsh plants reduces tidal drift. Growth experiments in mesh bags indicate that most of the G. vermiculophylla transferred from the lagoon to the marsh decomposed there, potentially enhancing local nutrient levels. Finally, we document that G. vermiculophylla in marshes had a reduced associated flora and fauna compared to G. vermiculophylla on the adjacent Diopatra mudflats. In conclusion, unattached G. vermiculophylla is abundant along marsh borders in the tall S. alterniflora zone in Virginia, and we hypothesize that this non-native species has significant impacts in terms of marsh habitat complexity, species abundance and diversity, nutrient dynamics, productivity, and trophic interactions.  相似文献   

16.
The haying of salt marshes, a traditional activity since colonial times in New England, still occurs in about 400 ha of marsh in the Plum Island Sound estuary in northeastern Massachusetts. We took advantage of this haying activity to investigate how the periodic large-scale removal of aboveground biomass affects a number of marsh processes. Hayed marshes were no different from adjacent reference marshes in plant species density (species per area) and end-of-year aboveground biomass, but did differ in vegetation composition. Spartina patens was more abundant in hayed marshes than S. alterniflora, and the reverse was true in reference marshes. The differences in relative covers of these plant species were not associated with any differences between hayed and reference marshes in the elevations of the marsh platform. Instead it suggested that S. patens was more tolerant of haying than S. alterniflora. Spartina patens had higher stem densities in hayed marshes than it did in reference marshes, suggesting that periodic cutting stimulated tillering of this species. Although we predicted that haying would stimulate benthic chlorophyll production by opening up the canopy, we found differences to be inconsistent, possibly due to the relatively rapid regrowth of S. patens and to grazing by invertebrates on the algae. The pulmonate snail, Melampus bidendatus was depleted in its δ13C content in the hayed marsh compared to the reference, suggesting a diet shift to benthic algae in hayed marshes. The stable isotope ratios of a number of other consumer species were not affected by haying activity. Migratory shorebirds cue in to recently hayed marshes and may contribute to short term declines in some invertebrate species, however, the number of taxa per unit area of marsh surface invertebrates and their overall abundances were unaffected by haying over the long term. Haying had no impact on nutrient concentrations in creeks just downstream from hayed plots, but the sediments of hayed marshes were lower in total N and P compared to references. In sum, haying appeared to affect plant species composition but had only short-term affects on consumer organisms. This contrasts with many grassland ecosystems, where an intermediate level of disturbance, such as by grazing, increases species diversity and may stimulate productivity. From a management perspective, periodic mowing could be a way to maintain S. patens habitats and the suite of species with which they are associated.  相似文献   

17.
滨海湿地生态修复已成为阻止海岸带生态系统退化、保护生物多样性以及提供生态服务的关键措施。以长江口原生盐沼植物海三棱藨草(Scirpus mariqueter)为研究对象,选取崇明东滩新生滩涂湿地为研究区域,通过沿潮滩高程梯度的海三棱藨草植株斑块的移植实验,探究胁迫梯度假说和互惠理论(即种内的正相互作用)对长江口海三棱藨草种群恢复的指导意义。研究结果显示:(1)在一定的胁迫梯度范围内(潮滩高程2.0 m以上),增大种植斑块可以促进海三棱藨草的种内正相互作用,显著提高种植斑块的存活率和植株密度(P0.05);(2)潮滩水文动力沉积条件与潮滩高程梯度密切相关(P0.05),水文动力沉积作用对海三棱藨草定居和生长的胁迫随高程梯度下降而增强。潮滩高程2.0 m以下处强烈的水文动力条件干扰限制了生物-物理因素的正反馈作用。滨海湿地盐沼植被修复工作的成功率可以通过改进种植方式,增强种内的正相互作用得到极大的提高。研究可为开展大规模滨海湿地盐沼植被修复工程和提高生态修复效率提供科学依据和技术支持。  相似文献   

18.
Plant zonation is one of the most conspicuous ecological features of salt marshes worldwide. In this work we used a combination of field transplant and greenhouse experiments to evaluate the importance of interspecific interactions and physical stress in the determination of the major plant zonation patterns in Central Patagonian salt marshes. There, Spartina alterniflora dominates the low marsh, and Sarcocornia perennis the high marsh. We addressed two questions: (i) What prevents Spartina alterniflora from colonizing the Sarcocornia perennis‐dominated high marsh zone? and (ii) What prevents Sarcocornia perennis from colonizing the Spartina alterniflora‐dominated low marsh zone? Our experimental transplants combined with neighbour exclusion treatments showed that the presence of Sarcocornia perennis negatively affects Spartina alterniflora, preventing it from surviving and/or spreading. Complementary field transplant and greenhouse experiments showed that Sarcocornia perennis did not survive the frequent tidal submersion by approximately 1.5 m of turbid seawater in the Spartina alterniflora zone, but its survival was independent of the presence of Spartina neighbours, and of the strong soil anoxia as well. Our results suggest that Spartina alterniflora is excluded by Sarcocornia perennis towards the low marsh, where frequent and prolonged submersion limit the survival of the latter. We provide and discuss key baseline information to facilitate the future design of ecophysiological experiments designed to accurately identify the exact mechanisms acting in every situation.  相似文献   

19.
Along the Atlantic coast of South America, the northern salt marshes (lower than 43°S) are dominated by Spartina species while the southern salt marshes (greater than 43°S) are dominated by Sarcocornia perennis. The most abundant Spartina species are Spartina densiflora which is present in most coastal marshes, and Spartina alterniflora that was never recorded above the ~42°25′S. It is not clear why S. alterniflora has not succeeded in the southern marshes, in which the low marsh zone remains as an extensive bared mud flat. We address the hypothesis that the absence of S. alterniflora in the south is driven by the cold temperatures inversely related with increasing latitudes along the East coast of Patagonia. To evaluate this hypothesis, we carried out an experiment in which we manipulated the temperature in combination with frost formation and photoperiod. We found that cold temperature produced a negative effect on S. alterniflora, and this effect seems accentuated by the frost but not by the reduction in the photoperiod. Our results support the hypothesis that the absence of S. alterniflora in the southernmost salt marshes of Patagonia is a consequence of the frost as an outcome of the co-occurrence of low temperature and high humidity. The importance of our results are discussed in the context of the global warming and how Spartina species enlarge their distributional range toward higher latitudes.  相似文献   

20.
Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha?1 for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57–505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (< 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha?1 in open water, bare tidal flat and S. salsa marsh, respectively, compared with ‐0.51 kg N2O ha?1 for S. alterniflora marsh and ?0.25 kg N2O ha?1 for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha?1 yr?1 in the top 100 cm soil profile, a value that was 2.63‐ to 8.78‐fold higher than in native plant marshes. The estimated GWP was 1.78, ?0.60, ?4.09, and ?1.14 Mg CO2eq ha?1 yr?1 in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to ?11.30 Mg CO2eq ha?1 yr?1 in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号