首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Ganglioside GM1 was shown to increase the viability of PC12 cells exposed to hydrogen peroxide or amyloid β-peptide (Aβ25–35). The PC12 cells transfected with mutant gene (expressing APPSW) were found to be more sensitive to oxidative stress than the cells transfected with wild type gene (expressing APPWT) or vector-transfected cells, GM1 being effective in enhancing the viability of the cells transfected with mutant gene. The exposure to hydrogen peroxide or Aβ25–35 results in a partial inactivation of Na+,K+-ATPase in PC12 cells, H2O2 increases MDA accumulation in these cells. But these effects could be partially prevented or practically abolished by GM1 ganglioside. In the presence of the inhibitor of tyrosine kinase of Trk receptors (K-252a) the protective and metabolic effects of GM1 on PC12 cells in conditions of oxidative stress caused by hydrogen peroxide are not observed or are markedly diminished.  相似文献   

2.
GM1 ganglioside was found to increase the survival of PC12 cells exposed to H2O2, its action was blocked by Trk tyrosine kinase inhibitor K-252a. Thus, the inhibition of H2O2 cytotoxic action by GM1 constituted 52.8 ± 4.3%, but in the presence of 1.0 μM K-252a it was only 11.7 ± 10.8%, i.e. the effect of GM1 became insignificant. Exposure to GM1 markedly reduced the increased accumulation of reactive oxygen species (ROS) and diminished the inactivation of Na+,K+-ATPase induced in PC12 cells by H2O2, but in the presence of K-252a GM1 did not change these metabolic parameters. The inhibitors of extracellular signal-regulated protein kinase, phosphatidyl inositol 3-kinase and protein kinase C decreased the effects of GM1. A combination of these protein kinase inhibitors reduced inhibition of H2O2 cytotoxic action by GM1 to the larger extent than each of the inhibitors and practically abolished the ability of GM1 to decrease H2O2-induced ROS accumulation. The protective and antioxidative effects of GM1 in PC12 cells exposed to H2O2 appear to be mediated by activation of Trk receptor tyrosine kinase and the protein kinases downstream from this enzyme.  相似文献   

3.
There have been obtained evidences that not only GM1, but also other main brain gangliosides (GD1a, GD1b, and GT1b) increase viability of cells of the neuronal line PC12 under action of H2O2. By the example of GM1 and GD1a, gangliosides have been shown to produce a protective effect on PC12 cells under conditions of oxidative stress both at micro- and nanomolar concentrations that are physiological concentrations of gangliosides in cerebrospinal fluid. For the first time, GM1 at nanomolar concentrations was shown to decrease the H2O2-induced formation of reactive oxygen species (ROS). It was found that in the presence of inhibitor of tyrosine kinase Trk of receptors K-252a, GM1 at concentrations of 10 μM and 10 nM lost its ability to produce such metabolic effects as a decrease of ROS accumulation and of the degree of oxidative inactivation of Na+,K+-ATPase in PC12 cells, as well as ceased to increase viability of these cells under conditions of oxidative stress. The dependence of protective and metabolic effects of gangliosides GM1 in PC12 cells treated with H2O2 on modulation of activity of activity of tyrosine kinase Trk receptors (i.e., from the same signal system) agrees with concept about the essential role of oxidant effect of GM1 in its increase of cell viability.  相似文献   

4.
In PC12 cells, a well studied model for neuronal differentiation, an elevation in the intracellular cAMP level increases cell survival, stimulates neurite outgrowth, and causes activation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). Here we show that an increase in the intracellular cAMP concentration induces tyrosine phosphorylation of two receptor tyrosine kinases, i.e. the epidermal growth factor (EGF) receptor and the high affinity receptor for nerve growth factor (NGF), also termed Trk(A). cAMP-induced tyrosine phosphorylation of the EGF receptor is rapid and correlates with ERK1/2 activation. It occurs also in Panc-1, but not in human mesangial cells. cAMP-induced tyrosine phosphorylation of the NGF receptor is slower and correlates with Akt activation. Inhibition of EGF receptor tyrosine phosphorylation, but not of the NGF receptor, reduces cAMP-induced neurite outgrowth. Expression of dominant-negative Akt does not abolish cAMP-induced survival in serum-free media, but increases cAMP-induced ERK1/2 activation and neurite outgrowth. Together, our results demonstrate that cAMP induces dual signaling in PC12 cells: transactivation of the EGF receptor triggering the ERK1/2 pathway and neurite outgrowth; and transactivation of the NGF receptor promoting Akt activation and thereby modulating ERK1/2 activation and neurite outgrowth.  相似文献   

5.
Effects of inhibitors of tyrosine kinases (K-252a, genistein) and of phospholipase A2 (bromophenacyl bromide) on viability of PC12 cells are studied in the presence of hydrogen peroxide and ganglioside GM1. The degree of inhibition of hydrogen peroxide cytotoxic effects by ganglioside GM1 amounted to 52.8 ± 4.2%. However, in the presence in the medium of 0.1 and 1 μM inhibitors of tyrosine kinase of Trk-receptors (K-252a) it was as low as 32.7 ± 6.5% and 11.7 ± 9.8%, respectively. GM1 prevented Na+,K+-ATPase oxidative inactivation produced by H2O2, but in the presence of 1 μM K-252a this effect was practically not pronounced. In the presence of another inhibitor of tyrosine kinases-genistein, a tendency for a decrease of the GM1 protective effect was observed at its concentrations 0.1 and 1 μM, whereas at a higher concentration 10 μM, genistein depressed statistically significantly the GM1 neuroprotective effect. It was found that inhibitor of phospholipase A2 bromophenacyl bromide did not affect the action of GM1 aimed at increasing the viability of cells under action of hydrogen peroxide on them. It seems that this enzyme is not involved in the cascade of reactions participating in realization of the ganglioside protective effect. Thus, inhibitor of tyrosine kinase of Trk-receptors K-252a decreases or practically prevents the ganglioside GM1 neuroprotective effect on PC12 cells under stress conditions; the same ability is characteristic of genistein—an inhibitor of tyrosine kinases of the wider spectrum of action.  相似文献   

6.
Using the cholera toxin B subunit (CTB) that specifically binds to ganglioside GM1a on the plasma membrane, we investigated intracellular signaling mediated by endogenous GM1a involved in neuronal differentiation of PC12 cells. The treatment with CTB induced morphological alternations of PC12 cells, such as augmentation of the cell body, neurite extension, and branched spikes of tips of neurites. The neurite extension induced with CTB was strongly suppressed by the pretreatment of tyrosine kinase inhibitors in a dose-dependent manner. Western blotting analysis showed that CTB induced tyrosine phosphorylation of several cellular proteins with molecular masses around 120, 70, and 45-40 kDa in PC12 cells. Some of the proteins identified were extracellular-signal regulated kinase (ERKs) (ERK1 and ERK2). The peak activation of ERKs lasted for 60-90 min and gradually decreased thereafter. Immunoprecipitation analysis demonstrated that the intracellular events induced with CTB are not related with the activation of Trk proteins, suggesting that signals evoked by ligation of endogenous GM1a are unique and distinct from those induced with exogenous GM1a. Although the presence of a tyrosine kinase inhibitor, genistein, at a concentration of 10 microM diminished the neurite extension of PC12 cells induced with CTB, ERK activation was still observed. However, pretreatment with a MEK inhibitor, PD98059, abolished the activation of ERKs induced with CTB in a dose-dependent manner and only attenuated the morphological alternations of PC12 cells. Considered together, we concluded that tyrosine phosphorylation induced with CTB was responsible for neuron-like differentiation of PC12 cells and that the MEK-ERK cascade is part of the biological signals mediated by endogenous ganglioside GM1a on PC12 cells.  相似文献   

7.
Effects of inhibitors of tyrosine kinases (K-252a, genistein) and of phospholipase A2 (bromophenacetyl bromide) on viability of PC12 cells are studied in the presence of hydrogen peroxide and ganglioside GM1. The degree of inhibition of hydrogen peroxide cytotoxic effect by ganglioside GM1 amounted to 52.8 +/- 4.3 %. However, in the presence in the medium of 0.1 and 1 microM inhibitors of tyrosine kinase of Trk-receptors (K-252a) it was as low as 32.7 +/- 6.5 % and 11.7 +/- 9.8 %, respectively. GM1 prevented Na+, K+-ATPase produced by H2O2, but in the presence of 1 microM K-252a this effect was practically not pronounced. In the presence of another inhibitor of tyrosine kinases--genistein, a tendency for a decrease of the GM1 protective effect was observed at its concentrations 0.1 and 1 microM, whereas at a higher concentration 10 microM genistein depressed the GM1 neuroprotective effect statistically significantly. It was found that inhibitor of phospholipase A2 bromophenacetyl bromide did not affect the action of GM1 aimed at increasing the viability of cells under action of hydrogen peroxide on them. It seems that this enzyme is not involved in the cascade of reactions participating in realization of the ganglioside protective effect. Thus, inhibitor of tyrosine kinase of Trk-receptors K-252 decreases or practically prevents the ganglioside GM1 neuroprotective effect of PC12 cells under stress conditions; the same ability is characteristic of genistein--an inhibitor of tyrosine kinases of the wider spectrum of action.  相似文献   

8.
Ganglioside GM1 has been shown to increase viability of PC12 cells at their induction of oxidative stress by hydrogen peroxide. However, in the presence of inhibitor of tyrosine kinase Trkreceptors K-252a this GM1 effect decreases or virtually disappears. To understand mechanism of the protective effect, there was studied action of H2O2, GM1, and inhibitor K-252a on formation of reactive oxygen species (ROS). It has been shown that ganglioside GM1 decreases significantly the H2O2-induced ROS accumulation in PC12 cells; however, in the presence of inhibitor of tyrosine kinase of Trk-receptors, this GM1 effect is not revealed. It has been found that inhibitors of each of protein kinases present at the signal realization stages following the stages of activation of tyrosine kinase Trk-receptors—Erk 1/2, PI3-kinases, and PKC, decreased the GM1 ability to reduce the H2O2-induced ROS accumulation, while at the combined use of inhibitors of these three protein kinases, the GM1 effect was completely absent. Thus, the ganglioside GM1 antioxidant effect on PC12 is mediated by activation of tyrosine kinase Trk-receptors and protein kinases perceiving signal from this enzyme.  相似文献   

9.
We studied effect of gangliosides on viability of brain neurons and neuronal PC12 cell line exposed to toxic concentrations of compounds activating free radical reactions. It is found that preincubation of cerebellar granule cells and PC12 cells with micromolar concentrations of ganglioside GM1 increases statistically significantly viability of these cells submitted to inductors of oxidative stress, such as hydrogen peroxide and the Fe2+-ascorbate system However, the effect of ganglioside GM1 in the PC12 cells failed to be revealed 1–2 days after treatment of the cells with trypsin, which indicates an importance of interaction of gangliosides with surface proteins for realization of their protective action. GM1, GD1a, and other gangliosides were shown to produce the neuroprotective effect on cerebellar granule cells in the presence of toxic glutamate concentrations. Not only micro-, but also nanomolar concentrations of these gangliosides increased statistically significantly the neuronal viability, although at micromolar concentrations this effect as a rule was more pronounced. The obtained data allow suggesting that the neuroprotective action of gangliosides is determined to a considerable degree by their ability to inhibit free-radical reactions in nerve cells.  相似文献   

10.
Nicotine treatment triggers calcium influx into neuronal cells, which promotes cell survival in a number of neuronal cells. Phosphoinositide (PI) 3-kinase and downstream PI3-kinase target Akt have been reported to be important in the calcium-mediated promotion of survival in a wide variety of cells. We investigated the mechanisms of nicotine-induced phosphorylation of Akt in PC12h cells, in comparison with nicotine-induced ERK phosphorylation. Nicotine induced Akt phosphorylation in a dose-dependent manner. A nicotinic acetylcholine receptor (nAChR) alpha7 subunit-selective inhibitor had no significant effect on nicotine-induced Akt phosphorylation, while a non-selective nAChR antagonist inhibited the phosphorylation. L-type voltage-sensitive calcium channel (VSCC) antagonists, calmodulin antagonist, and Ca2+/calmudulin-dependent protein kinase (CaM kinase) inhibitor prevented the nicotine-induced Akt phosphorylation. Three epidermal growth factor receptor (EGFR) inhibitors prevented the nicotine-induced phosphorylation of both extracellular signal-regulated protein kinase (p42/44 MAP kinase, ERK) and Akt. In contrast, an inhibitor of the Src family tyrosine kinase prevented the nicotine-induced Akt phosphorylation but not ERK phosphorylation. These results suggested that nicotine induces the activation of both PI3-kinase/Akt and ERK pathways via common pathways including non-alpha7-nAChRs, L-type VSCC, CaM kinase II and EGFR in PC12h cells, but Src family tyrosine kinases only participate in the pathway to activate Akt.  相似文献   

11.
GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain   总被引:11,自引:0,他引:11  
We investigated the ability of GM1 to induce phosphorylation of the tyrosine kinase receptor for neurotrophins, Trk, in rat brain, and activation of possible down-stream signaling cascades. GM1 increased phosphorylated Trk (pTrk) in slices of striatum, hippocampus and frontal cortex in a concentration- and time-dependent manner, and enhanced the activity of Trk kinase resulting in receptor autophosphorylation. The ability of GM1 to induce pTrk was shared by other gangliosides, and was blocked by the selective Trk kinase inhibitors K252a and AG879. GM1 induced phosphorylation of TrkA > TrkC > TrkB in a region-specific distribution. Adding GM1 to brain slices activated extracellular-regulated protein kinases (Erks) in all three brain regions studied. In striatum, GM1 elicited activation of Erk2 > Erk1 in a time-and concentration-dependent manner. The GM1 effect on Erk2 was mimicked by other gangliosides, and was blocked by the Trk kinase inhibitors K252a and AG879. Pertussis toxin, as well as Src protein tyrosine kinase and protein kinase C inhibitors, did not prevent the GM1-induced activation of Erk2, apparently excluding the participation of Gi and Gq/11 protein-coupled receptors. Intracerebroventricular administration of GM1 induced a transient phosphorylation of TrkA and Erk1/2 in the striatum and hippocampus complementing the in situ studies. These observations support a role for GM1 in modulating Trk and Erk phosphorylation and activity in brain.  相似文献   

12.
In cultured bovine adrenal chromaffin cells treated with nicotine (10 µm for 24 h), phosphorylation of Akt, glycogen synthase kinase‐3β (GSK‐3β) and extracellular signal‐regulated kinase (ERK)1/2 induced by insulin (100 nm for 10 min) was enhanced by ~ 62%, without altering levels of these protein kinases. Nicotine produced time (> 12 h)‐ and concentration (EC50 3.6 and 13 µm )‐dependent increases in insulin receptor substrate (IRS)‐1 and IRS‐2 levels by ~ 125 and 105%, without altering cell surface density of insulin receptors. In these cells, insulin‐induced tyrosine phosphorylation of IRS‐1/IRS‐2 and recruitment of phosphoinositide 3‐kinase (PI3K) to IRS‐1/IRS‐2 were augmented by ~ 63%. The increase in IRS‐1/IRS‐2 levels induced by nicotine was prevented by nicotinic acetylcholine receptor (nAChR) antagonists, the Ca2+ chelator 1,2‐bis(2‐aminophenoxy)‐ethane‐N,N,N′,N′‐tetra‐acetic acid tetrakis‐acetoxymethyl ester, cycloheximide or actinomycin D. Nicotine increased IRS‐1 and IRS‐2 mRNA levels by ~ 57 and ~ 50%, and this was prevented by conventional protein kinase C (cPKC) inhibitor Gö6976, or ERK kinase inhibitors PD98059 and U0126. Nicotine phosphorylated cPKC‐α, thereby increasing phosphorylation of ERK1/ERK2, as demonstrated by using Gö6976, PD98059 or U0126. Selective activation of cPKC‐α by thymeleatoxin mimicked these effects of nicotine. Thus, stimulation of nAChRs up‐regulated expression of IRS‐1/IRS‐2 via Ca2+‐dependent sequential activation of cPKC‐α and ERK, and enhanced insulin‐induced PI3K/Akt/GSK‐3β and ERK signaling pathways.  相似文献   

13.
The initial event in the neuronal differentiation of PC12 cells is the binding of the neurotrophin nerve growth factor (NGF) to the Trk receptor. This interaction stimulates the intrinsic tyrosine kinase activity of TRk, initiating a signalling cascade involving the phosphorylation of intracellular proteins on tyrosine, serine, and threonine residues. These signals are then in turn propagated to other messengers, ultimately leading to differentiation, neurotrophin-dependent survival and the loss of proliferative capacity. To transmit NGF signals, NGF-activated Trk rapidly associated with the cytoplasmic proteins, SHC, PI-3 kinase, and PLC-γ1. These proteins are involved in stimulating the formation of various second messenger molecules and activating the Ras signal transduction pathway. Studies with Trk mutants indicate that the acivation of the Ras pathway is necessary for complete differentiation of PC12-derived cells and for the maintenance of the differentiated phenotype. Trk also induces the tyrosine phosphorylation of SNT, a specific target of neurotrophic factor activity in neuronal cells. This review will discuss the potential roles of Trk and the proteins of the Trk signalling pathways in NGF function, and summarize our attempts to understand the mechanisms used by Trk to generate dthe many phenotypic responses of PC12 cells to NGF. 1994 John Wiley & Sons, Inc.  相似文献   

14.
The activation of extracellular receptor kinase (ERK) is one of the checkpoints to assess the activation of the classical Ras/mitogen-activated protein kinase (MAPK) cascade. Therefore, we tested more than 100 selenium-containing compounds for their ability to activate the MAPK signal pathway. Among them, we found that three selenazoles, 5-chloroacetyl-2-piperidino-1,3-selenazole (CS1), 5-chloroacetyl-2-morpholino-1,3-selenazole (CS2), and 5-chloroacetyl-2-dimethylamino-1,3-selenazole (CS3), induced the phosphorylation of ERK. These compounds also enhanced the phosphorylation of Akt, a signal transducing protein kinase for cell survival; and this phosphorylation was followed by suppression of cell death, thus suggesting that they had anti-apoptotic effects. Moreover, CSs 1-3 induced neurite outgrowth and facilitated the expression of neurofilament-M of PC12 cells, demonstrating that they induced neuronal differentiation of these cells. On the other hand, the CS-induced phosphorylation of MAPK was enhanced by buthionine sulfoximine (BSO), an activator of protein tyrosine phosphatases (PTPs), but inhibited by N-acetyl-l-cysteine (NAC), an inhibitor of receptor tyrosine kinase. These results imply that activation of some receptor tyrosine kinase(s) is involved in the mechanism of action of CSs 1-3. The activation of MAPK by CSs 1-3 was suppressed by U0126, a MEK inhibitor, but not by K252a, an inhibitor of TrkA; AG1478, an antagonist of epidermal growth factor receptor (EGFR); or by pertussis toxin. These results demonstrate that the CS-induced phosphorylation of Akt and MAP kinase (receptor tyrosine kinase(s)-MEK1/2-ERK1/2) cascades was responsible for suppression of apoptosis and facilitation of neuronal differentiation of PC12 cells, respectively. Our results suggest that CSs 1-3 are promising candidates as neuroprotective and/or neurotrophic agents for the treatment of various neurodegenerative neurological disorders.  相似文献   

15.
Studies demonstrated that cholecystokinin (CCK) system involved in morphine dependence and withdrawal. Our previous study showed that endogenous CCK system were up-regulated after chronic morphine exposure. Additionally, CCK1 receptor significantly blocked the inhibitory effect of exogenous CCK-8 on morphine dependence, but CCK2 receptor appears to be necessary for low concentrations of endogenous CCK to potentiate morphine dependence. Therefore, CCK1R and CCK2R function differently in chronic morphine dependence, but the mechanism is still unclear. In this study, HEK-293 cells co-transfected with µ-opioid receptors (HEK293-hMOR) and CCK1R or CCK2R were established. Cells were treated with 10 µM morphine for 6, 12, 16, 24 h and 100 µM naloxone precipitation for 15 min. cAMP overshoot was appeared at 12 h and was increased time dependently after morphine exposure in HEK293-hMOR cells. The cAMP overshoot did not appear in CCK1R-overexpressing HEK293-hMOR cells, while still appeared in CCK2R-overexpressing HEK293-hMOR cells. Over-expression of CCK1R reversed CREB and ERK1/2 activation in HEK293-hMOR cells exposed to morphine. Our study identifies over-expression of CCK1R significantly blocked morphine dependence, which was related with phosphorylation of CREB, and ERK1/2 signaling activation. While over-expression of CCK2R promoted morphine dependence, which was related with phosphorylation of CREB but not ERK1/2 signaling activation.  相似文献   

16.
The human tumorous imaginal disc 1 (TID1) proteins including TID1(L) and TID1(S), members of the DnaJ domain protein family, are involved in multiple intracellular signaling pathways such as apoptosis induction, cell proliferation, and survival. Here we report that TID1 associates with the Trk receptor tyrosine kinases and regulates nerve growth factor (NGF)-induced neurite outgrowth in PC12-derived nnr5 cells. Binding assays and transfection studies showed that the carboxyl-terminal end of TID1 (residues 224-429) bound to Trk at the activation loop (Tyr(P)(683)-Tyr(684)(P)(684) in rat TrkA) and that TID1 was tyrosine phosphorylated by Trk both in yeast and in transfected cells. Moreover endogenous TID1 was also tyrosine phosphorylated by and co-immunoprecipitated with Trk in neurotrophin-stimulated primary rat hippocampal neurons. Overexpression studies showed that both TID1(L) and TID1(S) significantly facilitated NGF-induced neurite outgrowth in TrkA-expressing nnr5 cells possibly through a mechanism involving increased activation of mitogen-activated protein kinase. Consistently knockdown of endogenous TID1, mediated with specific short hairpin RNA, significantly reduced NGF-induced neurite growth in nnr5-TrkA cells. These data provide the first evidence that TID1 is a novel intracellular adaptor that interacts with the Trk receptor tyrosine kinases in an activity-dependent manner to facilitate Trk-dependent intracellular signaling.  相似文献   

17.
The rate of oxygen consumption by glutamate- and malate-energized rat brain mitochondria, which was stimulated by an uncoupler 2,4-dinitrophenol (DNP), declined in the presence of a prooxidant tert-butyl hydroperoxide. Preincubation with gangliosides GM1 or GD1a at micromolar (but not nanomolar) concentrations significantly slowed down this decline in the mitochondrial respiration, as shown by measuring absolute respiratory rates and ratios of the mitochondrial respiratory rate in the presence of DNP to the basal respiratory rate (V DNP/V 0). Gangliosides GM1 and GD1a also slowed down a decline in the DNP-stimulated mitochondrial respiration induced by long-term incubation (“aging”) of mitochondria on ice. The data obtained are likely to reflect a prooxidant-induced reduction in the activity of enzymes of the mitochondrial respiratory chain as well as a GM1- and GD1a-induced decrease in the degree of their inactivation. Interestingly, in the presence of the Trk receptor tyrosine kinase inhibitor (K252a) this effect of gangliosides was not manifested in any way. Our data suggest that the direct impact of gangliosides on mitochondrial signaling pathways, specifically on the Trk receptor tyrosine kinase, plays a certain role in the mechanism of their protective effect on cerebral neurons and, probably, neuroglia.  相似文献   

18.
19.
Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide that acts through G protein-coupled receptors, exerts neuroprotective effects upon many neuronal populations. However, the intracellular signaling mechanisms that account for PACAP's trophic effects are not well characterized. Here we have tested the possibility that PACAP uses neurotrophin signaling pathways. We have found that PACAP treatment resulted in an increase in TrkA tyrosine kinase activity in PC12 cells and TrkB activity in hippocampal neurons. The activation of TrkA receptors by PACAP required at least 1 h of treatment and did not involve binding to nerve growth factor. Moreover, PACAP induced an increase in activated Akt through a Trk-dependent mechanism that resulted in increased cell survival after trophic factor withdrawal. The increases in Trk and Akt were blocked by K252a, an inhibitor of Trk receptor activity. In addition, transactivation of TrkA receptors by PACAP could be inhibited with PP1, an inhibitor of Src family kinases or BAPTA/AM, (1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid acetoxymethyl ester), an intracellular calcium chelator. Therefore, PACAP can exert trophic effects through a mechanism involving Trk receptors and utilization of tyrosine kinase signaling. This ability may explain several neuroprotective actions of PACAP upon neuronal populations after injury, nerve lesion, or neurotrophin deprivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号