首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Managing ecological disturbances at different spatial scales is paramount for maintaining or restoring faunal diversity in grasslands. Whereas some studies have reported varying net effects of livestock disturbance intensity upon species richness in grasslands, most analysis reveal strong effects on beta-diversity. However, beta-diversity can be further partitioned into a nestedness and turnover components, which allows complementary insights on the effects of disturbance on biodiversity across spatial scales. Here we tested for differences in avian species richness and beta-diversity across three intensity levels of livestock disturbance in southern Brazilian grasslands under commercial livestock production. We also tested how disturbance influences the nestedness and turnover components of beta-diversity separately. We found no difference in rarified-extrapolated species richness between disturbance levels. In contrast, we found a significant difference in species composition between disturbance levels, which was attributable to the turnover, but not to the nestedness component. Specifically, livestock disturbance had a predictable effect upon beta-diversity, with turnover of species composition occurring along the gradient of vegetation height in pastures. Our study illustrates the importance of differentiating the turnover and nestedness components of beta-diversity to detect effects of disturbance gradients on biodiversity patterns. We argue that conservation strategies should focus on preserving the mosaic of short- and tall-grass physiognomies associated with the disturbance gradient imposed by livestock production.  相似文献   

2.
Question: Does flooding of rice fields after cultivation contribute to wetland plant conservation in southern Brazil? Location: Rice fields in the coastal plain of southern Brazil. Methods: Six rice fields with different management practices were randomly selected (three dry rice fields and three flooded rice fields). Six collections were carried out over the rice cultivation cycle. Richness and biomass were measured using the quadrat method. Results: A total of 88 macrophyte species was recorded. There was no statistical interaction between management practices and rice cultivation phases for macrophyte richness and biomass. Macrophyte species richness and biomass changed over time, but were similar between flooded and dry rice fields. The first three axes generated by detrended correspondence analysis explained 29% of the variation in species composition and the multivariate analysis of variance showed that there was a statistical interaction between management practices and agricultural periods. Conclusions: Rice fields may help to conserve an important fraction of the aquatic macrophyte diversity of wetlands of southern Brazil by providing the setting up of a greater number of species within the agricultural landscape. However, rice fields must not be viewed as surrogate systems for natural wetlands. The difference in species composition between flooded and dry rice fields is interesting in terms of biodiversity conservation. If rice producers could keep part of their agricultural land flooded during the fallow phase, this management practice could be an important strategy for the conservation of biodiversity in areas where natural wetlands have been converted to rice fields.  相似文献   

3.
The main goal of this study was to determine how much variation in macrophyte richness and composition is explained by wetland area, altitude, water conductivity, and nitrate and total phosphorus concentrations in wetlands in southern Brazil, and to compare these variations in two wetland subsystems (palustrine and lacustrine). A total of 126 wetlands were sampled distributed in two subsystems: 87 palustrine and 39 lacustrine wetlands. A total of 153 species of aquatic macrophytes was found in wetlands of southern Brazil and the mean number of macrophyte species per site was 8.7 (range 1–23). From the variables tested, the altitude and area were the only predictor of macrophyte richness and explained 23.1% of variation in richness. The two first axes generated by CCA explained only 4.4% of the variation in the aquatic macrophytes distribution. The macrophyte richness was similar across lacustrine and palustrine subsystems. While altitude, area and conductivity explained 33.2% of variation in macrophyte richness in the palustrine subsystem, none of the variables were associated with macrophyte richness in the studied lacustrine wetlands.  相似文献   

4.
The degradation of habitats and species loss in freshwaters is far greater than in any other ecosystem. The decline in biodiversity has a strong potential to alter the functioning of the ecosystem and the services they provide to human society. Therefore, there is an urgent need for accurate information on patterns and drivers of diversity that could be used in the management of freshwater ecosystems. We present the results of an analysis of the relationships between macrophyte species richness and environmental characteristics using an extensive dataset collected from 160 sites in two central-European bioregions. We modelled macrophyte species richness using recursive partitioning methods to assess the diversity-environmental relationships and to estimate the environmental thresholds of species richness in rivers, streams, ditches and ponds. Several hydrological and chemical variables were identified as significant predictors of macrophyte richness. Among them, pH, conductivity, turbidity and substrate composition appeared as the most important. There is also evidence that natural ponds support a greater number of plant species than man-made ponds. Based on the detected environmental thresholds, we offer a series of simple rules for maintaining higher macrophyte species richness, which is potentially useful in the conservation and management of aquatic habitats in central Europe.  相似文献   

5.
Habitat change affects both taxonomic and functional biodiversity, and beta-diversity is often used as a metric to describe these changes. Furthermore, spatially closer communities tend to have more similar species compositions (lower beta-diversity). These changes in community composition can be revealed with taxonomic and functional aspects of diversity. We assessed the responses of ant taxonomic and functional beta-diversity to changes in forest cover and spatial distance. We expected that changes in taxonomic and functional beta-diversity along a forest cover gradient would be caused by the replacement of open-habitat ant species by forest-habitat ant species. We sampled ants within twelve landscapes with different forest cover percentages in the southwestern Amazon of Brazil. Both taxonomic and functional beta-diversity of pairwise samples (βBC) were partitioned into their turnover (βBal) and nestedness (βGra) components. Increasing forest cover correlated with increases in taxonomic and functional βBC, however, βBal had a greater contribution to taxonomic βBC and βGra to functional βBC. Taxonomic βBC and βBal and functional βBal increased with spatial distance. Forest-habitat species richness increased, and open-habitat species richness decreased with increasing forest cover, while the richness of habitat-use generalist species did not vary. The loss of environmental heterogeneity may be responsible for generalist species dominance and open-habitat species presence in less-forested landscapes. This leads to great taxonomic replacement, but a nestedness gradient of function. Better land use planning is needed to ensure biodiversity and ecosystem functions of forest habitats in human-modified landscapes.  相似文献   

6.
Biodiversity patterns in cladoceran communities were investigated in urban waterbodies in relation with residential land use, pond management, and waterbody environments. We evaluated species richness in the pelagic and littoral zones of eighteen waterbodies of a large Canadian city. Gamma diversity (26 species) observed at a small scale in the urban survey was important comparatively to large-scale surveys of lakes. Beta diversity ranged from 1 to 8 species among waterbodies. We tested if littoral species greatly contributed to regional diversity in urban waterbodies. Littoral species (Chydoridae, Ilyocryptidae, Macrothricidae, Polyphemidae) accounted for 58% of the total species pool. We distinguished five cladoceran assemblages associated to different waterbodies (temporary ponds, permanent lakes, and wetlands). Cladoceran communities were more diverse and variable in permanent lakes than in temporary ponds. Changes in cladoceran species assemblages among waterbodies were driven by variations in waterbody size and phosphorus enrichment, macrophyte and algal biomass, urban density, pond management practices, and the presence of potential predators as fish and macroinvertebrates. Our study indicates that both artificial ponds and lakes and natural wetlands are valuable habitats for the conservation of cladoceran biodiversity and rare endemic species in urban regions. Further research on pond management strategies promoting urban aquatic biodiversity should be undertaken.  相似文献   

7.
Conservation of species in agroecosystems has attracted attention. Irrigation channels can improve habitats and offer conditions for freshwater species conservation. Two questions from biodiversity conservation point of view are: 1) Can the irrigated channels maintain a rich diversity of macrophytes, macroinvertebrates and amphibians over the cultivation cycle? 2) Do richness, abundance and composition of aquatic species change over the rice cultivation cycle? For this, a set of four rice field channels was randomly selected in Southern Brazilian wetlands. In each channel, six sample collection events were carried out over the rice cultivation cycle (June 2005 to June 2006). A total of 160 taxa were identified in irrigated channels, including 59 macrophyte species, 91 taxa of macroinvertebrate and 10 amphibian species. The richness and abundance of macrophytes, macroinvertebrates and amphibians did not change significantly over the rice cultivation cycle. However, the species composition of these groups in the irrigation channels varied between uncultivated and cultivated periods. Our results showed that the species diversity found in the irrigation channels, together with the permanence of water enables these man-made aquatic networks to function as important systems that can contribute to the conservation of biodiversity in regions where the wetlands were converted into rice fields. The conservation of the species in agriculture, such as rice field channels, may be an important alternative for biodiversity conservation in Southern Brazil, where more than 90% of wetland systems have already been lost and the remaining ones are still at high risk due to the expansion of rice production.  相似文献   

8.
Partitioning the turnover and nestedness components of beta diversity   总被引:2,自引:0,他引:2  
Aim  Beta diversity (variation of the species composition of assemblages) may reflect two different phenomena, spatial species turnover and nestedness of assemblages, which result from two antithetic processes, namely species replacement and species loss, respectively. The aim of this paper is to provide a unified framework for the assessment of beta diversity, disentangling the contribution of spatial turnover and nestedness to beta-diversity patterns.
Innovation  I derive an additive partitioning of beta diversity that provides the two separate components of spatial turnover and nestedness underlying the total amount of beta diversity. I propose two families of measures of beta diversity for pairwise and multiple-site situations. Each family comprises one measure accounting for all aspects of beta diversity, which is additively decomposed into two measures accounting for the pure spatial turnover and nestedness components, respectively. Finally, I provide a case study using European longhorn beetles to exemplify the relevance of disentangling spatial turnover and nestedness patterns.
Main conclusion  Assigning the different beta-diversity patterns to their respective biological phenomena is essential for analysing the causality of the processes underlying biodiversity. Thus, the differentiation of the spatial turnover and nestedness components of beta diversity is crucial for our understanding of central biogeographic, ecological and conservation issues.  相似文献   

9.
This study analyzed macrophyte richness, biomass, and composition under flooding of brief duration (less than 3 days) and drawdown events over an annual cycle in a floodplain palustrine wetland in the south of Brazil. The study was carried out to test the hypothesis that floods of brief and very brief duration are not long enough to compromise the richness and the biomass of aquatic macrophytes and that the alternation between wet and drawdown phases may cause variations in the macrophyte richness and composition. A total of 26 aquatic macrophyte species were observed from April 2003 to May 2004: 13 species were observed during the wet phase, and 24 during the drawdown phase. The mean richness was higher during the drawdown phase than during the wet phase, however, the mean biomass was similar in both phases. Although macrophyte richness was not modified after the three flooding events, mean biomass was modified after two events. The number of macrophyte species of which the biomass was modified after the first flooding event increased with subsequent floods. These results illustrate the importance of the dynamics between brief floods and drawdown events to the aquatic plant community in floodplain wetlands in southern Brazil.  相似文献   

10.
Manmade ecosystems provide a variety of resources that have strong economic values. We assessed the importance of 37 farm ponds for the biodiversity of Odonata in an agricultural landscape lacking natural wetlands in southwestern France. Farm ponds captured 40% of the regional species pool, including both common and rare species. The species assemblages were not correlated with pond use (e.g., cattle watering, duck farming, etc.) or to landscape variable. Species richness was correlated with pond area, suggesting that community diversity was primarily driven by autoecological processes. Farm ponds thus made a positive contribution to the maintenance of aquatic biodiversity. This added value for biodiversity should be considered when calculating the costs and benefits of constructing water bodies for human activities.  相似文献   

11.
Local species richness can be affected by both the dispersal process and by environmental conditions (species sorting process). The evaluation of the relative roles of these two processes contributes not only to further understanding of the mechanisms determining species richness but also to biodiversity conservation. We studied the relative importance of hydrological dispersal and water chemistry for species richness of submerged and floating‐leaved macrophytes using 31 sets of interconnected ponds with different numbers of component ponds (defined as connection class). Connection class was slightly more important than, or equally important to, water chemistry in determining species richness of floating‐leaved macrophytes. In contrast, submerged macrophyte richness was much more influenced by water chemistry than by connection class, although increasing connection class had some positive effect. Similarly, the occurrence of a particular species of submerged macrophyte was better explained by pond water chemistry than by the occurrence of the same species in the pond immediately upstream. The reverse was true for floating‐leaved macrophytes; the presence of a given species was better explained by its presence in the pond immediately upstream than by water chemistry. These results indicated that the relative importance of the two processes that shape the species richness of aquatic plants is a consequence of the growth form of the plants. However, both the dispersal process via hydrologic connection and species sorting by water chemistry play some role in determining the species richness of both floating‐leaved and submerged macrophytes.  相似文献   

12.
Freshwater biodiversity has shown to be highly vulnerable to climate warming, alpine cold stenotherm populations being especially at risk of getting extinct. This paper aims at identifying the environmental factors favouring cold stenotherm species in alpine ponds. This information is required to provide management recommendations for habitats restoration or creation, needed for the mitigation of the effects of climate warming on alpine freshwater biodiversity. Cold stenotherm species richness as well as total (i.e. stenotherm and eurytherm) richness were analyzed for aquatic plants, Coleoptera and Odonata in 26 subalpine and alpine ponds from Switzerland and were related to environmental factors ecologically relevant for pond biodiversity. Our results confirmed that the set of environmental variables governing pond biodiversity in alpine or subalpine ponds is specific to altitude. Altitude and macrophyte presence were important drivers of cold stenotherm and total species richness, whereas connectivity did not show any significant relation. Therefore, the management of pond biodiversity has to be ‘altitude-specific’. Nevertheless, cold stenotherm species from the investigated alpine ponds do not show some specific requirements if compared to the other species inhabiting these ponds. Therefore, both total and cold stenotherm species richness could be favoured by the same management measures.  相似文献   

13.
14.

An understanding of the diversity spatial organization in plant communities provides essential information for management and conservation planning. In this study we investigated, using a multi-species approach, how plant–plant interactions determine the local structure and composition of diversity in a set of Mediterranean plant communities, ranging from semi-arid to subalpine habitats. Specifically, we evaluated the spatial pattern of diversity (i.e., diversity aggregation or segregation) in the local neighborhood of perennial plant species using the ISAR (individual species–area relationship) method. We also assessed the local pattern of beta-diversity (i.e., the spatial heterogeneity in species composition among local assemblages), including the contribution of species turnover (i.e., species replacement) and nestedness (i.e., differences in species richness) to the overall local beta-diversity. Our results showed that local diversity segregation decreased in the less productive plant communities. Also, we found that graminoids largely acted as diversity segregators, while forbs showed more diverse neighborhoods than expected in less productive study sites. Interestingly, not all shrub and dwarf shrub species aggregated diversity in their surroundings. Finally, an increase in nestedness was associated with less segregated diversity patterns in the local neighborhood of shrub species, underlining their role in creating diversity islands in less productive environmental conditions. Our results provide further insights into the effect of plant–plant interactions in shaping the structure and composition of diversity in Mediterranean plant communities, and highlight the species and groups of species that management and conservation strategies should focus on in order to prevent a loss of biodiversity.

  相似文献   

15.
1. Aquatic macrophyte diversity and water quality of 55 ponds in western Japan were related to land use and morphometric variables to identify the environmental factors that sustain biodiversity and the spatial extent at which these factors operate. 2. The relevant spatial extent for floating‐leaved macrophyte richness (500 m from pond edge) was larger than that for submerged macrophyte occurrence (10, 75 and 100 m), whereas emergent macrophyte richness was best explained at much larger extents (1000 m). Total macrophyte richness was explained at the extent of 500, 750 and 1000 m. The extents relevant for explaining the physicochemical condition of pond water (100 and 250 m) were similar to those for submerged and floating‐leaved macrophytes, suggesting that these two growth forms are more sensitive to water quality compared to emergent macrophytes. 3. Diversity of all three growth forms and that of total macrophytes collectively were inversely related to turbidity and nutrient concentration; among the three growth forms, submerged macrophytes were most affected by water quality. 4. Negative relationships were found between the proportion of urban area and the diversity of the three growth forms and that of total macrophytes and water quality. Species richness of emergent, floating‐leaved and total macrophytes decreased with depth and increased with surface area up to about 5000 m2, above which it declined. 5. Urbanisation and enlargement of ponds were the two main factors that decreased aquatic macrophyte diversity in irrigation ponds. To alleviate the adverse effects of urban areas on aquatic macrophyte diversity, our results suggest that management efforts should focus on the creation of buffer zones within the relevant spatial extent from the pond edge.  相似文献   

16.
Coastal wetlands are characterized by a high biodiversity. At the same time, biodiversity is one of the main criteria used to establish protection policy priorities, or to propose management actions. In this study, crustacean and aquatic insect species richness in the Empordà wetlands was investigated. These two groups contribute in an important way to the total biodiversity, and still they are seldom taken into account in the management of natural areas. Representative samples (38 points) of all aquatic water body types in the Empordà wetlands were taken monthly (dip net with 250 μm mesh). Sampling was carried out between 1996 and 2000, but until present, only qualitative data have been extracted. A rich fauna of 125 crustacean taxa and 295 aquatic insect taxa were found. Some environments were characterized by low richness and high singularity (isolated artesian freshwater springs), some by high richness and high singularity (estuarine waters, brackish and meso-eutrophic freshwater wetlands), and others by low richness and low singularity (hypertrophic freshwater wetlands and hyperhaline wetlands). Factors determining singularity and richness are discussed. Comparison with crustacean richness of other western Mediterranean wetlands showed a similar high species richness in our study sites, probably due to high spatial heterogeneity of these areas.  相似文献   

17.
The selection of priority areas is an enormous challenge for biodiversity conservation. Some biogeographic methods have been used to identify the priority areas to conservation, and panbiogeography is one of them. This study aimed at the utilization of panbiogeographic tools, to identify the distribution patterns of aquatic insect genera, in wetland systems of an extensive area in the Neotropical region (approximately 280 000km2), and to compare the distribution of the biogeographic units identified by the aquatic insects, with the conservation units of Southern Brazil. We analyzed the distribution pattern of 82 genera distributed in four orders of aquatic insects (Diptera, Odonata, Ephemeroptera and Trichoptera) in Southern Brazil wetlands. Therefore, 32 biogeographic nodes corresponded to the priority areas for conservation of the aquatic insect diversity. Among this total, 13 were located in the Atlantic Rainforest, 16 in the Pampa and three amongst both biomes. The distribution of nodes showed that only 15% of the dispersion centers of insects were inserted in conservation units. The four priority areas pointed by node cluster criterion must be considered in further inclusions of areas for biodiversity conservation in Southern Brazil wetlands, since such areas present species from different ancestral biota. The inclusion of such areas into the conservation units would be a strong way to conserve the aquatic biodiversity in this region.  相似文献   

18.
Extensive surveys of biodiversity in protected and managed areas have not been conducted for a majority of taxonomic groups and ecosystem types, which makes it difficult to assess how large a portion of biodiversity is at least potentially under protection. The situation is the same in boreal regions, and only preliminary analyses of the biodiversity patterns of less well-known organism groups, including many freshwater taxa, within the protected area network have been conducted. We studied patterns of species richness and community composition of algae, macrophytes (bryophytes and vascular plants), and macroinvertebrates of headwater streams draining protected areas and managed forests in a boreal drainage basin in Finland. We found no significant differences in the species richness and community composition of these organism groups between the protected and managed streams. Gamma- and beta-diversity varied strongly among the protected and managed stream groups, yet this variation was contingent on the organism group and the beta-diversity measure used. In general, there was much species turnover within both protected and managed stream groups, masking any between-group differences. However, we found a number of redlisted and rare species in our surveys. Of these species, several macrophyte species occurred more frequently in the protected streams. By contrast, rare species of algae and macrophytes did not generally show such inclinations to the protected streams. We found no strong congruence in species richness or community dissimilarity between algae, macrophytes, and macroinvertebrates, suggesting that the main anthropogenic gradient in terms of forestry is not strong enough to modify stream environmental conditions and thereby shape biodiversity in the focal drainage basin. This finding also suggests that surveys of aquatic biodiversity across protected and managed landscapes should not rely too heavily on the surrogate taxon approach, but instead should consider patterns shown by multiple taxonomic groups that represent biologically and ecologically disparate organisms. Our results indeed suggest that the levels of alpha-, beta-, and gamma-diversity show differing among-taxon responses to forest management and naturalness of headwater streams.  相似文献   

19.
There is a worldwide concern on the loss of pond biodiversity in human dominated landscapes. Nevertheless, agricultural activities appear to increase pond number in the Brazilian Cerrado through damming streams for cattle raising. These man-made ponds may represent important landscape features, but their importance to regional biodiversity has not yet been studied. Here, we evaluated differences in alpha and beta diversity under a multi-taxonomic approach, as well as tested pond size as the main driver of local species richness. We also assessed the importance of environmental heterogeneity through the analysis of the regional species accumulation curves (SAC). The overall result suggests that species turnover was the major component of regional biodiversity for all groups. Major physical and chemical water conditions had no effects on algae, macrophytes, water bugs, and birds species richness. Pond size had a significant effect on Odonata and fish species richness, while water beetles and amphibians were influenced by trophic conditions. Results from regional SAC show variations among different taxonomic groups regarding landscape heterogeneity: only algae, fish, and birds do not reached to an asymptote and had higher z-values. Our results highlight the importance of ponds for biodiversity conservation in increasingly agricultural landscapes in central Brazil.  相似文献   

20.
Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species-area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号