首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Menadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an intact cell system, menadione inhibited the effect of transfected PTEN on Akt. Thus, one mechanism of its action was considered the accelerated activation of Akt through inhibition of PTEN. This was not the sole mechanism responsible for the EGFR-independent activation of Akt, because menadione attenuated the rate of Akt dephosphorylation even in PTEN-null PC3 cells. The decelerated inactivation of Akt, probably through inhibition of some tyrosine phosphatases, was considered another mechanism of its action.  相似文献   

2.
Antibodies are the most rapidly expanding class of human therapeutics, including their use in cancer therapy. Monoclonal antibodies (mAb) against epidermal growth factor (EGF) receptor (EGFR) generated for cancer therapy block the binding of ligand to various EGFR-expressing human cancer cell lines and abolish ligand-dependent cell proliferation. In this study, we show that our mAb against EGFRs, designated as B4G7, exhibited a growth-stimulatory effect on various human cancer cell lines including PC-14, a non-small cell lung cancer cell line; although EGF exerted no growth-stimulatory activity toward these cell lines. Tyrosine phosphorylation of EGFRs occurred after treatment of PC-14 cells with B4G7 mAb, and it was completely inhibited by AG1478, a specific inhibitor of EGFR tyrosine kinase. However, this inhibitor did not affect the B4G7-stimulated cell growth, indicating that the growth stimulation by B4G7 mAb seems to be independent of the activation of EGFR tyrosine kinase. Immunoprecipitation with anti-ErbB3 antibody revealed that B4G7, but not EGF, stimulated heterodimerization between ErbB2 and ErbB3. ErbB3 was tyrosine phosphorylated in the presence of B4G7 but not in the presence of EGF. Further, the phosphorylation and B4G7-induced increase in cell growth were inhibited by AG825, a specific inhibitor of ErbB2. These results show that the ErbB2/ErbB3 dimer functions to promote cell growth in B4G7-treated cells. Changes in receptor-receptor interactions between ErbB family members after inhibition of one of its members are of potential importance in optimizing current EGFR family-directed therapies for cancer.  相似文献   

3.
The G protein-coupled receptor P2Y2 nucleotide receptor (P2Y2R) has been shown to be up-regulated in a variety of tissues in response to stress or injury. Recent studies have suggested that P2Y2Rs may play a role in immune responses, wound healing, and tissue regeneration via their ability to activate multiple signaling pathways, including activation of growth factor receptors. Here, we demonstrate that in human salivary gland (HSG) cells, activation of the P2Y2R by its agonist induces phosphorylation of ERK1/2 via two distinct mechanisms, a rapid, protein kinase C-dependent pathway and a slower and prolonged, epidermal growth factor receptor (EGFR)-dependent pathway. The EGFR-dependent stimulation of UTP-induced ERK1/2 phosphorylation in HSG cells is inhibited by the adamalysin inhibitor tumor necrosis factor-α protease inhibitor or by small interfering RNA that selectively silences ADAM10 and ADAM17 expression, suggesting that ADAM metalloproteases are required for P2Y2R-mediated activation of the EGFR. G protein-coupled receptors have been shown to promote proteolytic release of EGFR ligands; however, neutralizing antibodies to known ligands of the EGFR did not inhibit UTP-induced EGFR phosphorylation. Immunoprecipitation experiments indicated that UTP causes association of the EGFR with another member of the EGF receptor family, ErbB3. Furthermore, stimulation of HSG cells with UTP induced phosphorylation of ErbB3, and silencing of ErbB3 expression inhibited UTP-induced phosphorylation of both ErbB3 and EGFR. UTP-induced phosphorylation of ErbB3 and EGFR was also inhibited by silencing the expression of the ErbB3 ligand neuregulin 1 (NRG1). These results suggest that P2Y2R activation in salivary gland cells promotes the formation of EGFR/ErbB3 heterodimers and metalloprotease-dependent neuregulin 1 release, resulting in the activation of both EGFR and ErbB3.  相似文献   

4.
Thrombospondin-1 (TSP1) is a multidomain protein that contains epidermal growth factor (EGF)-like repeats that indirectly activate the EGF receptor (EGFR) and selected downstream signaling pathways. In these studies, we show that TSP1 opens the paracellular pathway in human lung microvascular endothelial cells (HMVEC-Ls) in a dose-, time-, and protein tyrosine kinase (PTK)-dependent manner. TSP1 increased tyrosine phosphorylation of proteins enriched to intercellular boundaries including the zonula adherens (ZA) proteins, vascular endothelial-cadherin, γ-catenin, and p120 catenin. In HMVEC-Ls, EGFR and ErbB2 are expressed at low levels, and both heterodimerize and tyrosine autophosphorylate in response to TSP1. Prior EGFR-selective PTK inhibition with AG1478 or ErbB2-selective PTK inhibition with AG825 protected against TSP1-induced tyrosine phosphorylation of ZA proteins and barrier disruption. Preincubation of HMVEC-Ls with an EGFR ectodomain-blocking antibody also prevented TSP1-induced opening of the paracellular pathway. Therefore, in HMVEC-Ls, TSP1 increases tyrosine phosphorylation of ZA proteins and opens the paracellular pathway, in part, through EGFR/ErbB2 activation. Surprisingly, recombinant TSP1 EGF-like repeats 1-3 and the high-affinity EGFR ligands, EGF, TGF-α, and amphiregulin, each failed to increase paracellular permeability. However, HMVEC-Ls in which EGFR was overexpressed became responsive to the EGF-like repeats of TSP1 as well as to EGF. These studies indicate that TSP1 disrupts the endothelial barrier through EGFR/ErbB2 activation although additional signals are necessary in cells with low receptor expression.  相似文献   

5.
6.
We have previously demonstrated that epidermal growth factor (EGF) inhibits calcium-dependent chloride secretion via a mechanism involving stimulation of phosphatidylinositol 3-kinase (PI3-K). The muscarinic agonist of chloride secretion, carbachol (CCh), also stimulates an antisecretory pathway that involves transactivation of the EGF receptor (EGFR) but does not involve PI3-K. Here, we have examined if ErbB receptors, other than the EGFR, have a role in regulation of colonic secretion and if differential effects on ErbB receptor activation may explain the ability of the EGFR to propagate diverse signaling pathways in response to EGF versus CCh. Basolateral, but not apical, addition of the ErbB3/ErbB4 ligand alpha-heregulin (HRG; 1-100 ng/ml) inhibited secretory responses to CCh (100 microM) across voltage-clamped T(84) epithelial cells. Immunoprecipitation/Western blot studies revealed that HRG (100 ng/ml) stimulated tyrosine phosphorylation and dimerization of ErbB3 and ErbB2, but had no effect on phosphorylation of the EGFR. HRG also stimulated recruitment of the p85 subunit of PI3-K to ErbB3/ErbB2 receptor dimers, while the PI3-K inhibitor, wortmannin (50 nM), completely reversed the inhibitory effect of HRG on CCh-stimulated secretion. Further studies revealed that, while both EGF (100 ng/ml) and CCh (100 microM) stimulated phosphorylation of the EGFR, only EGF stimulated phosphorylation of ErbB2, and neither stimulated ErbB3 phosphorylation. EGF, but not CCh, stimulated the formation of EGFR/ErbB2 receptor dimers and the recruitment of p85 to ErbB2. We conclude that ErbB2 and ErbB3 are expressed in T(84) cells and are functionally coupled to inhibition of calcium-dependent chloride secretion. Differential dimerization with other ErbB family members may underlie the ability of the EGFR to propagate diverse inhibitory signals in response to activation by EGF or transactivation by CCh.  相似文献   

7.
Selected biological effects of 1,4-naphthoquinone, menadione (2-methyl-1,4-naphthoquinone) and structurally related quinones from natural sources - the 5-hydroxy-naphthoquinones juglone, plumbagin and the 2-hydroxy-naphthoquinones lawsone and lapachol - were studied in human keratinocytes (HaCaT). 1,4-naphthoquinone and menadione as well as juglone and plumbagin were highly cytotoxic, strongly induced reactive oxygen species (ROS) formation and depleted cellular glutathione. Moreover, they induced oxidative DNA base damage and accumulation of DNA strand breaks, as demonstrated in an alkaline DNA unwinding assay. Neither lawsone nor lapachol (up to 100 μM) were active in any of these assays. Cytotoxic and oxidative action was paralleled by stimulation of stress signaling: all tested quinones except lawsone and lapachol strongly induced phosphorylation of the epidermal growth factor receptor (EGFR) and the related ErbB2 receptor tyrosine kinase. EGFR activation by plumbagin, juglone and menadione was attenuated by a superoxide dismutase mimetic, indicating that ROS-related mechanisms contribute to EGFR activation by these naphthoquinones.  相似文献   

8.
Several non-physiologic agents such as radiation, oxidants and alkylating agents induce ligand-independent activation of numerous receptor tyrosine kinases (RTKs) and of protein tyrosine kinases at the inner side of the plasma membrane (e.g. Dévary et al., 1992; Sachsenmaier et al., 1994; Schieven et al., 1994; Coffer et al., 1995). Here we show additional evidence for the activation of epidermal growth factor receptor (EGFR), and we show activation of v-ErbB, ErbB2 and platelet-derived growth factor receptor. As a common principle of action the inducing agents such as UVC, UVB, UVA, hydrogen peroxide and iodoacetamide inhibit receptor tyrosine dephosphorylation in a thiol-sensitive and, with the exception of the SH-alkylating agent, reversible manner. EGFR dephosphorylation can also be modulated by these non-physiologic agents in isolated plasma membranes in the presence of Triton X-100. Further, substrate (EGFR) and phosphatase have been separated: a membrane preparation of cells that have been treated with epidermal growth factor (EGF) and whose dephosphorylating enzymes have been permanently destroyed by iodoacetamide can be mixed with a membrane preparation from untreated cells which re-establishes EGFR dephosphorylation. This dephosphorylation can be modulated in vitro by UV and thiol agents. We conclude that RTKs exhibit significant spontaneous protein kinase activity; several adverse agents target (an) essential SH-group(s) carried by (a) membrane-bound protein tyrosine phosphatase(s).  相似文献   

9.
Ligand-induced receptor degradation is an important process for down-regulation of plasma membrane receptors. While epidermal growth factor receptor (EGFR) is rapidly internalised and degraded upon ligand stimulation, ErbB2, the closest member to EGFR in ErbB receptor family, is resistant in ligand-induced degradation. To understand the molecular mechanisms underlying the impairment in ligand-induced degradation of ErbB2, we attempted to determine structural factor in ErbB2 that restricts the degradation. By analysis of ligand-induced degradation of EGFR/ErbB2 chimeras, we have identified a region between amino acid residues F1030 and L1075 in ErbB2 as the domain that restricts the ligand-induced degradation. We designated this domain as the Blocking ErbB2 Degradation or the BED domain. Replacement of the BED domain in an EGFR/ErbB2 chimera with the corresponding region of EGFR changed this chimera from a non-degradable to a degradable receptor, indicating that the BED domain is the factor restricting the ligand-induced degradation of ErbB2. In addition, we found that a non-degradable EGFR/ErbB2 chimera was not defective in tyrosine phosphorylation, ubiquitination and interaction with c-Cbl, rather, was defective in ligand-induced internalisation, suggesting that the endocytosis defect is the cause restricting the degradation of ErbB2, and that c-Cbl-catalysed mono-ubiquitination is not involved in the impairment in ligand-induced degradation of ErbB2.  相似文献   

10.
The ErbB family of receptor tyrosine kinases consists of four members: the epidermal growth factor receptor (EGFR/ErbB1), ErbB2/HER2/Neu, ErbB3/HER3, and ErbB4/HER4. ErbB2 is an "orphan" for which there is no naturally occurring, soluble ligand. ErbB3 lacks tyrosine kinase activity. Thus, we hypothesized that ErbB2 enhances ligand-induced ErbB family receptor signalling through mass action. In contrast, we hypothesized that ErbB3 reduces ligand-induced ErbB family receptor signalling by forming receptor heterodimers that cannot undergo bidirectional cross-phosphorylation. We tested these hypotheses using three cell lines that express equal levels of ErbB4. One expresses ErbB4 alone, the second expresses ErbB2 and ErbB4, and the third expresses ErbB3 and ErbB4. We treated the cells with the ErbB4 ligands betacellulin (BTC) and neuregulin1beta (NRG1 beta) and assayed ErbB4 tyrosine phosphorylation. ErbB2 and ErbB3 do not affect the amount of ligand-induced ErbB4 tyrosine phosphorylation. We will discuss these findings within the context of a model for ErbB receptor signalling.  相似文献   

11.
Epidermal growth factor (EGF) stimulates the homodimerization of EGF receptor (EGFR) and the heterodimerization of EGFR and ErbB2. The EGFR homodimers are quickly endocytosed after EGF stimulation as a means of down-regulation. However, the results from experiments on the ability of ErbB2 to undergo ligand-induced endocytosis are very controversial. It is unclear how the EGFR-ErbB2 heterodimers might behave. In this research, we showed by subcellular fractionation, immunoprecipitation, Western blotting, indirect immunofluorescence, and microinjection that, in the four breast cancer cell lines MDA453, SKBR3, BT474, and BT20, the EGFR-ErbB2 heterodimerization levels were positively correlated with the ratio of ErbB2/EGFR expression levels. ErbB2 was not endocytosed in response to EGF stimulation. Moreover, in MDA453, SKBR3, and BT474 cells, which have very high levels of EGFR-ErbB2 heterodimerization, EGF-induced EGFR endocytosis was greatly inhibited compared with that in BT20 cells, which have a very low level of EGFR-ErbB2 heterodimerization. Microinjection of an ErbB2 expression plasmid into BT20 cells significantly inhibited EGF-stimulated EGFR endocytosis. Coexpression of ErbB2 with EGFR in 293T cells also significantly inhibited EGF-stimulated EGFR endocytosis. EGF did not stimulate the endocytosis of ectopically expressed ErbB2 in BT20 and 293T cells. These results indicate that ErbB2 and the EGFR-ErbB2 heterodimers are impaired in EGF-induced endocytosis. Moreover, when expressed in BT20 cells by microinjection, a chimeric receptor composed of the ErbB2 extracellular domain and the EGFR intracellular domain underwent normal endocytosis in response to EGF, and this chimera did not block EGF-induced EGFR endocytosis. Thus, the endocytosis deficiency of ErbB2 is due to the sequence of its intracellular domain.  相似文献   

12.
The carboxyterminal domain of the epidermal growth factor receptor (EGFR) – a putative binding site for the ubiquitin ligase Cbl – is the site of serine phosphorylation events which are essential for ligand-dependent EGFR desensitization and degradation. Using a monoclonal antibody (aPS1113) which selectively recognizes the homologous phosphorylated domain in the ErbB2 oncoprotein, we show here that wild-type ErbB2 becomes Ser1113-phosphorylated following treatment of 3T3 cells with growth factors or tyrosine phosphatase inhibitors. In EGFR-overexpressing A431 cells, ligand-inducible aPS1113 immunoreactivity declines more rapidly than other detectable phosphorylation events and is followed by EGFR downregulation. Analysis of 65 ErbB2-expressing primary breast cancers reveals a highly significant relationship between Ser1113 phosphorylation and EGFR overexpression (p < 0.0001) as well as an association with poor prognosis (p = 0.005). We submit that ErbB2 Ser1113 phosphorylation status represents a novel and informative biomarker of cancer cell biology and tumor behavior.  相似文献   

13.
Identification of genes that are upregulated during mammary epithelial cell morphogenesis may reveal novel regulators of tumorigenesis. We have demonstrated that gene expression programs in mammary epithelial cells grown in monolayer cultures differ significantly from those in three-dimensional (3D) cultures. We identify a protein tyrosine phosphate, PTPRO, that was upregulated in mature MCF-10A mammary epithelial 3D structures but had low to undetectable levels in monolayer cultures. Downregulation of PTPRO by RNA interference inhibited proliferation arrest during morphogenesis. Low levels of PTPRO expression correlated with reduced survival for breast cancer patients, suggesting a tumor suppressor function. Furthermore, we showed that the receptor tyrosine kinase ErbB2/HER2 is a direct substrate of PTPRO and that loss of PTPRO increased ErbB2-induced cell proliferation and transformation, together with tyrosine phosphorylation of ErbB2. Moreover, in patients with ErbB2-positive breast tumors, low PTPRO expression correlated with poor clinical prognosis compared to ErbB2-positive patients with high levels of PTPRO. Thus, PTPRO is a novel regulator of ErbB2 signaling, a potential tumor suppressor, and a novel prognostic marker for patients with ErbB2-positive breast cancers. We have identified the protein tyrosine phosphatase PTPRO as a regulator of three-dimensional epithelial morphogenesis of mammary epithelial cells and as a regulator of ErbB2-mediated transformation. In addition, we demonstrated that ErbB2 is a direct substrate of PTPRO and that decreased expression of PTPRO predicts poor prognosis for ErbB2-positive breast cancer patients. Thus, our results identify PTPRO as a novel regulator of mammary epithelial transformation, a potential tumor suppressor, and a predictive biomarker for breast cancer.  相似文献   

14.
Overexpression and poor downregulation of ErbB receptor tyrosine kinases are associated with enhanced signaling and tumorigenesis. Attenuation of EGF-receptor (EGFR) signaling is mediated by endocytosis and ubiquitination by the E3-ligase Cbl. En route to lysosomes, but before incorporation of the EGFR into internal vesicles of MVBs, the EGFR undergoes Usp8-mediated deubiquitination. ErbB2 displays enhanced recycling back to the cell surface, and therefore we hypothesized that Usp8 is not part of the ErbB2 trafficking pathway. Here, we demonstrate, in the context of a chimeric EGFR-ErbB2 receptor, that (i) EGF induces pY1091 Cbl binding site-dependent K63-polyubiquitination of EGFR-ErbB2, (ii) Cbl is tyrosine phosphorylated upon stimulation of EGFR-ErbB2 wt and Y1091F mutant receptor, (iii) EGF-induced activation of EGFR-ErbB2 induces Usp8 tyrosine phosphorylation, and (iv) ubiquitination of the EGFR-ErbB2 wt and Y1091F mutant is enhanced upon coexpression of catalytically inactive Usp8-C748A in the presence and absence of EGF. We further show that Usp8 tyrosine phosphorylation upon stimulation of EGFR-ErbB2 is (a) independent of Y1091, (b) dependent on Src- and EGFR-ErbB2-kinase activity, (c) enhanced upon coexpression of Usp8-C748A, and (d) partly dependent on the Microtubule Interacting and Transport (MIT) domain of Usp8. Our findings demonstrate that Usp8 is part of the ErbB2 endosomal trafficking pathway.  相似文献   

15.
Receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR) have been proposed to be activated in cells exposed to ultraviolet A (UVA) radiation (320-400 nm) and to be involved in photocarcinogenesis. Singlet oxygen and hydrogen peroxide are being discussed as mediators of the activation of signal transduction pathways by UVA. It is demonstrated here that EGFR is not activated in cells exposed to UVA in the absence of extracellular photosensitizers. Rather, UVA was capable of activating the EGFR and the related ErbB2 receptor tyrosine kinase in HeLa cells and human keratinocytes only under conditions that allowed for the extracellular photochemical generation of H(2)O(2), such as when cells were covered with cell culture medium during exposure to UVA. Pretreatment of cells with vanadate was required for UVA-induced EGFR activation, pointing to the involvement of protein tyrosine phosphatases. Unlike H(2)O(2), photochemically generated singlet oxygen did not activate EGFR but instead impaired the activation of EGFR by its ligand, EGF. In summary, extracellularly generated H(2)O(2) mediates UVA-induced activation of the EGFR and of ErbB2, whereas intracellular generation of reactive oxygen species upon exposure of cells to UVA is not sufficient for activation of the receptor.  相似文献   

16.
Epithelial cells are dependent on extracellular matrix (ECM) attachment for maintenance of metabolic activity and suppression of apoptosis. Here we show that loss of ECM attachment causes down-regulation of epidermal growth factor receptor (EGFR) and β1 integrin protein and mRNA expression and that ErbB2, which is amplified in 25% of breast tumors, reverses these effects of ECM deprivation. ErbB2 rescue of β1 integrin mRNA and protein in suspended cells is dependent on EGFR, however, the rescue of EGFR expression does not require β1 integrin. We show that there is a significant decrease in the stability of EGFR in ECM-detached cells that is reversed by ErbB2 overexpression. Rescue of both EGFR and β1 integrin protein by ErbB2 is dependent on Erk activity and induction of its downstream target Sprouty2, a protein known to regulate EGFR protein stability. Interestingly, expression of EGFR and β1 integrin protein is more dependent on Erk/Sprouty2 in ECM-detached ErbB2-overexpressing cells when compared with ECM-attached cells. These results provide further insight into the ErbB2-driven anchorage independence of tumor cells and provide a new mechanism for regulation of EGFR and β1 integrin expression in ECM-detached cells.  相似文献   

17.
Vaccinia H1-related phosphatase (VHR) is classified as a dual specificity phosphatase. Unlike typical dual specificity phosphatases, VHR lacks the MAPK-binding domain and shows poor activity against MAPKs. We found that EGF receptor (EGFR) was a direct substrate of VHR and that overexpression of VHR down-regulated EGFR phosphorylation, particularly at Tyr-992 residue. Expression of VHR inhibited the activation of phospholipase Cγ and protein kinase C, both downstream effectors of Tyr-992 phosphorylation of EGFR. Decreasing VHR expression by RNA interference caused higher EGFR phosphorylation at Tyr-992. In addition to EGFR, VHR also directly dephosphorylated ErbB2. Consistent with these results, suppression of VHR augmented the foci formation ability of H1299 non-small cell lung cancer (NSCLC) cells, whereas overexpression of VHR suppressed cell growth in both two- and three-dimensional cultures. Expression of VHR also suppressed tumor formation in a mouse xenograft model. Furthermore, VHR expression was significantly lower in NSCLC tissues in comparison to that in normal lung tissues. Collectively, this study shows that down-regulation of VHR expression enhances the signaling of ErbB receptors and may be involved in NSCLC pathogenesis.  相似文献   

18.
The rapid onset of resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) limits its clinical utility in colorectal cancer (CRC) patients, and pan-erb-b2 receptor tyrosine kinase (ErbB) treatment strategy may be the alternative solution. The aim of this study was to develop a possible microRNA multi-ErbB treatment strategy to overcome EGFR-TKI resistance. We detect the receptor tyrosine kinase activity in gefitinib-resistant colorectal cancer cells, ErbB3/EGFR is significantly activated and provides a potential multi-ErbB treatment target. MiR-323a-3p, a tumor suppressor, could target both ErbB3 and EGFR directly. Apoptosis is the miR-323a-3p inducing main biological process by functional enrichment analysis, and The EGFR and ErbB signaling are the miR-323a-3p inducing main pathway by KEGG analysis. MiR-323a-3p promotes CRC cells apoptosis by targeting ErbB3-phosphoinositide 3‐kinases (PI3K)/PKB protein kinase (Akt)/glycogen synthase kinase 3 beta (GSK3β)/EGFR-extracellular regulated MAP kinase (Erk1/2) signaling directly. And miR-323a-3p, as a multi-ErbBs inhibitor, increase gefitinib sensitivity of the primary cell culture from combination miR-323a-3p and gefitinib treated subcutaneous tumors. MiR-323a-3p reverses ErbB3/EGFR signaling activation in gefitinib-resistant CRC cell lines and blocks acquired gefitinib resistance.Subject terms: Colorectal cancer, Cancer therapeutic resistance  相似文献   

19.
ErbB3 is a member of the ErbB family of receptor tyrosine kinases. It is unique because it is the only member of the family whose kinase domain is defective. As a result, it is obliged to form heterodimers with other ErbB receptors to signal. In this study, we characterized the interaction of ErbB3 with the EGF receptor and ErbB2 and assessed the effects of Food and Drug Administration-approved therapeutic agents on these interactions. Our findings support the concept that ErbB3 exists in preformed clusters that can be dissociated by NRG-1β and that it interacts with other ErbB receptors in a distinctly hierarchical fashion. Our study also shows that all pairings of the EGF receptor, ErbB2, and ErbB3 form ligand-independent dimers/oligomers. The small-molecule tyrosine kinase inhibitors erlotinib and lapatinib differentially enhance the dimerization of the various ErbB receptor pairings, with the EGFR/ErbB3 heterodimer being particularly sensitive to the effects of erlotinib. The data suggest that the physiological effects of these drugs may involve not only inhibition of tyrosine kinase activity but also a dynamic restructuring of the entire network of receptors.  相似文献   

20.
The EGF receptor (EGFR) family comprises four homologs in humans collectively known as the ErbB or HER proteins. ErbB proteins are receptor tyrosine kinases that become activated when ligands bind to their extracellular regions and promote formation of specific homo- and heterodimers with enhanced tyrosine kinase activity. An essential feature of ErbB activation is formation of an asymmetric kinase dimer in which the C-terminal lobe of one kinase serves as the activator or donor kinase by binding the N-terminal lobe of a receiver or acceptor kinase and stabilizing its active conformation. ErbB extracellular regions are also thought to form active asymmetric dimers in which only one subunit binds ligand. The observation that the unliganded ErbB2 kinase preferentially serves as the activator kinase when paired with EGFR/ErbB1 implied that extracellular asymmetry in ErbB proteins might be coupled to intracellular asymmetry with unliganded partners favoring the activator kinase position. Using cell-based stimulation assays and chimeric ErbB proteins, we show that extracellular asymmetry is not coupled to intracellular asymmetry and that ErbB intracellular regions are sufficient to determine relative kinase activator-receiver orientation. We further show a hierarchy of activator-receiver preferences among ErbB proteins, with EGFR/ErbB1 being the strongest receiver, followed by ErbB2 and then ErbB4, and that cis-phosphorylation of EGFR and ErbB2 appears to be negligible. This hierarchy shapes the nature of signaling responses to different ligands in cells expressing multiple ErbB proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号