首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min.  相似文献   

2.
Cryptosporidium parvum represents a challenge to the water industry and a threat to public health. In this study, we developed a cell culture-quantitative PCR assay to evaluate the inactivation of C. parvum with disinfectants. The assay was validated by using a range of disinfectants in common use in the water industry, including low-pressure UV light (LP-UV), ozone, mixed oxidants (MIOX), and chlorine. The assay was demonstrated to be reliable and sensitive, with a lower detection limit of a single infectious oocyst. Effective oocyst inactivation was achieved (>2 log10 units) with LP-UV (20 mJ/cm2) or 2 mg of ozone/liter (for 10 min). MIOX and chlorine treatments of oocysts resulted in minimal effective disinfection, with <0.1 log10 unit being inactivated. These results demonstrate the inability of MIOX to inactivate Cryptosporidium. The assay is a valuable tool for the evaluation of disinfection systems for drinking water and recycled water.  相似文献   

3.
Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log10 for poliovirus and close to 4 log10 for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log10 reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested.  相似文献   

4.
The antimicrobial efficacies of preparations for surgical hand antisepsis can be determined according to a European standard (prEN 12791 [EN]) and a U.S. standard (tentative final monograph for health care antiseptic drug products [TFM]). The U.S. method differs in the product application mode (hands and lower forearms, versus hands only in EN), the number of applications (11 over 5 days, versus a single application in EN), the sampling times (0, 3, and 6 h after application, versus 0 and 3 h in EN), the sampling methods (glove juice versus fingertip sampling in EN), and the outcome requirements (absolute bacterial reduction factor [RF], versus noninferiority to reference treatment in EN). We have studied the efficacies of two hand rubs according to both methods. One hand rub was based on 80% ethanol and applied for 2 min, and the other one was based on 45% propan-2-ol, 30% propan-1-ol, and 0.2% mecetronium etilsulfate and applied for 1.5 min. The ethanol-based hand rub was equally effective as the 3-min reference disinfection of prEN 12791 in both the immediate (RFs, 2.97 ± 0.89 versus 2.92 ± 1.03, respectively) and sustained (RFs, 2.20 ± 1.07 versus 2.47 ± 1.25, respectively) effects. According to TFM, the immediate effects were 2.99 log10 (day 1), 3.00 log10 (day 2), and 3.43 log10 (day 5), and bacterial counts were still below baseline after 6 h. The propanol-based hand rub was even more effective than the reference disinfection of prEN 12791 in both the immediate (RFs, 2.35 ± 0.99 versus 1.86 ± 0.87, respectively) and sustained (RFs, 2.17 ± 1.00 versus 1.50 ± 1.26, respectively) effects. According to TFM, the immediate effects were 2.82 log10 (day 1), 3.29 log10 (day 2), and 3.25 log10 (day 5), and bacterial counts were still below baseline after 6 h. Some formulations have been reported to meet the efficacy requirements of one of the methods but not those of the other. That is why we conclude that, despite our results, meeting the efficacy requirements of one test method does not allow the claim that the requirements of the other test method are also met.  相似文献   

5.
Human noroviruses (NoVs) are a significant cause of nonbacterial gastroenteritis worldwide, with contaminated drinking water a potential transmission route. The absence of a cell culture infectivity model for NoV necessitates the use of molecular methods and/or viral surrogate models amenable to cell culture to predict NoV inactivation. The NoV surrogates murine NoV (MNV), feline calicivirus (FCV), poliovirus (PV), and male-specific coliphage MS2, in conjunction with Norwalk virus (NV), were spiked into surface water samples (n = 9) and groundwater samples (n = 6). Viral persistence was monitored at 25°C and 4°C by periodically analyzing virus infectivity (for all surrogate viruses) and nucleic acid (NA) for all tested viruses. FCV infectivity reduction rates were significantly higher than those of the other surrogate viruses. Infectivity reduction rates were significantly higher than NA reduction rates at 25°C (0.18 and 0.09 log10/day for FCV, 0.13 and 0.10 log10/day for PV, 0.12 and 0.06 log10/day for MS2, and 0.09 and 0.05 log10/day for MNV) but not significant at 4°C. According to a multiple linear regression model, the NV NA reduction rates (0.04 ± 0.01 log10/day) were not significantly different from the NA reduction rates of MS2 (0.05 ± 0.03 log10/day) and MNV (0.04 ± 0.03 log10/day) and were significantly different from those of FCV (0.08 ± 0.03 log10/day) and PV (0.09 ± 0.03 log10/day) at 25°C. In conclusion, MNV shows great promise as a human NoV surrogate due to its genetic similarity and environmental stability. FCV was much less stable and thus questionable as an adequate surrogate for human NoVs in surface water and groundwater.  相似文献   

6.
Lytic bacteriophages, applied to chicken skin that had been experimentally contaminated with Salmonella enterica serovar Enteritidis or Campylobacter jejuni at a multiplicity of infection (MOI) of 1, increased in titer and reduced the pathogen numbers by less than 1 log10 unit. Phages applied at a MOI of 100 to 1,000 rapidly reduced the recoverable bacterial numbers by up to 2 log10 units over 48 h. When the level of Salmonella contamination was low (< log10 2 per unit area of skin) and the MOI was 105, no organisms were recovered. By increasing the number of phage particles applied (i.e., MOI of 107), it was also possible to eliminate other Salmonella strains that showed high levels of resistance because of restriction but to which the phages were able to attach.  相似文献   

7.
Aims: To evaluate the reduction of human norovirus (HuNoV) by chlorine disinfection under typical drinking water treatment conditions. Methods and Results: HuNoV, murine norovirus (MNV) and poliovirus type 1 (PV1) were inoculated into treated water before chlorination, collected from a drinking water treatment plant, and bench‐scale free chlorine disinfection experiments were performed for two initial free chlorine concentrations, 0·1 and 0·5 mg l?1. Inactivation of MNV reached more than 4 log10 after 120 and 0·5 min contact time to chlorine at the initial free chlorine concentrations of 0·1 and 0·5 mg l?1, respectively. Conclusions: MNV was inactivated faster than PV1, and there was no significant difference in the viral RNA reduction rate between HuNoV and MNV. The results suggest that appropriate water treatment process with chlorination can manage the risk of HuNoV infection via drinking water supply systems. Significance and Impact of the Study: The data obtained in this study would be useful for assessing or managing the risk of HuNoV infections from drinking water exposure.  相似文献   

8.
Aim: During aseptic manufacturing and specifically during the transfer of items into an isolator, disinfection of surfaces is essential for reducing the risk of final product contamination. Surface disinfection can be carried out by a variety of methods, however the most accepted current practice is a combination of spraying with 70% alcohol and wiping. The aim of this study was to evaluate the effectiveness of two wipe systems by determining their ability to remove, kill and transfer bacterial contaminants from standardized surfaces. Methods and Results: The protocol used to achieve these objectives was based on a newly published method specifically designed to test wipes. Alcohol impregnated wipes performed better at reducing microbial bioburden than the alcohol spray/dry wipe applications. Impregnated wipes drastically reduced (1–2 log10 reduction) a small bioburden (approx. 2 log10) of spores of Bacillus subtilis and methicillin‐resistant Staphylococcus aureus from the surface, but failed to remove (<0·2 log10 reduction) Staphylococcus epidermidis. The alcohol spray/dry wipes did not manage to remove (<0·2 log10 reduction) spore or bacterial bioburden from surfaces and was able to transfer some viable micro‐organisms to other surfaces. Both wipe types showed poor antimicrobial efficacy (<1 log10 reduction) against the test bacteria and spores. Conclusions: As far as the authors are aware this is the first time that such a practical study has been reported and our results suggest that the best wipes for surface disinfection in aseptic units are the alcohol (IPA) impregnated wipes when compared with the dry wipes sprayed with alcohol. Significance and Impact of the Study: The impregnated wipes performed better than the dry wipes sprayed with alcohol and should be used for surface disinfection in aseptic units.  相似文献   

9.
Severalprocedures for inactivating viruses are used presently in the context of bonetissue transplants. Common methods used are gamma irradiation (25kGy), treatment with moist heat (82.5°C/15min., lobator-sd2-system) as well as chemical sterilisation usingperacetic acid-ethanol treatment (PES, 2% peracetic acid, 96% ethanol, Aqua[2:1:1], 200 mbar, agitation, 4 hours). Based on national andinternational guidelines, we tested the antivirucidal effectiveness of thesemethods in human bone transplants. Three enveloped viruses: humanimmunodeficiency virus type 2 (HIV-2), pseudorabies virus (PRV), bovine virusdiarrhoea virus (BVDV), and three non–enveloped viruses were used:hepatitis A virus (HAV), poliovirus (PV-1), porcine/bovine parvovirus (PPV,BPV). Defatted spongiosa cuboids served as model in chemical treatmentexperiments, while cortical diaphyses were used in gamma irradiationexperiments, and the effects of thermal treatment were tested in preparedfemoral heads. The log10 reduction was measured by cytopathogeniceffects after virus titration (TCID50/mL). A dose of at least 33.9kGy (bone model) at –30 ± 5°C wasnecessary to achieve a sufficient reduction (4 log10 steps) of BPV,the most resistant one of all viruses investigated. Thermal treatment as wellasPES treatment led to a reduction of virus titres by more than 4log10. Only HAV showed a reduction below 4 log10 (2.87)with PES. After validation of the defatting step included for HAV-infectedcells, a HAV-reduction of over 7 log10 was found. All threesterilisation methods tested are recommended for bone transplant sterilisation,but only provided that additional safety measures (anamnestic informations,infectious serology, PCR in case of multiorgan donors) are taken.  相似文献   

10.
11.
Aims: To determine the range of free available chlorine (FAC) required for disinfection of the live vaccine strain (LVS) and wild‐type strains of Francisella tularensis. Methods and Results: Seven strains of planktonic F. tularensis were exposed to 0·5 mg·l?1 FAC for two pH values, 7 and 8, at 5 and 25°C. LVS was inactivated 2 to 4 times more quickly than any of the wild‐type F. tularensis strains at pH 8 and 5°C. Conclusions: Free available chlorine residual concentrations routinely maintained in drinking water distribution systems would require up to two hours to reduce all F. tularensis strains by 4 log10. LVS was inactivated most quickly of the tested strains. Significance and Impact of the Study: This work provides contact time (CT) values that are useful for drinking water risk assessment and also suggests that LVS may not be a good surrogate in disinfection studies.  相似文献   

12.
Cryptosporidium is globally established as a contaminant of drinking and recreational waters. A previously described cell culture infectivity assay capable of detecting infectious oocysts was adapted to quantify viable oocysts through sporozoite invasion and clustering of foci. Eight experiments were performed by using oocysts less than 4 months of age to inoculate host HCT-8 cell monolayers. Oocysts were diluted in a standard 5- or 10-fold multiple dilution format, levels of infection and clustering were determined, and the most probable number (MPN) of infectious oocysts in the stock suspension was calculated. The MPN was compared to the initial oocyst inoculum to determine the level of correlation. For oocysts less than 30 days of age, the correlation coefficient (r) was 0.9726 (0.9306 to 0.9893; n = 20). A two-tailed P value (alpha = 0.05) indicated that P was less than 0.0001. This strong correlation suggests that the MPN can be used to effectively enumerate infectious oocysts in a cell culture system. Age affected the degree of oocyst infectivity. Oocyst infectivity was tested by the focus detection method (FDM)-MPN assay and in BALB/c mice before and after treatment with pulsed white light (PureBrite). The FDM-MPN assay and animal infectivity assays both demonstrated more than a 4 log10 inactivation. Municipal water systems and a host of other water testing organizations could utilize the FDM-MPN assay for routine survival and disinfection studies.  相似文献   

13.
Inanimate surfaces, or fomites, can serve as routes of transmission of enteric and respiratory pathogens. No previous studies have evaluated the impact of surface disinfection on the level of pathogen transfer from fomites to fingers. Thus, the present study investigated the change in microbial transfer from contaminated fomites to fingers following disinfecting wipe use. Escherichia coli (108 to 109 CFU/ml), Staphylococcus aureus (109 CFU/ml), Bacillus thuringiensis spores (107 to 108 CFU/ml), and poliovirus 1 (108 PFU/ml) were seeded on ceramic tile, laminate, and granite in 10-μl drops and allowed to dry for 30 min at a relative humidity of 15 to 32%. The seeded fomites were treated with a disinfectant wipe and allowed to dry for an additional 10 min. Fomite-to-finger transfer trials were conducted to measure concentrations of transferred microorganisms on the fingers after the disinfectant wipe intervention. The mean log10 reduction of the test microorganisms on fomites by the disinfectant wipe treatment varied from 1.9 to 5.0, depending on the microorganism and the fomite. Microbial transfer from disinfectant-wipe-treated fomites was lower (up to <0.1% on average) than from nontreated surfaces (up to 36.3% on average, reported in our previous study) for all types of microorganisms and fomites. This is the first study quantifying microbial transfer from contaminated fomites to fingers after the use of disinfectant wipe intervention. The data generated in the present study can be used in quantitative microbial risk assessment models to predict the effect of disinfectant wipes in reducing microbial exposure.  相似文献   

14.
Human norovirus (NoV) is the leading cause of foodborne illness in the United States and Canada. Wastewater treatment plant (WWTP) effluents impacting bivalve mollusk-growing areas are potential sources of NoV contamination. We have developed a meta-analysis that evaluates WWTP influent concentrations and log10 reductions of NoV genotype I (NoV GI; in numbers of genome copies per liter [gc/liter]), NoV genotype II (NoV GII; in gc/liter), and male-specific coliphage (MSC; in number of PFU per liter), a proposed viral surrogate for NoV. The meta-analysis included relevant data (2,943 measurements) reported in the scientific literature through September 2013 and previously unpublished surveillance data from the United States and Canada. Model results indicated that the mean WWTP influent concentration of NoV GII (3.9 log10 gc/liter; 95% credible interval [CI], 3.5, 4.3 log10 gc/liter) is larger than the value for NoV GI (1.5 log10 gc/liter; 95% CI, 0.4, 2.4 log10 gc/liter), with large variations occurring from one WWTP to another. For WWTPs with mechanical systems and chlorine disinfection, mean log10 reductions were −2.4 log10 gc/liter (95% CI, −3.9, −1.1 log10 gc/liter) for NoV GI, −2.7 log10 gc/liter (95% CI, −3.6, −1.9 log10 gc/liter) for NoV GII, and −2.9 log10 PFU per liter (95% CI, −3.4, −2.4 log10 PFU per liter) for MSCs. Comparable values for WWTPs with lagoon systems and chlorine disinfection were −1.4 log10 gc/liter (95% CI, −3.3, 0.5 log10 gc/liter) for NoV GI, −1.7 log10 gc/liter (95% CI, −3.1, −0.3 log10 gc/liter) for NoV GII, and −3.6 log10 PFU per liter (95% CI, −4.8, −2.4 PFU per liter) for MSCs. Within WWTPs, correlations exist between mean NoV GI and NoV GII influent concentrations and between the mean log10 reduction in NoV GII and the mean log10 reduction in MSCs.  相似文献   

15.
Sattar SA  Ali M  Tetro JA 《PloS one》2011,6(2):e17340
Human noroviruses (HuNoV), a major cause of acute gastroenteritis worldwide, cannot be readily cultured in the lab. Therefore, a feline calicivirus (FCV) is often used as its surrogate to, among other things, test alcohol-based handrubs (ABHR). The more recent laboratory culture of a mouse norovirus (MNV) provides an alternative. While MNV is closer to HuNoV in several respects, to date, no comparative testing of FCV and MNV survival and inactivation on human hands has been performed. This study was designed to address the knowledge gap. The rates of loss in viability during drying on hands were −1.91 and −1.65% per minute for FCV and MNV, respectively. When the contaminated skin was exposed for 20 s to either a commercial ABHR with 62% (v/v) ethanol or to 75% (v/v) ethanol in water, FCV infectivity was reduced by <1 log10 while that of MNV by nearly 2.8 log10. Extending the contact time to 30 s reduced the FCV titer by almost 2 log10 by both test substances and that of MNV by >3.5 log10 by the commercial ABHR while 75% ethanol did not show any noticeable improvement in activity as compared to the 20 s contact. An 80% (v/v) aqueous solution of ethanol gave only a 1.75 log10 reduction in MNV activity after 20 s. The results show significant differences in the ethanol susceptibility of FCV and MNV in contact times relevant to field use of ABHR and also that 62% ethanol was a more effective virucide than either 75% or 80% ethanol. These findings indicate the need for a review of the continuing use of FCV as a surrogate for HuNoV.  相似文献   

16.
The microsporidia have recently been recognized as a group of pathogens that have potential for waterborne transmission; however, little is known about the effects of routine disinfection on microsporidian spore viability. In this study, in vitro growth of Encephalitozoon syn. Septata intestinalis, a microsporidium found in the human gut, was used as a model to assess the effect of chlorine on the infectivity and viability of microsporidian spores. Spore inoculum concentrations were determined by using spectrophotometric measurements (percent transmittance at 625 nm) and by traditional hemacytometer counting. To determine quantitative dose-response data for spore infectivity, we optimized a rabbit kidney cell culture system in 24-well plates, which facilitated calculation of a 50% tissue culture infective dose (TCID50) and a minimal infective dose (MID) for E. intestinalis. The TCID50 is a quantitative measure of infectivity and growth and is the number of organisms that must be present to infect 50% of the cell culture wells tested. The MID is as a measure of a system's permissiveness to infection and a measure of spore infectivity. A standardized MID and a standardized TCID50 have not been reported previously for any microsporidian species. Both types of doses are reported in this paper, and the values were used to evaluate the effects of chlorine disinfection on the in vitro growth of microsporidia. Spores were treated with chlorine at concentrations of 0, 1, 2, 5, and 10 mg/liter. The exposure times ranged from 0 to 80 min at 25°C and pH 7. MID data for E. intestinalis were compared before and after chlorine disinfection. A 3-log reduction (99.9% inhibition) in the E. intestinalis MID was observed at a chlorine concentration of 2 mg/liter after a minimum exposure time of 16 min. The log10 reduction results based on percent transmittance-derived spore counts were equivalent to the results based on hemacytometer-derived spore counts. Our data suggest that chlorine treatment may be an effective water treatment for E. intestinalis and that spectrophotometric methods may be substituted for labor-intensive hemacytometer methods when spores are counted in laboratory-based chlorine disinfection studies.  相似文献   

17.

Background

Environmental surfaces play an important role in the transmission of healthcare-associated pathogens. Because environmental cleaning is often suboptimal, there is a growing demand for safe, rapid, and automated disinfection technologies, which has lead to a wealth of novel disinfection options available on the market. Specifically, automated ultraviolet-C (UV-C) devices have grown in number due to the documented efficacy of UV-C for reducing healthcare-acquired pathogens in hospital rooms. Here, we assessed and compared the impact of pathogen concentration, organic load, distance, and radiant dose on the killing efficacy of two analogous UV-C devices.

Principal Findings

The devices performed equivalently for each impact factor assessed. Irradiation delivered for 41 minutes at 4 feet from the devices consistently reduced C. difficile spores by ∼ 3 log10CFU/cm2, MRSA by>4 log10CFU/cm2, and VRE by >5 log10CFU/cm2. Pathogen concentration did not significantly impact the killing efficacy of the devices. However, both a light and heavy organic load had a significant negative impacted on the killing efficacy of the devices. Additionally, increasing the distance to 10 feet from the devices reduced the killing efficacy to ≤3 log10CFU/cm2 for MRSA and VRE and <2 log10CFU/cm2 for C.difficile spores. Delivery of reduced timed doses of irradiation particularly impacted the ability of the devices to kill C. difficile spores. MRSA and VRE were reduced by >3 log10CFU/cm2 after only 10 minutes of irradiation, while C. difficile spores required 40 minutes of irradiation to achieve a similar reduction.

Conclusions

The UV-C devices were equally effective for killing C. difficile spores, MRSA, and VRE. While neither device would be recommended as a stand-alone disinfection procedure, either device would be a useful adjunctive measure to routine cleaning in healthcare facilities.  相似文献   

18.
We report the results of an interdisciplinary collaboration formed to assess the sterilizing capabilities of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). This newly-invented source of glow discharge plasma (the fourth state of matter) is capable of operating at atmospheric pressure in air and other gases, and of providing antimicrobial active species to surfaces and workpieces at room temperature as judged by viable plate counts. OAUGDP exposures have reduced log numbers of bacteria, Staphylococcus aureus and Escherichia coli, and endospores from Bacillus stearothermophilus and Bacillus subtilis on seeded solid surfaces, fabrics, filter paper, and powdered culture media at room temperature. Initial experimental data showed a two-log10 CFU reduction of bacteria when 2 × 102 cells were seeded on filter paper. Results showed ≥3 log10 CFU reduction when polypropylene samples seeded with E. coli (5 × 104) were exposed, while a 30 s exposure time was required for similar killing with S. aureus-seeded polypropylene samples. The exposure times required to effect ≥6 log10 CFU reduction of E. coli and S. aureus on polypropylene samples were no longer than 30 s. Experiments with seeded samples in sealed commercial sterilization bags showed little or no differences in exposure times compared to unwrapped samples. Plasma exposure times of less than 5 min generated ≥5 log10 CFU reduction of commercially prepared Bacillus subtilis spores (1 × 106); 7 min OAUGDP exposures were required to generate a ≥3 log10 CFU reduction for Bacillus stearothermophilus spores. For all microorganisms tested, a biphasic curve was generated when the number of survivors vs time was plotted in dose-response cures. Several proposed mechanisms of killing at room temperature by the OAUGDP are discussed. Received 06 June 1997/ Accepted in revised form 01 November 1997  相似文献   

19.
Cryptosporidium parvum, which is resistant to chlorine concentrations typically used in water treatment, is recognized as a significant waterborne pathogen. Recent studies have demonstrated that chlorine dioxide is a more efficient disinfectant than free chlorine against Cryptosporidium oocysts. It is not known, however, if oocysts from different suppliers are equally sensitive to chlorine dioxide. This study used both a most-probable-number–cell culture infectivity assay and in vitro excystation to evaluate chlorine dioxide inactivation kinetics in laboratory water at pH 8 and 21°C. The two viability methods produced significantly different results (P < 0.05). Products of disinfectant concentration and contact time (Ct values) of 1,000 mg · min/liter were needed to inactivate approximately 0.5 log10 and 2.0 log10 units (99% inactivation) of C. parvum as measured by in vitro excystation and cell infectivity, respectively, suggesting that excystation is not an adequate viability assay. Purified oocysts originating from three different suppliers were evaluated and showed marked differences with respect to their resistance to inactivation when using chlorine dioxide. Ct values of 75, 550, and 1,000 mg · min/liter were required to achieve approximately 2.0 log10 units of inactivation with oocysts from different sources. Finally, the study compared the relationship between easily measured indicators, including Bacillus subtilis (aerobic) spores and Clostridium sporogenes (anaerobic) spores, and C. parvum oocysts. The bacterial spores were found to be more sensitive to chlorine dioxide than C. parvum oocysts and therefore could not be used as direct indicators of C. parvum inactivation for this disinfectant. In conclusion, it is suggested that future studies address issues such as oocyst purification protocols and the genetic diversity of C. parvum, since these factors might affect oocyst disinfection sensitivity.  相似文献   

20.
Two commercial peroxygen-based disinfectants containing hydrogen peroxide plus either peracetic acid (Ox-Virin) or silver nitrate (Ox-Agua) were tested for their ability to inactivate Cryptosporidium parvum oocysts. Oocysts were obtained from naturally infected goat kids and exposed to concentrations of 2, 5, and 10% Ox-Virin or 1, 3, and 5% Ox-Agua for 30, 60, and 120 min. In vitro excystation, vital dyes (4′,6′-diamidino-2-phenylindole and propidium iodide), and infectivity in neonatal BALB/c mice were used to assess the viability and infectivity of control and disinfectant-treated oocysts. Both disinfectants had a deleterious effect on the survival of C. parvum oocysts, since disinfection significantly reduced and in some cases eliminated their viability and infectivity. When in vitro assays were compared with an infectivity assay as indicators of oocyst inactivation, the excystation assay showed 98.6% inactivation after treatment with 10% Ox-Virin for 60 min, while the vital-dye assay showed 95.2% inactivation and the infectivity assay revealed 100% inactivation. Treatment with 3% Ox-Agua for 30 min completely eliminated oocyst infectivity for mice, although we were able to observe only 74.7% inactivation as measured by excystation assays and 24.3% with vital dyes (which proved to be the least reliable method for predicting C. parvum oocyst viability). These findings indicate the potential efficacy of both disinfectants for C. parvum oocysts in agricultural settings where soil, housing, or tools might be contaminated and support the argument that in comparison to the animal infectivity assay, vital-dye and excystation methods overestimate the viability of oocysts following chemical disinfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号