共查询到20条相似文献,搜索用时 15 毫秒
1.
Of central importance to studying protein translocation via a combined genetic and biochemical approach is the in vitro analysis of yeast conditionally-lethal secretory mutants. Analysis of sec53 presented an opportunity not only to see if mutants could be examined in recently developed yeast in vitro translocation systems, but also to characterize further the nature of this mutant originally postulated to be defective in protein translocation. Membranes from sec53 were capable of translocating and glycosylating nascent prepro-alpha-factor in vitro in both sec53 and wild-type lysates at temperatures that were non-permissive for growth of the mutant cells. These results suggested that the Sec53 protein does not function directly in the translocation and glycosylation of prepro-alpha-factor. To examine this point further, we isolated membranes from sec53 cells that had been grown at the non-permissive temperature prior to disruption. In such cases, regardless of assay temperature, membranes from sec53 cells efficiently translocated but failed to glycosylate prepro-alpha-factor in vitro. The in vitro phenotype of sec53 could be mimicked by isolating rough microsomes from wild-type cells that had been grown for 1 h in the presence of tunicamycin. Together, these results demonstrate that sec53 is not defective in translocation, rather in assembly of the dolichol-oligosaccharide substrate needed for N-linked glycosylation. 相似文献
2.
Functional compartments of the yeast Golgi apparatus are defined by the sec7 mutation. 总被引:55,自引:9,他引:46 下载免费PDF全文
The role of the SEC7 gene product in yeast intercompartmental protein transport was examined. A spectrum of N-linked oligosaccharide structures, ranging from core to nearly complete outer chain carbohydrate, was observed on glycoproteins accumulated in secretion-defective sec7 mutant cells. Terminal alpha 1-3-linked outer chain mannose residues failed to be added to N-linked glycoproteins in sec7 cells at the restrictive temperature. These results suggest that outer chain glycosyl modifications do not occur within a single compartment. Additional evidence consistent with subdivision of the yeast Golgi apparatus came from a cell-free glycoprotein transport reaction in which wild-type membranes sustained outer chain carbohydrate growth up to, but not including, addition of alpha 1-3 mannose residues. Golgi apparatus compartments may specialize in addition of distinct outer chain determinants. The SEC7 gene product was suggested to regulate protein transport between and from functional compartments of the yeast Golgi apparatus. 相似文献
3.
Moulson CL Lin MH White JM Newberry EP Davidson NO Miner JH 《The Journal of biological chemistry》2007,282(21):15912-15920
FATP4 (fatty acid transport protein 4; also known as SLC27A4) is the most widely expressed member of a family of six long chain fatty acid transporters. FATP4 is highly expressed in enterocytes and has therefore been proposed to be a major importer of dietary fatty acids. Two independent mutations in Fatp4 cause mice to be born with thick, tight, shiny, "wrinkle-free" skin and a defective skin barrier; they die within hours of birth from dehydration and restricted movements. In contrast, induced keratinocyte-specific deficiency of FATP4 in adult mice causes only mild skin abnormalities. Therefore, whether the loss of FATP4 from skin or a systemic gestational metabolic defect causes the severe skin defects and neonatal lethality remain important unanswered questions. To investigate the basis for the phenotype, we first generated wild-type tetraploid/mutant diploid aggregates that should lead to rescue of any abnormalities caused by loss of FATP4 from the placenta. However, the skin phenotype was not ameliorated. We then generated transgenic mice expressing exogenous FATP4 either widely or specifically in suprabasal keratinocytes, and we bred the transgenes onto the Fatp4(-/-) background. Both modes of FATP4 expression led to rescue of the neonatally lethal skin defects, and the resulting mice were viable and fertile. Keratinocyte expression of an FATP4 variant with mutations in the acyl-CoA synthetase domain did not provide any degree of rescue. We conclude that expression of FATP4 with an intact acyl-CoA synthetase domain in suprabasal keratinocytes is necessary for normal skin development and that FATP4 functions in establishing the cornified envelope. 相似文献
4.
Chandler J Hohenstein P Swing DA Tessarollo L Sharan SK 《Genesis (New York, N.Y. : 2000)》2001,29(2):72-77
Half of all familial breast cancers are due to mutation in the BRCA1 gene. However, despite its importance, attempts to model BRCA1-induced disease in the mouse have been disappointing. Heterozygous Brca1 knockout mice do not develop mammary tumors and homozygous knockout mice die during embryogenesis from ill-defined causes. Sequence analysis has shown that the coding region, genomic organization, and regulatory sequences of the human and mouse genes are not well conserved. This has raised the question of whether the mouse can serve as an effective model for functional analysis of the human BRCA1 gene. To address this question we have introduced a bacterial artificial chromosome containing the human BRCA1 gene into the germline of Brca1 knockout mice. Surprisingly, we have found that the embryonic lethality of Brca1 knockout mice is rescued by the human transgene. We also show that expression of human BRCA1 transgene mirrors the endogenous murine gene. Our "humanized" transgenic mice can serve as a model system for functional analyses of the human BRCA1 gene. Published 2001 Wiley-Liss, Inc. 相似文献
5.
Expression of functional c-kit receptors rescues the genetic defect of W mutant mast cells. 下载免费PDF全文
Loss-of-function mutations in the gene for the c-kit tyrosine kinase receptor are strongly implicated in the developmental abnormalities of W mutant mice. To dissect further the relationship between kit and the W phenotype, retroviruses carrying the normal murine c-kit gene were constructed. In infected cells, the level of c-kit expression from these vectors varied markedly with different promoter elements, the 5' viral LTR proving to be the most effective. When introduced into cells which normally do not express c-kit, ectopic kit receptors transduced a ligand (Steel factor)-dependent proliferative signal in IL-3-dependent DA-1 myeloid cells and induced transformation in fibroblasts. Primary mutant mast cells were used to examine the effects of reconstituting functional kit expression in cells affected by W mutations. Exogenous c-kit expression rescued the defective proliferative response to Steel factor of cells from both W/Wv and W/W mutant mice. Moreover, functional kit expression also restored the capacity of W/Wv mast cells to survive and differentiate in vivo. These results imply that defective c-kit receptor function is sufficient to generate the W mutant phenotype. 相似文献
6.
Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A. Most mutant enzyme is catalytically active but due to misfolding retained in the endoplasmic reticulum. We have tested 4-phenylbutyrate for its potential to rescue various trafficking incompetent mutant alpha-galactosidase A. Although we found that the trafficking blockade for endoplasmic reticulum-retained mutant alpha-Gal A was released, neither a mature enzyme was detectable in transgenic mice fibroblasts nor a reversal of lysosomal Gb3 storage in fibroblasts from Fabry patients could be observed. Because of lack of functionality of rescued mutant alpha-galactosidase A, 4-phenylbutyrate seems to be of limited use as a chemical chaperone for Fabry disease. 相似文献
7.
EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization 总被引:10,自引:0,他引:10 下载免费PDF全文
Franco M Peters PJ Boretto J van Donselaar E Neri A D'Souza-Schorey C Chavrier P 《The EMBO journal》1999,18(6):1480-1491
We have identified a human cDNA encoding a novel protein, exchange factor for ARF6 (EFA6), which contains Sec7 and pleckstrin homology domains. EFA6 promotes efficient guanine nucleotide exchange on ARF6 and is distinct from the ARNO family of ARF1 exchange factors. The protein localizes to a dense matrix on the cytoplasmic face of plasma membrane invaginations, induced on its expression. We show that EFA6 regulates endosomal membrane recycling and promotes the redistribution of transferrin receptors to the cell surface. Furthermore, expression of EFA6 induces actin-based membrane ruffles that are inhibited by co-expression of dominant-inhibitory mutant forms of ARF6 or Rac1. Our results demonstrate that by catalyzing nucleotide exchange on ARF6 at the plasma membrane and by regulating Rac1 activation, EFA6 coordinates endocytosis with cytoskeletal rearrangements. 相似文献
8.
When the gene for yeast 3-phosphoglycerate kinase (PGK) is present on a high copy number plasmid in Saccharomyces cerevisiae, 30-40 percent of yeast protein is produced as PGK. However, when the structural part of this gene is replaced by as many as twenty different heterologous genes, production of gene products is greatly reduced--usually by more than 20 fold. This decrease in protein production is accompanied by large decreases in the steady-state levels of mRNA. However, in contrast to these coding sequences, replacement of the yeast PGK structural gene with a human PGK cDNA has little effect on the steady-state mRNA level in yeast. PGK is a two-domain enzyme and its 3-dimensional structure is highly conserved among species. These observations and others have led us to propose that the PGK protein itself might influence its own mRNA levels (Chen et al., Nucleic Acids Res. 12, pp. 8951-8969, 1984). In addition, data is presented here which suggest that the human PGK mRNA is less efficiently translated than the yeast PGK mRNA. Two different mechanisms of controlling gene expression are indicated. Both mechanisms appear to be independent of gene copy number. 相似文献
9.
10.
Regulated expression of human CD4 rescues helper T cell development in mice lacking expression of endogenous CD4. 总被引:17,自引:2,他引:17 下载免费PDF全文
During T cell development, precursor thymocytes that co-express the CD4 and CD8 glycoproteins give rise to mature progeny expressing one of these molecules to the exclusion of the other. Continued expression of only CD4 is the hallmark of mature helper T cells, whereas cytotoxic T cells express CD8 and extinguish CD4. The differentiation program that generates the two T cell subsets is likely to be intimately tied to regulation of expression of these cell surface molecules. We now describe the use of a murine CD4 enhancer in the generation of transgenic mice expressing physiologic levels of human CD4. The transgene is appropriately regulated during T cell development and includes the necessary cis-acting sequences for extinguishing expression in the CD8 lineage. Furthermore, in mice whose endogenous CD4 gene is inactivated, the transgenic human CD4 mediates rescue of the CD4 lineage and restoration of normal helper cell functions. The generation of these mice exemplifies a general approach for developing reliable animal models for the human immune system. 相似文献
11.
Fujii H Honoki K Tsujiuchi T Kido A Yoshitani K Mori T Takakura Y 《Biochemical and biophysical research communications》2007,362(3):773-778
The presence of cancer stem cells, in both hematopoietic and solid malignancies, has been recently linked to their pathogenesis. We aimed to identify the characteristics and stem-like properties of sphere-colony forming cells in rat osteosarcoma and malignant fibrous histiocytoma cell lines. The results showed that both cell lines possessed an ability to form spherical, clonally expanding colonies in anchorage-independent, serum-starved conditions in N2/1% methylcellulose medium. The sphere cells showed stem-like properties with the ability to self-renew, and expressed the stem cell-related STAT3 and Bmi1 genes. Interestingly, spheres from both sarcomas remarkably decreased the expression of INK4a/ARF locus genes, p16(INK4a) and p19(ARF), which could be related to the resistance against cell senescence and apoptosis. Spheres showed strong tumorigenicity with metastatic potential in vivo via the inoculation into syngeneic rats, suggesting the presence of these populations might contribute to the tumor development such as metastasis via the resistance to apoptotic stimuli. 相似文献
12.
Impaired proteasome function rescues thermosensitivity of yeast cells lacking the coatomer subunit epsilon-COP 总被引:1,自引:0,他引:1
Formation of COPI-coated transport vesicles requires a cytosolic protein complex consisting of seven subunits: alpha-, beta-, beta'-, gamma-, delta-, epsilon- and zeta-COP, collectively designated coatomer. The yeast Saccharomyces cerevisiae gene encoding the epsilon-COP subunit is known as SEC28/ANU2. anu2 null mutant cells (anu2Delta) are temperature-sensitive, and alpha-COP is rapidly degraded in these cells when they are shifted to the restrictive temperature. We isolated extragenic suppressors that rescue the temperature-sensitive growth defect of anu2Delta cells. Genetic analysis revealed that one of the suppressors is allelic to PRE8 (PRS4), which encodes a 20 S proteasome subunit. In the presence of a proteasome inhibitor, MG132, anu2Delta cells did not cease growth even at the restrictive temperature. Furthermore, MG132 inhibited the rapid decrease of alpha-COP levels in anu2Delta cells shifted to the restrictive temperature. However, secretion of certain proteins by these cells was impaired even in the presence of MG132. In conclusion, impairment of proteasome-dependent proteolysis rescued some, but not all, temperature-sensitive defects of anu2Delta cells. These results are discussed in terms of evidence that epsilon-COP plays a critical role in maintaining the structural integrity of alpha-COP. 相似文献
13.
Human leukotriene C4 synthase expression in dimethyl sulfoxide-differentiated U937 cells. 总被引:5,自引:0,他引:5
D W Nicholson A Ali M W Klemba N A Munday R J Zamboni A W Ford-Hutchinson 《The Journal of biological chemistry》1992,267(25):17849-17857
Leukotriene C4 (LTC4) synthase was highly expressed in the human U937 monoblast leukemia cell line when differentiated into monocyte/macrophage-like cells by growth in the presence of dimethyl sulfoxide. The specific activity of LTC4 synthase in differentiated cells (399.0 +/- 84.1 pmol of LTC4 formed.min-1.mg-1) was markedly higher (10-fold; p less than 0.001) than in undifferentiated U937 cells (39.9 +/- 16.7 pmol of LTC4 formed.min-1.mg-1) or freshly isolated blood monocytes (21.5 +/- 4.8 pmol of LTC4 formed.min-1.mg-1). The increase in LTC4 synthase activity following dimethyl sulfoxide-induced differentiation was substantially higher than the increase observed for other proteins involved in leukotriene biosynthesis. LTC4 synthase activity was unaffected in U937 cells differentiated by growth in the presence of phorbol 12-myristate 13-acetate. The HL-60 myeloblast leukemia cell line expressed higher LTC4 synthase levels when differentiated into either neutrophil-like or macrophage-like cells by growth in the presence of dimethyl sulfoxide or phorbol 12-myristate 13-acetate (respectively), but reached a specific activity comparable only to undifferentiated U937 cells. Human LTC4 synthase was found to be a unique membrane-bound enzymatic activity completely distinct from alpha, mu, pi, theta, and microsomal glutathione S-transferases, as determined by differential detergent solubilization, chromatographic separation, substrate specificity, and Western blot analysis. An 18-kDa polypeptide was specifically labeled in membranes from dimethyl sulfoxide-differentiated U937 cells using azido 125I-LTC4, a photoaffinity probe based on the product of the LTC4 synthase-catalyzed reaction. Photolabeling of the 18-kDa polypeptide was specifically competed for by LTC4 (greater than 50% at 0.1 microM) but not by 100,000-fold higher concentrations of reduced glutathione (10 mM). Elevation of both the level of the specifically photolabeled 18-kDa polypeptide and of LTC4 synthase specific activity occurred concomitantly with dimethyl sulfoxide differentiation of U937 cells. We conclude that differentiation of U937 cells into monocyte/macrophage-like cells by growth in the presence of dimethyl sulfoxide results in high levels of expression of LTC4 synthase activity. Human LTC4 synthase is a unique enzyme with a high degree of specificity for LTA4 and may therefore be dedicated exclusively to the formation of LTC4 in vivo. An 18-kDa membrane polypeptide, specifically labeled by a photoaffinity derivative of LTC4, is a candidate for being either LTC4 synthase or a subunit thereof. 相似文献
14.
15.
16.
Repair of UV-induced cyclobutane pyrimidine dimers (CPDs) was examined in a yeast plasmid of known chromatin structure and in genomic DNA in a radiation-sensitive deletion mutant of yeast, rad7 delta, and its isogenic wild-type strain. A whole plasmid repair assay revealed that only approximately 50% of the CPDs in plasmid DNA are repaired after 6 h in this mutant, compared with almost 90% repaired in wild-type. Using a site-specific repair assay on 44 individual CPD sites within the plasmid we found that repair in the rad7 delta mutant occurred primarily in the transcribed regions of each strand of the plasmid, however, the rate of repair at nearly all sites measured was less than in the wild-type. There was no apparent correlation between repair rate and nucleosome position. In addition, approximately 55% of the CPDs in genomic DNA of the mutant are repaired during the 6 h period, compared with > 80% in the wild-type. 相似文献
17.
18.
Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant 总被引:45,自引:30,他引:45 下载免费PDF全文
The sec18 and sec23 secretory mutants of Saccharomyces cerevisiae have previously been shown to exhibit temperature-conditional defects in protein transport from the ER to the Golgi complex (Novick, P., S. Ferro, and R. Schekman, 1981. Cell. 25:461-469). We have found that the Sec18 and Sec23 protein functions are rapidly inactivated upon shifting mutant cells to the nonpermissive temperature (less than 1 min). This has permitted an analysis of the potential role these SEC gene products play in transport events distal to the ER. The sec-dependent transport of alpha-factor (alpha f) and carboxypeptidase Y (CPY) biosynthetic intermediates present throughout the secretory pathway was monitored in temperature shift experiments. We found that Sec18p/NSF function was required sequentially for protein transport from the ER to the Golgi complex, through multiple Golgi compartments and from the Golgi complex to the cell surface. In contrast, Sec23p function was required in the Golgi complex, but only for transport of alpha f out of an early compartment. Together, these studies define at least three functionally distinct Golgi compartments in yeast. From cis to trans these compartments contain: (a) An alpha 1----6 mannosyltransferase; (b) an alpha 1----3 mannosyltransferase; and (c) the Kex2 endopeptidase. Surprisingly, we also found that a pool of Golgi-modified CPY (p2 CPY) located in a compartment distal to the alpha 1----3 mannosyltransferase does not require Sec18p function for final delivery to the vacuole. This compartment appears to be equivalent to the Kex2 compartment as we show that a novel vacuolar CPY-alpha f-invertase fusion protein undergoes efficient Kex2-dependent cleavage resulting in the secretion of invertase. We propose that this Kex2 compartment is the site in which vacuolar proteins are sorted from proteins destined to be secreted. 相似文献
19.
Hada T Kato Y Obana E Yamamoto A Yamazaki N Hashimoto M Yamamoto T Shinohara Y 《Protein expression and purification》2012,82(1):192-196
Carnitine palmitoyltransferase 1 (CPT1), catalyzing the transfer of the acyl group from acyl-CoA to carnitine to form acylcarnitine, is located at the outer mitochondrial membrane. Because it is easily inactivated by solubilization, expression systems using living cells are essential for its functional characterization. COS7 cells or yeast cells are often utilized for this purpose; however, the advantages/disadvantages of the use of these cells or the question as to how the CPT1 enzyme expressed by these cells differs are still uncertain. In this study, we characterized the heart/muscle-type isozyme of rat CPT1 (CPT1b) expressed by these two cellular expression systems. The mitochondrial fraction prepared from yeast cells expressing CPT1b showed 25% higher CPT1 activity than that obtained from COS7 cells. However, the expression level of CPT1b in the former was 3.8 times lower than that in the latter; and thus, under the present experimental conditions, the specific activity of CPT1b expressed in yeast cells was estimated to be approximately five times higher than that expressed in COS7 cells. Possible reasons for this difference are discussed. 相似文献
20.
Cloning of the Pichia anomala SEC61 gene and its expression in a Saccharomyces cerevisiae sec61 mutant 总被引:1,自引:0,他引:1
In several organisms, including Saccharomyces cerevisiae and other yeast species, the product encoded by the SEC61 gene is considered to be the core element of the translocation apparatus within the endoplasmic reticulum membrane through which translocation of secretory and membrane proteins occurs. In this study, we have cloned and characterized the homolog of the SEC61 gene from the yeast Pichia anomala. The cloned gene includes an ORF, interrupted after the first ten nucleotides by an intron of 131 bp, encoding a 479-amino acid putative polypeptide exhibiting homology to the products encoded by different eukaryotic SEC61 genes, particularly to those from other yeast species. We show that the P. anomala SEC61 gene is correctly processed (intron splicing) when expressed in S. cerevisiae and that it is able to complement the thermosensitive phenotype associated with a mutation in the S. cerevisiae SEC61 gene. 相似文献