首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our aim is to examine the impact of DICER1 mutations on the pathogenesis of pleuropulmonary blastoma(PPB) by evaluating the mutation frequency and investigating the family history of Chinese patients with PPB. The family histories of 12 children with PPB recruited consecutively were surveyed. Blood samples from patients and their first-degree relatives were tested for DICER1 mutations. Whole-genome sequencing of blood samples and formalin-fixed and paraffin-embedded(FFPE) tumor tissue was performed in one family with twins. Twelve patients with PPB included six type II and six type III cases. Seven of the12 patients harbored DICER1 mutations, six of which were frameshift or nonsense mutations. Another case carried a germline DICER1 mutation affecting the splice site. FFPE sample had a nonsense mutation in TDG and missense mutations in DICER1.In addition, two cases with DICER1 mutations were found to have lung cysts preceding the diagnosis of PPB. Furthermore, one patient had a family history remarkable for thyroid diseases. Our results indicate that the germline mutation frequency in Chinese patients with PPB is similar to the ones reported for patients from USA, UK, and Japan. Moreover, our study strongly suggests that investigating the family history and detecting germline DICER1 mutations might be of benefit to increasing awareness and improving the accuracy of the differential diagnosis of PPB from non-malignant lung cysts.  相似文献   

2.
Neurofibromatosis type 1 (NF1) is a common monogenic disorder whereby affected individuals are predisposed to developing CNS tumors, including optic pathway gliomas (OPGs, occurring in ~15 to 20 % of cases). So far, no definite genotype–phenotype correlation determining NF1 patients at risk for tumor formation has been described, although enrichment for mutations in the 5′ region of the NF1 gene in OPG patients has been suggested. We used whole exome sequencing, targeted sequencing, and copy number analysis to screen 77 unrelated NF1 patients with (n = 41) or without (n = 36; age ≥10 years) optic pathway glioma for germline NF1 alterations. We identified germline NF1 mutations in 69 of 77 patients (90 %), but no genotype–phenotype correlation was observed. Our data using a larger patient cohort did not confirm the previously reported clustering of mutations in the 5′ region of the NF1 gene in patients with OPG. Thus, NF1 mutation location should not currently be used as a clinical criterion to assess the risk of developing OPGs.  相似文献   

3.
Pleuropulmonary Blastoma (PPB) is the primary neoplastic manifestation of a pediatric cancer predisposition syndrome that is associated with several diseases including cystic nephroma, Wilms tumor, neuroblastoma, rhabdomyosarcoma, medulloblastoma, and ovarian Sertoli-Leydig cell tumor. The primary pathology of PPB, epithelial cysts with stromal hyperplasia and risk for progression to a complex primitive sarcoma, is associated with familial heterozygosity and lesion-associated epithelial loss-of-heterozygosity of DICER1. It has been hypothesized that loss of heterozygosity of DICER1 in lung epithelium is a non-cell autonomous etiology of PPB and a critical pathway that regulates lung development; however, there are no known direct targets of epithelial microRNAs (miRNAs) in the lung. Fibroblast Growth Factor 9 (FGF9) is expressed in the mesothelium and epithelium during lung development and primarily functions to regulate lung mesenchyme; however, there are no known mechanisms that regulate FGF9 expression during lung development. Using mouse genetics and molecular phenotyping of human PPB tissue, we show that FGF9 is overexpressed in lung epithelium in the initial multicystic stage of Type I PPB and that in mice lacking epithelial Dicer1, or induced to overexpress epithelial Fgf9, increased Fgf9 expression results in pulmonary mesenchymal hyperplasia and a multicystic architecture that is histologically and molecularly indistinguishable from Type I PPB. We further show that miR-140 is expressed in lung epithelium, regulates epithelial Fgf9 expression, and regulates pseudoglandular stages of lung development. These studies identify an essential miRNA-FGF9 pathway for lung development and a non-cell autonomous signaling mechanism that contributes to the mesenchymal hyperplasia that is characteristic of Type I PPB.  相似文献   

4.
Loss of TP53 function through gene mutation is a critical event in the development and progression of colorectal cancer (CRC). Here we examined 51 primary CRC tumors from Tunisia for mutations in TP53 exons 4–9 using PCR-direct sequencing. TP53 status and mutation site/type were than correlated with nuclear protein accumulation, familial and clinicopathologic variables and data on KRAS mutations and microsatellite instability (MSI-H). The TP53 mutation analysis was possible in the tumor of 47 patients and a deleterious somatic mutation has been detected in 59.6 % of the patients (28/47) including 20 (71.4 %) missense mutations, 7 nonsense mutations (25 %) and 1 (3.6 %) frameshift mutation. 89.3 % (25/28) of the detected mutations were in exons 5–8, whereas 10.7 % (3/28) were in exon 4. Among the 27 non frameshift mutations, 89 % (24/27) were transitions and 11 % (3/27) were transversions. 64.3 % (18/27) of the altered amino acids corresponded to arginine. 74 % (20/27) were G>C to A>T transitions, and more than half (14/27) occur at hotspots codons with CpG sites. TP53 mutations correlated closely with TP53 accumulation (p = 0.0090) and inversely with MSI phenotype (p = 0.0658). A KRAS somatic mutation was identified in 25 % (7/28) of the TP53 mutated tumors. All these mutations were G>A transitions in codon 12 and all the tumors with combined alterations but one were distally located and MSS. In conclusion, frequency and types of TP53 mutations and correlations with TP53 protein accumulation, and MSI were as reported for non-Tunisian patients. However, no significant associations have been detected between TP53 mutations and clinicopathological data in Tunisian patients as previously reported.  相似文献   

5.
6.
Patients harboring germline mutations in the succinate dehydrogenase complex subunit B (SDHB) gene present with pheochromocytomas and paragangliomas (PPGL) that are more likely malignant and clinically aggressive. The combination chemotherapy cyclophosphamide, vincristine, and dacarbazine (CVD) was retrospectively evaluated in patients with SDHB-associated metastatic PPGL.Query Twelve metastatic PPGL patients harboring SDHB mutations/polymorphisms with undetectable SDHB immunostaining were treated with CVD. CVD therapy consisted of 750 mg/m2 cyclophosphamide with 1.4 mg/m2 vincristine on day 1 and 600 mg/m2 dacarbazine on days 1 and 2, every 21–28 days. Treatment outcome was determined by RECIST criteria as well as determination of response duration and progression-free and overall survivals. A median of 20.5 cycles (range 4–41) was administered. All patients had tumor reduction (12–100% by RECIST). Complete response was seen in two patients, while partial response was observed in 8. The median number of cycles to response was 5.5. Median duration of response was 478 days, with progression-free and overall survivals of 930 and 1190 days, respectively. Serial [18F]-fluorodeoxyglucose positron emission tomography and computed tomography imaging demonstrated continued incremental reduction in maximal standardized uptake values (SUVmax) values in 26/30 lesions. During treatment administration, the median SUV decreased from?> 25 to?< 6, indicating the efficacy of chemotherapy over a prolonged period of time. Prolonged therapy results in continued incremental tumor reduction, and is consistent with persistent drug sensitivity. CVD chemotherapy is recommended to be considered part of the initial management in patients with metastatic SDHB-related PPGL.  相似文献   

7.
Phytase-producing bacteria (PPB) is being investigated as plant growth promoting rhizobacteria (PGPR) to improve the phosphorus (P) nutrition and growth of plants grown in soil with high phytate content. Phytate is dominant organic P forms in many soils and must be hydrolyzed to be available for plants. Indian mustard (Brassica juncea) is a plant with economic importance in agriculture and phytoremediation, therefore biotechnological tools to improve growth and environmental stress tolerance are needed. In this study, we isolated and characterized PPB from Himalayan soils and evaluated their effect on growth and P uptake by B. juncea under greenhouse conditions. Sixty five PPB were isolated and based on phytate hydrolysis, three efficient PPB were chosen and identified as Acromobacter sp. PB-01, Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13. Selected PPB showed ability to grow at wide range of pH, temperature and salt concentrations as well as to harbour diverse PGPR activities, such as: solubilization of insoluble Ca-phosphate (193–642 μg ml?1), production of phytohormone indole acetic acid (5–39 μg ml?1) and siderophore. Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13 showed 50 and 70 % inhibition of phytopathogen Rhizoctonia solani, respectively. Greenhouse potting assay also showed that the bacterization of B. juncea seeds with Tetrathiobacter sp. PB-03 and Bacillus sp. PB-13 significantly increased the biomass and P content in 30 days old seedlings. This study reveals the potential of PPB as PGPR to improve the growth of B. juncea.  相似文献   

8.

Background

Observations of recurrent somatic mutations in tumors have led to identification and definition of signaling and other pathways that are important for cancer progression and therapeutic targeting. As tumor cells contain both an individual’s inherited genetic variants and somatic mutations, challenges arise in distinguishing these events in massively parallel sequencing datasets. Typically, both a tumor sample and a “normal” sample from the same individual are sequenced and compared; variants observed only in the tumor are considered to be somatic mutations. However, this approach requires two samples for each individual.

Results

We evaluate a method of detecting somatic mutations in tumor samples for which only a subset of normal samples are available. We describe tuning of the method for detection of mutations in tumors, filtering to remove inherited variants, and comparison of detected mutations to several matched tumor/normal analysis methods. Filtering steps include the use of population variation datasets to remove inherited variants as well a subset of normal samples to remove technical artifacts. We then directly compare mutation detection with tumor-only and tumor-normal approaches using the same sets of samples. Comparisons are performed using an internal targeted gene sequencing dataset (n = 3380) as well as whole exome sequencing data from The Cancer Genome Atlas project (n = 250). Tumor-only mutation detection shows similar recall (43–60%) but lesser precision (20–21%) to current matched tumor/normal approaches (recall 43–73%, precision 30–82%) when compared to a “gold-standard” tumor/normal approach. The inclusion of a small pool of normal samples improves precision, although many variants are still uniquely detected in the tumor-only analysis.

Conclusions

A detailed method for somatic mutation detection without matched normal samples enables study of larger numbers of tumor samples, as well as tumor samples for which a matched normal is not available. As sensitivity/recall is similar to tumor/normal mutation detection but precision is lower, tumor-only detection is more appropriate for classification of samples based on known mutations. Although matched tumor-normal analysis is preferred due to higher precision, we demonstrate that mutation detection without matched normal samples is possible for certain applications.
  相似文献   

9.
10.
Sarcomas are a key feature of Li-Fraumeni and related syndromes (LFS/LFL), associated with germline TP53 mutations. Current penetrance estimates for TP53 mutations are subject to significant ascertainment bias. The International Sarcoma Kindred Study is a clinic-based, prospective cohort of adult-onset sarcoma cases, without regard to family history. The entire cohort was screened for mutations in TP53 using high-resolution melting analysis and Sanger sequencing, and multiplex-ligation-dependent probe amplification and targeted massively parallel sequencing for copy number changes. Pathogenic TP53 mutations were detected in blood DNA of 20/559 sarcoma probands (3.6%); 17 were germline and 3 appeared to be somatically acquired. Of the germline carriers, one appeared to be mosaic, detectable in the tumor and blood, but not epithelial tissues. Germline mutation carriers were more likely to have multiple cancers (47% vs 15% for non-carriers, P = 3.0×10−3), and earlier cancer onset (33 vs 48 years, P = 1.19×10−3). The median survival of mutation carriers following first cancer diagnosis was not significantly different from non-carriers. Only 10/17 (59%) pedigrees met classical or Chompret criteria for LFS. In summary, germline TP53 mutations are not rare in adult patients with sarcoma, with implications for screening, surveillance, treatment and genetic counselling of carriers and family members.  相似文献   

11.
Determining the functional impact of somatic mutations is crucial to understanding tumorigenesis and metastasis. Recent sequences of several cancers have provided comprehensive lists of somatic mutations across entire genomes, enabling investigation of the functional impact of somatic mutations in non-coding regions. Here, we study somatic mutations in 3′UTRs of genes that have been identified in four cancers and computationally predict how they may alter miRNA targeting, potentially resulting in dysregulation of the expression of the genes harboring these mutations. We find that somatic mutations create or disrupt putative miRNA target sites in the 3′UTRs of many genes, including several genes, such as MITF, EPHA3, TAL1, SCG3, and GSDMA, which have been previously associated with cancer. We also integrate the somatic mutations with germline mutations and results of association studies. Specifically, we identify putative miRNA target sites in the 3′UTRs of BMPR1B, KLK3, and SPRY4 that are disrupted by both somatic and germline mutations and, also, are in linkage disequilibrium blocks with high scoring markers from cancer association studies. The somatic mutation in BMPR1B is located in a target site of miR-125b; germline mutations in this target site have previously been both shown to disrupt regulation of BMPR1B by miR-125b and linked with cancer.  相似文献   

12.
Mutations in KRAS gene are among the critical transforming alterations occurring during CRC tumorigenesis. Here we screened 51 primary CRC tumors from Tunisia for mutations in KRAS (codons 12 and 13) using PCR-direct sequencing. Our aim was to analyze tumor mutation frequencies and spectra in Tunisian patients with CRC. KRAS status and mutation site/type were than correlated with familial and clinicopathologic variables and data on TP53 mutations and nuclear protein accumulation and microsatellite instability (MSI). A KRAS somatic mutation has been detected in the CRC tumor of 31.5 % (16/51) of the patients. 81.2 % had a single mutation at codon 12 and 23 % had a single mutation at codon 13. The most common single mutation (50 %) was a G>A transition in codon 12 (c.35G>A; p.Gly12Asp). 81.25 % of the KRAS mutations were transitions and 23 % were transversions. All the mutations in codon 13 were a c.38G>A transition, whereas both G>A transitions and G>T and G>C transversions were found in codon 12. The mutation spectrum was different between MSS and MSI-H tumors and more varied mutations have been detected in MSS tumors. Some amino acid changes were detected only in MSS tumors, i.e. p.Gly12Ser, p.Gly12Cys and p.Gly12Ala. Whereas, the KRAS mutation p.Gly13Asp have been detected only in MSI-H. 43.75 % of the patients harboured combined mutations in KRAS and TP53 genes and the tumor of 71.42 % of them showed TP53 overexpression. In conclusion, the frequency and types of KRAS mutations were as reported for non-Tunisian patients. However, no significant associations have been detected between KRAS mutations and clinicopathologic variables and MSI in Tunisian patients as previously reported.  相似文献   

13.

Background

Li-Fraumeni syndrome is caused by germline TP53 mutations and is clinically characterized by a predisposition to a range of cancers, most commonly sarcoma, brain tumours and leukemia. Pathogenic mosaic TP53 mutations have only rarely been described.

Methods and Findings

We describe a 2 years old child presenting with three separate cancers over a 6 month period; two soft tissue mesenchymal tumors and an aggressive metastatic neuroblastoma. As conventional testing of blood DNA by Sanger sequencing for mutations in TP53, ALK, and SDH was negative, whole exome sequencing of the blood DNA of the patient and both parents was performed to screen more widely for cancer predisposing mutations. In the patient''s but not the parents'' DNA we found a c.743 G>A, p.Arg248Gln (CCDS11118.1) TP53 mutation in 3–20% of sequencing reads, a level that would not generally be detectable by Sanger sequencing. Homozygosity for this mutation was detected in all tumor samples analyzed, and germline mosaicism was demonstrated by analysis of the child''s newborn blood spot DNA. The occurrence of separate tumors derived from different germ layers suggests that this de novo mutation occurred early in embryogenesis, prior to gastrulation.

Conclusion

The case demonstrates pathogenic mosaicim, detected by next generation deep sequencing, that arose in the early stages of embryogenesis.  相似文献   

14.
Pituitary adenomas are neoplasms of the anterior pituitary lobe and account for 15–20% of all intracranial tumors. Although most pituitary tumors are benign they can cause severe symptoms related to tumor size as well as hypopituitarism and/or hypersecretion of one or more pituitary hormones. Most pituitary adenomas are sporadic, but it has been estimated that 5% of patients have a familial background. Germline mutations of the tumor suppressor gene aryl hydrocarbon receptor-interacting protein (AIP) predispose to hereditary pituitary neoplasia. Recently, it has been demonstrated that AIP mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (Gαi) signaling. This finding prompted us to examine whether germline loss-of-function mutations in inhibitory guanine nucleotide (GTP) binding protein alpha (GNAI) loci are involved in genetic predisposition of pituitary tumors. To our knowledge, this is the first time GNAI genes are sequenced in order to examine the occurrence of inactivating germline mutations. Thus far, only somatic gain-of-function hot-spot mutations have been studied in these loci. Here, we have analyzed the coding regions of GNAI1 , GNAI2, and GNAI3 in a set of young sporadic somatotropinoma patients (n = 32; mean age of diagnosis 32 years) and familial index cases (n = 14), thus in patients with a disease phenotype similar to that observed in AIP mutation carriers. In addition, expression of Gαi proteins was studied in human growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH)-secreting and non-functional pituitary tumors. No pathogenic germline mutations affecting the Gαi proteins were detected. The result suggests that loss-of-function mutations of GNAI loci are rare or nonexistent in familial pituitary adenomas.  相似文献   

15.

Background

Acute myeloid leukemia (AML) is a clinically and biologically heterogeneous disease. The survival of older patients is generally poor. In the current study, we sought to investigate the differences in molecular gene mutations between younger and older AML patients, and to identify those newly diagnosed AML patients who are more likely to respond to standard cytarabine and daunorubicin induction chemotherapy.

Methods

We retrospectively evaluated 179 patients who were newly diagnosed with non-M3 AML. A next-generation sequencing assay covering 34 genes was used to investigate recurrently mutated genes. The mutational status of fusion genes was determined by real time PCR.

Results

The median age at diagnosis was 53 years (range 18–88 years). Sixty-eight patients were 60 years or older with a median age of 67 years (range 60–88 years). Eighteen patients (10.1%) carried t(8;21)(q22;q22.1) or RUNX1RUNX1T1 gene fusion, and there was a significantly higher incidence in younger patients (p?=?0.019). At least one non-synonymous gene mutation was detected in 159 patients (88.8%). The median number of gene mutations was two (range 0–6). The mean number of molecular gene mutations at diagnosis was higher in older patients than younger patients (2.5 vs 1.83, p?=?0.003). Older patients had significantly higher incidences of ASXL1 (22.1% vs 13.5%, p?=?0.025) and TP53 mutations (13.2% vs 3.6%, p?=?0.034). In total, 78 patients received DA60 (daunorubicin 60 mg/m2 per day on days 1–3 and cytarabine 100 mg/m2 twice per day on days 1–7) as the induction therapy, and information was available on their response to induction treatment. Patients with RUNX1RUNX1T1 gene fusion were significantly more likely to achieve complete remission (CR) after DA60 induction therapy (p?=?0.026), as were patients without the ASXL1 mutation (p?=?0.007).

Conclusion

Older AML patients had a lower incidence of favorable cytogenetics and higher frequencies and burdens of molecular mutations that are associated with poor prognosis compared to younger patients. Patients with RUNX1RUNX1T1 gene fusion or without the ASXL1 gene mutation had a better chance of achieving CR when treated with cytarabine and daunorubicin induction chemotherapy.
  相似文献   

16.
17.
Polymorphisms in the glutathione S-transferase superfamily genes that encodes enzymes involved in the phase II xenobiotic metabolism may lead head and neck cancer development. In this study we investigate the association of A313G and C341T GSTP1 polymorphisms, GSTM1 and GSTT1 null genotypes in the head and neck cancer development, interactions between these polymorphisms,the tumor histopathologic parameters and risk factors (smoking and drinking) were also evaluated in the case–control study. 775 individuals (261 patients/514 controls) were included in the study. Molecular analyzes were performed by PCR and PCR–RFLP; and statistical analyzes by Chi square and multiple logistic regression. Chi square test showed that only the genotype frequencies for GSTM1 and GSTT1 were in Hardy–Weinberg disequilibrium in both groups. Significant results with p ≤ 0.05 showed that age ≥ 48 years (OR = 11.87; 7.55–18.65), smoking (OR = 4.25; 2.70–6.69), drinking (OR = 1.59; 1.02–2.46) were possible predictors for the head and neck cancer development and the presence of A313G GSTP1 polymorphism (OR = 0.62; 0.42–0.92) decreased the risk for this disease. Individuals with the 313AG/GG GSTP1 and age ≥ 48 years (OR = 0.59; 0.38–0.91), male gender (OR = 0.54; 0.35–0.83), smokers (OR = 0.63; 0.40–0.99) and drinkers (OR = 0.57; 0.35–0.95); the GSTM1 null genotype and age < 48 years (OR = 2.46; 1.09–5.55); the GSTT1 null genotype and primary anatomical sites of pharynx (OR = 0.37; 0.17–0.79) and larynx (OR = 3.60; 1.93–6.72), can modulate the risk for the disease development. The variables age ≥ 48 years, smoking and drinking can be predictors for head and neck cancer development; moreover, A313G GSTP1 polymorphism, GSTM1 and GSTT1 null genotypes can modulate the risk for this disease.  相似文献   

18.
Formalin-fixed paraffin-embedded (FFPE) tissues are utilized as the standard diagnostic method in pathology laboratories. However, admixture of unwanted tissues and shortage of normal samples, which can be used to detect somatic mutation, are considered critical factors to accurately diagnose cancer. To explore these challenges, we sorted the pure tumor cells from 22 FFPE lung adenocarcinoma tissues via Di-Electro-Phoretic Array (DEPArray) technology, a new cell sorting technology, and analyzed the variants with next-generation sequencing (NGS) for the most accurate analysis. The allele frequencies of the all gene mutations were improved by 1.2 times in cells sorted via DEPArray (tumor suppressor genes, 1.3–10.1 times; oncogenes, 1.3–2.6 times). We identified 16 novel mutations using the sequencing from sorted cells via DEPArray technology, compared to detecting 4 novel mutation by the sequencing from unsorted cells. Using this analysis, we also revealed that five genes (TP53, EGFR, PTEN, RB1, KRAS, and CTNNB1) were somatically mutated in multiple homogeneous lung adenocarcinomas. Together, we sorted pure tumor cells from 22 FFPE lung adenocarcinomas by DEPArray technology and identified 16 novel somatic mutations. We also established the precise genomic landscape for more accurate diagnosis in 22 lung adenocarcinomas with mutations detected in pure tumor cells. The results obtained in this study could offer new avenues for the treatment and the diagnosis of squamous cell lung cancers.  相似文献   

19.
INTRODUCTION: While mutations in PIK3CA are most frequently (45%) detected in luminal breast cancer, downstream PI3K/AKT/mTOR pathway activation is predominantly observed in the basal subtype. The aim was to identify proteins activated in PIK3CA mutated luminal breast cancer and the clinical relevance of such a protein in breast cancer patients. MATERIALS AND METHODS: Expression levels of 171 signaling pathway (phospho-)proteins established by The Cancer Genome Atlas (TCGA) using reverse phase protein arrays (RPPA) were in silico examined in 361 breast cancers for their relation with PIK3CA status. MAPK1/3 phosphorylation was evaluated with immunohistochemistry on tissue microarrays (TMA) containing 721 primary breast cancer core biopsies to explore the relationship with metastasis-free survival. RESULTS: In silico analyses revealed increased phosphorylation of MAPK1/3, p38 and YAP, and decreased expression of p70S6K and 4E–BP1 in PIK3CA mutated compared to wild-type luminal breast cancer. Augmented MAPK1/3 phosphorylation was most significant, i.e. in luminal A for both PIK3CA exon 9 and 20 mutations and in luminal B for exon 9 mutations. In 290 adjuvant systemic therapy naïve lymph node negative (LNN) breast cancer patients with luminal cancer, high MAPK phosphorylation in nuclei (HR = 0.49; 95% CI, 0.25–0.95; P = .036) and in tumor cells (HR = 0.37; 95% CI, 0.18–0.79; P = .010) was related with favorable metastasis-free survival in multivariate analyses including traditional prognostic factors. CONCLUSION: Enhanced MAPK1/3 phosphorylation in luminal breast cancer is related to PIK3CA exon-specific mutations and correlated with favorable prognosis especially when located in the nuclei of tumor cells.  相似文献   

20.
《Translational oncology》2020,13(2):300-307
Inactivation of the adenomatous polyposis coli (APC) gene is the initiating event in familial adenomatous polyposis (FAP) patients. Up to 90% of FAP patients show intestinal tumors and other extracolonic malignancies including hepatoblastomas, desmoid tumors, and brain cancer. APC mutation mice (ApcMin/+ mice) develop benign polyps in the intestinal tract. It has been reported that small numbers of ApcMin/+ mice develop breast carcinomas. Here, we found that approximately 1.6% of ApcMin/+ mice suffered skin neoplasm. The results demonstrated that these skin tumors are not derived from intestinal adenomas. Sequencing of skin tumors of ApcMin/+ mice and ApcMin/+ mice skin. The data showed that somatic mutations and gene expression levels changed greatly in skin tumors compared to control. Similarly, APC mutation accounts for 27% in the patients of nonmelanoma skin carcinomas in cancer database, and two above genes mutation coexist was observed in all patients. Furthermore, using gene mutation reagent (DMBA)–treated ApcMin/+ mice skin, the skin epithelium and glandular begin hyperplasia in ApcMin/+ mice. These findings revealed that the somatic mutation hit on the germline mutation increase the tumor incidence, suggesting that the somatic mutation should be avoided if the germline mutation exists in one body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号