首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) are generated as by-products of aerobic respiration and metabolism. Mammalian cells have evolved a variety of enzymatic mechanisms to control ROS production, one of the central elements in signal transduction pathways involved in cell proliferation, differentiation and apoptosis. Antioxidants also ensure defenses against ROS-induced damage to lipids, proteins and DNA. ROS and antioxidants have been implicated in the regulation of reproductive processes in both animal and human, such as cyclic luteal and endometrial changes, follicular development, ovulation, fertilization, embryogenesis, embryonic implantation, and placental differentiation and growth. In contrast, imbalances between ROS production and antioxidant systems induce oxidative stress that negatively impacts reproductive processes. High levels of ROS during embryonic, fetal and placental development are a feature of pregnancy. Consequently, oxidative stress has emerged as a likely promoter of several pregnancy-related disorders, such as spontaneous abortions, embryopathies, preeclampsia, fetal growth restriction, preterm labor and low birth weight. Nutritional and environmental factors may contribute to such adverse pregnancy outcomes and increase the susceptibility of offspring to disease. This occurs, at least in part, via impairment of the antioxidant defense systems and enhancement of ROS generation which alters cellular signalling and/or damage cellular macromolecules. The links between oxidative stress, the female reproductive system and development of adverse pregnancy outcomes, constitute important issues in human and animal reproductive medicine. This review summarizes the role of ROS in female reproductive processes and the state of knowledge on the association between ROS, oxidative stress, antioxidants and pregnancy outcomes in different mammalian species.  相似文献   

2.
3.
Extravagant ornaments evolved to advertise their bearers'' quality, the honesty of the signal being ensured by the cost paid to produce or maintain it. The oxidation handicap hypothesis (OHH) proposes that a main cost of testosterone-dependent ornamentation is oxidative stress, a condition whereby the production of reactive oxygen and nitrogen species (ROS/RNS) overwhelms the capacity of antioxidant defences. ROS/RNS are unstable, very reactive by-products of normal metabolic processes that can cause extensive damage to key biomolecules (cellular proteins, lipids and DNA). Oxidative stress has been implicated in the aetiology of many diseases and could link ornamentation and genetic variation in fitness-related traits. We tested the OHH in a free-living bird, the red grouse. We show that elevated testosterone enhanced ornamentation and increased circulating antioxidant levels, but caused oxidative damage. Males with smaller ornaments suffered more oxidative damage than those with larger ornaments when forced to increase testosterone levels, consistent with a handicap mechanism. Parasites depleted antioxidant defences, caused oxidative damage and reduced ornament expression. Oxidative damage extent and the ability of males to increase antioxidant defences also explained the impacts of testosterone and parasites on ornamentation within treatment groups. Because oxidative stress is intimately linked to immune function, parasite resistance and fitness, it provides a reliable currency in the trade-off between individual health and ornamentation. The costs induced by oxidative stress can apply to a wide range of signals, which are testosterone-dependent or coloured by pigments with antioxidant properties.  相似文献   

4.
Oxidative stress has been postulated as one of the mechanisms underlying the estrogen carcinogenic effect in breast cancer. Estrogens are known to increase mitochondrial-derived reactive oxygen species (ROS) by an unknown mechanism. Given that uncoupling proteins (UCPs) are key regulators of mitochondrial energy efficiency and ROS production, our aim was to check the presence and activity of UCPs in estrogen receptor (ER)-positive and ER-negative breast cancer cells and tumors, as well as their relation to oxidative stress. Estrogen (1 nM) induced higher oxidative stress in the ER-positive MCF-7 cell line, showing increased mitochondrial membrane potential, H2O2 levels, and DNA and protein damage compared to ER-negative MDA-MB-231 cells. All isoforms of uncoupling proteins were highly expressed in ER-positive breast cancer cells and tumors compared to negative ones. ROS production in mitochondria isolated from MCF-7 was increased by inhibition of UCPs with GDP, but not in mitochondria from MDA-MB-231. Estrogen treatment decreased uncoupling protein and catalase levels in MCF-7 and decreased GDP-dependent ROS production in isolated mitochondria. On the whole, these results suggest that estrogens, through an ER-dependent mechanism, may increase mitochondrial ROS production by repressing uncoupling proteins, which offers a new perspective on the understanding of why estrogens are a risk factor for breast cancer.  相似文献   

5.
Pannexins, which contain three subtypes: pannexin‐1, ‐2, and ‐3, are vertebrate glycoproteins that form non‐junctional plasma membrane intracellular hemichannels via oligomerization. Oxidative stress refers to an imbalance of the generation and elimination of reactive oxygen species (ROS). Studies have shown that elevated ROS levels are pivotal in the development of a variety of diseases. Recent studies indicate that the occurrence of these oxidative stress related diseases is associated with pannexin hemichannels. It is also reported that pannexins regulate the production of ROS which in turn may increase the opening of pannexin hemichannels. In this paper, we review recent researches about the important role of pannexin hemichannels in oxidative stress related diseases. Thus, pannexin hemichannels, novel therapeutic targets, hold promise in managing oxidative stress related diseases such as the tumor, inflammatory bowel diseases (IBD), pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, insulin resistance (IR), and neural degeneration diseases.
  相似文献   

6.
Breakthroughs in biochemistry have furthered our understanding of the onset and progression of various diseases, and have advanced the development of new therapeutics. Oxidative stress and reactive oxygen species (ROS) are ubiquitous in biological systems. ROS can be formed non-enzymatically by chemical, photochemical and electron transfer reactions, or as the byproducts of endogenous enzymatic reactions, phagocytosis, and inflammation. Imbalances in ROS homeostasis, caused by impairments in antioxidant enzymes or non-enzymatic antioxidant networks, increase oxidative stress, leading to the deleterious oxidation and chemical modification of biomacromolecules such as lipids, DNA, and proteins. While many ROS are intracellular signaling messengers and most products of oxidative metabolisms are beneficial for normal cellular function, the elevation of ROS levels by light, hyperglycemia, peroxisomes, and certain enzymes causes oxidative stress-sensitive signaling, toxicity, oncogenesis, neurodegenerative diseases, and diabetes. Although the underlying mechanisms of these diseases are manifold, oxidative stress caused by ROS is a major contributing factor in their onset. This review summarizes the relationship between ROS and oxidative stress, with special reference to recent advancements in the detection of biomarkers related to oxidative stress. Further, we will introduce biomarkers for the early detection of neurodegenerative diseases and diabetes, with a focus on our recent work.  相似文献   

7.
Large scale biopharmaceutical production of biologics relies on the overexpression of foreign proteins by cells cultivated in stirred tank bioreactors. It is well recognized and documented fact that protein overexpression may impact host cell metabolism and that factors associated with large scale culture, such as the hydrodynamic forces and inhomogeneities within the bioreactors, may promote cellular stress. The metabolic adaptations required to support the high-level expression of recombinant proteins include increased energy production and improved secretory capacity, which, in turn, can lead to a rise of reactive oxygen species (ROS) generated through the respiration metabolism and the interaction with media components. Oxidative stress is defined as the imbalance between the production of free radicals and the antioxidant response within the cells. Accumulation of intracellular ROS can interfere with the cellular activities and exert cytotoxic effects via the alternation of cellular components. In this context, strategies aiming to alleviate oxidative stress generated during the culture have been developed to improve cell growth, productivity, and reduce product microheterogeneity. In this review, we present a summary of the different approaches used to decrease the oxidative stress in Chinese hamster ovary cells and highlight media development and cell engineering as the main pathways through which ROS levels may be kept under control.  相似文献   

8.
Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.  相似文献   

9.
Since an attenuated response to stress is a characteristic of senescence, a cellular senescence model was used to examine the mechanism of resistance against oxidative stress using human diploid fibroblasts (HDF). With increasing passage, the HDF showed increased production of reactive oxygen species (ROS). Late passage HDF were resistant to the lethal effects of oxidative stress, showing less cleavage of pro-caspase-3 and PARP than those of early ones. Since heat shock proteins (Hsps) are not only cytoprotective but also interfere with the apoptotic cascade, the expression patterns of Hsps during cellular senescence were next examined. Oxidative stress induced a decrease in the mitochondrial Hsp60 levels with a concomitant increase in the cytosolic Hsp60 levels in the early passage HDF, but not in late ones. To show that the resistance to oxidative stress is a specific effect of Hsp60, the levels of Hsp60 were knocked down by siRNA. As expected the Hsp60 knock-down cells were more resistant to oxidative stress. These findings show that Hsp60 is a key player in the resistance mechanism against oxidative stress and aging.  相似文献   

10.
11.
Reactive oxygen species (ROS) generated by mitochondrial respiration and other processes are often viewed as hazardous substances. Indeed, oxidative stress, defined as an imbalance between oxidant production and antioxidant protection, has been linked to several neurological disorders, including cerebral ischemia-reperfusion and Parkinson's disease. Consequently, cells and organisms have evolved specialized antioxidant defenses to balance ROS production and prevent oxidative damage. Research in our laboratory has shown that neuronal levels of ascorbate, a low molecular weight antioxidant, are ten-fold higher than those in much less metabolically active glial cells. Ascorbate levels are also selectively elevated in the CNS of anoxia-tolerant reptiles compared to mammals; moreover, plasma and CSF ascorbate concentrations increase markedly in cold-adapted turtles and in hibernating squirrels. Levels of the related antioxidant, glutathione, vary much less between neurons and glia or among species. An added dimension to the role of the antioxidant network comes from recent evidence that ROS can act as neuromodulators. One example is modulation of dopamine release by endogenous hydrogen peroxide, which we describe here for several mammalian species. Together, these data indicate adaptations that prevent oxidative stress and suggest a particularly important role for ascorbate. Moreover, they show that the antioxidant network must be balanced precisely to provide functional levels of ROS, as well as neuroprotection.  相似文献   

12.
The major cause of end-stage renal disease is the diabetic nephropathy. Oxidative stress contributes to the development of type II diabetes mellitus (T2DM). In this study we have evaluated the effect of a diet with a new standardized of red orange and lemon extract (RLE) rich in anthocyanins (ANT) in the progression of the kidney disease on Zucker diabetic fatty rats. Oxidative stress and renal function were analyzed. In diabetic rats, the RLE restored the blood glucose levels, body weight, and normalized the reactive oxygen species (ROS) total pathways. The kidney inflammation, in diabetic rats, has not shown significant change, showing that the oxidative stress rather than to inflammatory processes is a triggering factor in the renal complication associated with T2DM. Therefore, the administration of the RLE prevents this complication and this effect could be related to the inhibition of ROS production.  相似文献   

13.
In aerobic organisms, oxygen is essential for efficient energy production but paradoxically, produces chronic toxic stress in cells. Diverse protective systems must exist to enable adaptation to oxidative environments. Oxidative stress (OS) results when production of reactive oxidative species (ROS) exceeds the capacity of cellular antioxidant defenses to remove these toxic species. Epidemiological and clinical studies have linked environmental factors such as diet and lifestyle to cancer, diabetes, atherosclerosis, and neurodegenerative disorders. All of these conditions, as well as the aging process, are associated with OS due to elevation of ROS or insufficient ROS detoxification. Many environmental pollutants engage signaling pathways that are activated in response to OS. The same sequences of events are also associated with the etiology and early pathology of many chronic diseases. Investigations of oxidative responses in different in vivo models suggest that, in complex organisms such as mammals, organs and tissues contain distinct antioxidant systems, and this may form the basis for differential susceptibility to environmental toxic agents Thus, understanding the pathways leading to the induction of antioxidant responses will enable development of strategies to protect against oxidative damage. We shall review evidence of organ-specific antioxidant responses elicited by environmental pollutants in humans and animal models.  相似文献   

14.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.  相似文献   

15.
Oxidative stress results from a mismatch between production of reactive oxygen species (ROS) and the organism's capacity to mitigate their damaging effects by building up sufficient antioxidant protection and/or repair mechanisms. Because ROS production is a universal consequence of cellular metabolism and immune responses, evolutionary animal ecologists have become increasingly interested in involvement of oxidative stress as a proximate mechanism responsible for the emergence of trade-offs related to the evolution of life-history and signal traits. Among the most practical problems pertinent to ecological research on oxidative stress is finding a combination of biomarkers of oxidative status that can be applied to typical wild animal models such as small birds, mammals, and reptiles. This study describes covariation and individual consistency of eight parameters of oxidative status in a small passerine bird, wild-caught captive greenfinch (Carduelis chloris). We measured two markers of plasma antioxidant potential--total antioxidant capacity (TAC) and oxygen radical absorbance (OXY)--and concentrations of one lipophilic (carotenoids) and two hydrophilic (uric acid and ascorbate) antioxidants in plasma. We also measured total glutathione (GSH) concentration and superoxide dismutase (SOD) activity in erythrocytes. Oxidative damage was assessed on the basis of plasma malondialdehyde (MDA) levels, measured by high-performance liquid chromatography. Plasma carotenoids, TAC, and erythrocyte GSH showed significant individual consistency over an 8-d period, indicating that those variables reflected more persistent differences between individuals than plasma OXY, MDA, and uric acid. We did not detect any strong or moderate correlations between the studied parameters, which suggests that all of these biomarkers contain potentially unique information. Injection of a synthetic mimetic of SOD and catalase--EUK-134--did not affect any of the parameters of oxidative status. Capability of phagocytes to produce oxidative burst was not associated with MDA, indicating that under our experimental conditions, ROS production by phagocytes was not a strong determinant of oxidative damage. Altogether these findings suggest that attempts to characterize oxidative balance should use a wide range of biomarkers, and further studies of oxidative status in wild animals may benefit from the experimental induction of oxidative stress.  相似文献   

16.
Oxidative phosphorylation and glycolysis are important features, by which cells could bypass oxidative stress. The level of oxidative stress, and the ability of cells to promote oxidative phosphorylation or glycolysis, significantly determined proliferation or cell demise. In the present work, we have employed selective mitochondrial probe MitoTracker? Orange CMTM/Ros (MTO) to estimate the level of oxidative stress in cancer cells at different stressed conditions. MTO is partially sensitive to decrease of mitochondrial membrane potential and to reactive oxygen species (ROS) generated in mitochondria. We have demonstrated, that fluorescence lifetime of MTO is much more sensitive to oxidative stress than intensity-based approaches. This method was validated in different cancer cell lines. Our approach revealed, at relatively low ROS levels, that Gö 6976, a protein kinase C (PKC) α inhibitor, and rottlerin, an indirect PKCδ inhibitor, increased mitochondrial ROS level in glioma cell. Their involvement in oxidative phosphorylation and apoptosis was investigated with oxygen consumption rate estimation, western blot and flow-cytometric analysis. Our study brings new insight to identify feeble differences in ROS production in living cells.  相似文献   

17.
Esculetin is an antioxidant and anti-inflammatory compound derived from coumarin. Oxidative stress can cause overproduction of reactive oxygen species (ROS), which can lead to the development of chronic kidney failure. In this study, human embryonic kidney 293 (HEK293) cells were treated with tert-butyl hydroperoxide (t-BHP) to determine the antioxidant effects of esculetin. HEK293 cells were treated with t-BHP to validate changes in cell viability, ROS production, and apoptosis, and then treated with esculetin to evaluate the changes. Changes in mRNA and protein levels were analyzed using a proteome kit, PCR, and Western blotting. Esculetin improved HEK293 cell viability and reduced apoptosis caused by t-BHP-induced oxidative stress. At the mRNA and protein levels, esculetin decreased pro-apoptotic factor expression as well as increased anti-apoptotic factor expression. The antioxidant efficacy of esculetin was validated when it inhibited the apoptosis caused by t-BHP-induced oxidative stress in HEK293 cells.  相似文献   

18.
氧化应激是由体内生成的活性氧(reactive oxygen species,ROS)/活性氮(reactivenitro.genspecies,RNS)与抗氧化防御机制之间的平衡被打破引起的,这与许多疾病的发病机理相关,包括神经退行性病变、肿瘤、炎症性疾病等。而线粒体作为细胞代谢的中枢,是其作用的主要靶细胞器,氧化应激引起线粒体内脂质、蛋白质与核酸的损伤,导致线粒体结构和功能的改变,该文就线粒体在上述与氧化应激相关的疾病中改变的研究进展作一综述。  相似文献   

19.
Oxidative stress is linked to the pathogenesis and pathobiochemistry of various diseases, including cancer, diabetes and cardiovascular disorders. The non-specific damaging effect of reactive oxygen species (ROS) generated during oxidative stress is involved in the development of diseases, as well as the activation of specific signaling cascades in cells exposed to the higher oxidant load. A cellular signaling cascade that is activated by several types of reactive oxygen species is the phosphoinositide 3'-kinase (PI 3-kinase)/protein kinase B (PKB) pathway, which regulates cellular survival and fuel metabolism, thus establishing a link between oxidative stress and signaling in neoplastic, metabolic or degenerative diseases. Several links of PI 3-kinase/PKB signaling to ROS are discussed in this review, with particular focus on the molecular mechanisms involved in the regulation of PI 3-kinase signaling by oxidative stress and important players such as (i) the glutathione and glutaredoxin system, (ii) the thioredoxin system and (iii) Ser/Thr- and Tyr phosphatases.  相似文献   

20.
Attention-deficit/hyperactivity disorder (ADHD) is a highly heterogeneous disorder characterized by impairing levels of hyperactivity, impulsivity and inattention. Oxidative and inflammatory parameters have been recognized among its multiple predisposing pathways, and clinical studies indicate that ADHD patients have increased oxidative stress. In this study, we aimed to evaluate oxidative (DCFH oxidation, glutathione levels, glutathione peroxidase, catalase and superoxide dismutase activities) and inflammatory (TNF-α, IL-1β and IL-10) parameters in the most widely accepted animal model of ADHD, the spontaneously hypertensive rats (SHR). Prefrontal cortex, cortex (remaining regions), striatum and hippocampus of adult male SHR and Wistar Kyoto rats were studied. SHR presented increased reactive oxygen species (ROS) production in the cortex, striatum and hippocampus. In SHR, glutathione peroxidase activity was decreased in the prefrontal cortex and hippocampus. TNF-α levels were reduced in the prefrontal cortex, cortex (remaining regions), hippocampus and striatum of SHR. Besides, IL-1β and IL-10 levels were decreased in the cortex of the ADHD model. Results indicate that SHR presented an oxidative profile that is characterized by an increase in ROS production without an effective antioxidant counterbalance. In addition, this strain showed a decrease in cytokine levels, mainly TNF-α, indicating a basal deficit. These results may present a new approach to the cognitive disturbances seen in the SHR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号