首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) The addition of long chain fatty acids to the incubation medium of isolated rat lung cells produced a dose-dependent inhibition of protein labelling from L-[3H]valine. Maximal rate changes were observed at fatty acids levels within the range of their physiological concentration. (2) The effect of fatty acids on protein labelling does not seem to be mediated by their oxidation. The following observations seem to support this conclusion: (a) the rate of fatty acid oxidation by lung cells was remarkably low, so that no significant variations in the state of reduction of the NAD system were detected; (b) there was no correspondence in the dose-response patterns of fatty acid oxidation and inhibition of protein labelling; (c) octanoate was much more actively oxidized than oleate, however the latter was more effective in decreasing protein labelling. (3) An apparent relationship between the length of the fatty chain and its ability to inhibit protein labelling seems to exist. The longer the chain the stronger the inhibitory effect observed. (4) The effect of fatty acid on protein labelling seems to be mediated by a cellular energy depletion secondary to an inhibition of the respiratory chain. Their ability to decrease oxygen uptake and adenine nucleotide content was also proportional to the chain length. (5) Glucose, which apparently acted by increasing energy production at substrate level phosphorylation, partially prevented the inhibitory effect of fatty acid on protein labelling. This observation supports the point of view that fatty acids do not act in decreasing protein labelling by perturbing directly the protein synthesis machinery but decreasing the phosphorylation potential.  相似文献   

2.
Feedback inhibition of fatty acid synthesis in tobacco suspension cells   总被引:7,自引:1,他引:6  
The flux through many metabolic pathways is regulated through feedback inhibition on regulatory enzymes by endproducts of the pathway. Whether feedback inhibition occurs in fatty acid synthesis in plants has been investigated. The addition of exogenous oleic acid, in the form of oleoyl-Tween (Tween-18:1) caused a three- to fivefold decrease in the rate of [1-14C]acetate incorporation into tobacco suspension cell fatty acids. The decrease in acetate incorporation occurred rapidly upon addition of Tween-18:1 and appeared to be specific for fatty acid synthesis. In order to elucidate possible regulatory steps involved in the feedback regulation of fatty acid synthesis in plant cells, tobacco cell acyl-ACP intermediates were analyzed using a combination of [1-14C]acetate labeling and immunoblot analysis. Within 30 min of exogenous lipid addition, acetyl-ACP increased and long chain acyl-ACP decreased, whereas medium chain acyl-ACP levels remained constant. These acyl-ACP profiles observed during the feedback inhibition were those predicted to occur under conditions where the flux through fatty acid synthesis is decreased due to limiting levels of malonyl-CoA and therefore indicated that acetyl-CoA carboxylase (ACCase) was centrally involved in the feedback regulation of fatty acid synthesis. Immunoblot analysis showed that ACCase protein levels did not change during the feedback inhibition, indicating that the feedback inhibition of fatty acid synthesis in plant cells occurs through biochemical or post-translational modification of ACCase and possibly other fatty acid synthesis enzymes.  相似文献   

3.
Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria.  相似文献   

4.
In isolated rat hepatocytes, fatty acids inhibited the side chain oxidation, but not the uptake, of exogenously added 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestan-26-oic acid (THCA). THCA did not inhibit fatty acid oxidation. In liver homogenates, fatty acids inhibited THCA activation to its CoA ester (THC-CoA) and THCA oxidation. THCA did not influence fatty acid activation or oxidation. Comparison of the THC-CoA concentrations present in the incubation mixtures during THCA oxidation, with substrate concentration curves determined for THC-CoA oxidation, indicated that the inhibition of THCA oxidation by fatty acids was at least partly exerted at the activation step. The inhibition of THCA activation by fatty acids was noncompetitive. Palmitoyl-CoA at concentrations found in the incubation mixtures during THCA oxidation in the presence of palmitate inhibited THC-CoA oxidation, but not sufficiently to fully explain the fatty acid-induced inhibition of THCA oxidation. The inhibition of THC-CoA oxidation by palmitoyl-CoA did not seem to be competitive. Acyl-CoA oxidase, the first enzyme of peroxisomal beta-oxidation (which catalyzes the side chain oxidation of THCA), was enhanced 15-fold in liver homogenates from clofibrate-treated rats when palmitoyl-CoA was the substrate, but the oxidase activity remained unaltered when THC-CoA was the substrate. In the perfused liver, oleate, infused after a wash-out period of 60 min, markedly inhibited bile acid secretion. The results 1) suggest that fatty acids inhibit THCA metabolism both at the activation step and at the peroxisomal beta-oxidation sequence and that separate enzymes may be involved in both the activation and peroxisomal beta-oxidation of fatty acids and THCA and 2) raise the question whether fatty acids might (indirectly?) affect overall bile acid synthesis via their inhibitory effect on THCA metabolism.  相似文献   

5.
Synthesis, degradation, and metabolism of fatty acids are strictly coordinated to meet the nutritional and energetic needs of cells and organisms. In the absence of exogenous fatty acids, proliferation and growth of the yeast Saccharomyces cerevisiae depends on endogenous synthesis of fatty acids, which is catalysed by fatty acid synthase. In the present study, we have used quantitative proteomics to examine the cellular response to inhibition of fatty acid synthesis in Saccharomyces cerevisiae. We have identified approximately 2000 phosphorylation sites of which more than 400 have been identified as being regulated in a temporal manner in response to inhibition of fatty acid synthesis by cerulenin. By bioinformatic analysis of these phosphorylation events, we have identified the cell cycle kinases Cdc28 and Pho85, the PAK kinase Ste20 as well as the protein kinase Sch9 as central mediators of the cellular response to inhibition of fatty acid synthesis.  相似文献   

6.
Carnitine palmitoyltransferase-I (CPT-I) plays a crucial role in regulating cardiac fatty acid oxidation which provides the primary source of energy for cardiac muscle contraction. CPT-I catalyzes the transfer of long chain fatty acids into mitochondria and is recognized as the primary rate controlling step in fatty acid oxidation. Molecular cloning techniques have demonstrated that two CPT-I isoforms exist as genes encoding the 'muscle' and 'liver' enzymes. Regulation of fatty acid oxidation rates depends on both short-term regulation of enzyme activity and long-term regulation of enzyme synthesis. Most early investigations into metabolic control of fatty acid oxidation at the CPT-I step concentrated on the hepatic enzyme which can be inhibited by malonyl-CoA and can undergo dramatic amplification or reduction of its sensitivity to inhibition by malonyl-CoA. The muscle CPT-I is inherently more sensitive to malonyl-CoA inhibition but has not been found to undergo any alteration of its sensitivity. Short-term control of activity of muscle CPT-I is apparently regulated by malonyl-CoA concentration in response to fuel supply (glucose, lactate, pyruvate and ketone bodies). The liver isoform is the only CPT-I enzyme present in the mitochondria of liver, kidney, brain and most other tissues while muscle CPT-I is the sole isoform expressed in skeletal muscle as well as white and brown adipocytes. The heart is unique in that it contains both muscle and liver isoforms. Liver CPT-I is highly expressed in the fetal heart, but at birth its activity begins to decline whereas the muscle isoform, which is very low at birth, becomes the predominant enzyme during postnatal development. In this paper, the differential regulation of the two CPT-I isoforms at the protein and the gene level will be discussed.  相似文献   

7.
alpha-Ketoisocaproate (ketoleucine) is shown to be metabolized to ketone bodies rapidly by isolated rat liver cells. Acetoacetate is the major end product and maximum rates were observed with 2 mM substrate. Studies with 2-tetradecylglycidic acid (an inhibitor of long chain fatty acid oxidation) showed that ketogenesis from alpha-ketoisocaproate and from endogenous fatty acids were additive. With alpha-ketoisocaproate present as soole substrate at 2 mM, leucine production was less than 10% of alpha-ketoisocaproate uptake and only 30% of the acetyl coenzyme A generated was oxidized in the citric acid cycle. Metabolism of alpha-ketoisocaproate was inhibited by fatty acids, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, and pyruvate. Oxidation of acetyl-CoA generated from alpha-ketoisocaproate was suppressed by oleate and by pyruvate, but was enhanced by lactate. Metabolism between the different branched chain alpha-ketoacids was mutually competitive. When alpha-ketoisocaproate (2 mM) was added in the presence of high pyruvate concentrations (4.4 mM), flux through pyruvate dehydrogenase was decreased, and the proportion of total pyruvate dehydrogenase in the active form (PDHa) also fell. With lactate as substrate, PDHa was only 25% of total activity and was little affected by addition of alpha-ketoisocaproate. These data suggest that enhanced oxidation of acetyl-CoA from alpha-ketoisocaproate by lactate addition is caused by a low activity of pyruvate dehydrogenase combined with increased flux through the citric acid cycle in response to the energy requirements for gluconeogenesis. However, acetyl-CoA generation from pyruvate is apparently insufficiently inhibited by alpha-ketoisocaproate to cause a diversion of acetyl-CoA formed during alpha-ketoisocaproate metabolism from ketone body formation to oxidation in the citric acid cycle. Measurements of the cell contents of CoASH, acetyl-CoA, acid-soluble acyl-CoA, and acid-insoluble fatty acyl-CoA indicated that when the branched chain alpha-ketoacids were added as sole substrate, their oxidation was limited at a step distal to the branched chain alpha-ketoacid dehydrogenase. Acid-soluble acyl-CoA derivatives were depleted after oleate addition in the presence of alpha-ketoisocaproate, suggesting an inhibition of the branched chain alpha-ketoacid dehydrogenase by the elevation of the mitochondrial NADH/NAD+ ratio observed during fatty acid oxidation. This effect was not observed in the presence of oleate and 2-tetradecylglycidic acid.  相似文献   

8.
9.
Fatty acid transport protein 1 (FATP1) is an approximately 63-kDa plasma membrane protein that facilitates the influx of fatty acids into adipocytes as well as skeletal and cardiac myocytes. Previous studies with FATP1 expressed in COS1 cell extracts suggested that FATP1 exhibits very long chain acyl-CoA synthetase (ACS) activity and that such activity may be linked to fatty acid transport. To address the enzymatic activity of the isolated protein, murine FATP1 and ACS1 were engineered to contain a C-terminal Myc-His tag expressed in COS1 cells via adenoviral-mediated infection and purified to homogeneity using nickel affinity chromatography. Kinetic analysis of the purified enzymes was carried out for long chain palmitic acid (C16:0) and very long chain lignoceric acid (C24:0) as well as for ATP and CoA. FATP1 exhibited similar substrate specificity for fatty acids 16-24 carbons in length, whereas ACS1 was 10-fold more active on long chain fatty acids relative to very long chain fatty acids. The very long chain acyl-CoA synthetase activity of the two enzymes was comparable as were the Km values for both ATP and coenzyme A. Interestingly, FATP1 was insensitive to inhibition by triacsin C, whereas ACS1 was inhibited by micromolar concentrations of the compound. These data represent the first characterization of purified FATP1 and indicate that the enzyme is a broad substrate specificity acyl-CoA synthetase. These findings are consistent with the hypothesis that that fatty acid uptake into cells is linked to their esterification with coenzyme A.  相似文献   

10.
Triglyceride turnover in reperfused/ischemic rat hearts was investigated. Hearts were initially perfused under aerobic conditions for a 1-h "pulse" perfusion with 1.2 mM [1-14C]palmitate to label the endogenous lipid pools, followed by a 30-min period of no-flow ischemia or a 10-min period of retrograde perfusion (control). Hearts were then reperfused under aerobic conditions with buffer containing 1.2 mM [9,10-3H]palmitate. All buffers contained 11 mM glucose and 500 microunits/ml insulin. Rates of endogenous triglyceride lipolysis and synthesis were measured during reperfusion, whereas rates of exogenous palmitate oxidation were measured both prior to ischemia and during reperfusion following ischemia. During reperfusion of ischemic hearts, a 20% increase in exogenous fatty acid oxidation rates was seen compared with pre-ischemic rates. Despite an initial burst of endogenous fatty acid oxidation, no acceleration of steady state endogenous triglyceride lipolysis was seen compared with their nonischemic hearts. In contrast, a significant increase in triglyceride synthesis was observed. Triglyceride turnover was also measured in a series of hearts reperfused following ischemia in the absence of exogenous fatty acids. A significant enhancement of functional recovery was seen compared with hearts reperfused with 1.2 mM palmitate. In addition, a significant increase in fatty acid oxidation from endogenous triglyceride lipolysis was observed. We conclude that the heart quickly recovers its ability to oxidize exogenous fatty acids during reperfusion and that although triglyceride lipolysis is not accelerated during reperfusion of ischemic hearts in the presence of 1.2 mM palmitate, a significant increase in triglyceride synthesis does occur.  相似文献   

11.
2-Tetradecylglycidate is a specific inhibitor of the enzyme carnitine palmitoyl transferase, the rate-limiting step in long chain fatty acid oxidation. We previously showed that chronic administration of TDGA to genetically diabetic mice caused a dose-dependent decrease in blood glucose, retarded the development of renal immunopathologic lesions, and resulted in significant cardiomegaly. The present study was designed to evaluate whether all the observed consequences of chronic TDGA administration resulted from inhibition of long chain fatty acid oxidation or whether the drug exerted other nonspecific effects. To circumvent the effects of LCFAO inhibition, diabetic mice were dosed with TDGA and given a diet containing 9% octanoic acid. Octanoic acid is a medium chain fatty acid, whose oxidation is not dependent on the carnitine transferase system and is not inhibited by TDGA. Administration of the octanoate diet to diabetics receiving TDGA abrogated all the drug effects, including lowering of blood glucose and prevention of renal immunopathology. Cardiomegaly, a consequence of increased protein accretion associated with TDGA dosing, did not occur in the octanoate-fed animals. These results indicate that all the actions of TDGA are mediated via its inhibitory effects on long chain fatty acid oxidation. The cardiac changes resulting from chronic TDGA administration suggest that long chain fatty acid oxidation and its relationship with myocardial energetics may exert a regulatory role on protein synthesis in the myocardium.  相似文献   

12.
Several approaches were used to test the hypothesis proposing a role for acyl-CoA esters in nutrient-induced insulin release (Prentki, M., and Matschinsky, F. M. (1987) Physiol. Rev. 67, 1185-1248; Corkey, B. E., Glennon, M. C., Chen, K. S., Deeney, J. T., Matschinsky, F. M., and Prentki, M. (1989) J. Biol. Chem. 264, 21608-21612). Exogenous saturated long chain fatty acids markedly potentiated glucose-induced insulin release and elevated long chain acyl-CoA esters in the clonal beta-cell line (HIT). The secretory action depended on the fatty acid chain length, occurred in the range 3-20 microM (free concentration of palmitate), and was reversible and inhibitable by the neuromodulator somatostatin. 2-Bromopalmitate, an inhibitor of carnitine palmitoyl transferase I, suppressed the oxidation of endogenous fatty acids and promoted release of insulin. Only the nutrients or the combination of nutrients that caused secretion elevated malonyl-CoA. The short-chain acyl-CoA profile of HIT cells stimulated by various nutrients was determined in the presence of the nonstimulatory fuel glutamine. Glucose and leucine each provoked similar changes in acyl-CoA compounds. Both secretagogues elevated malonyl-CoA 3-6-fold, whereas succinyl-CoA, free CoASH, acetyl-CoA, and the free CoASH to acetyl-CoA ratio remained unaltered. Furthermore, only when inhibition of fatty acid oxidation was associated with a rise in malonyl-CoA did the total (mitochondrial plus cytoplasmic) content of long chain acyl-CoA esters correlate inversely with insulin release promoted by various nutrients. The results are consistent with the concept that fuel stimuli cause a rise in malonyl-CoA which by inhibiting fatty acid oxidation increase cytosolic long chain acyl-CoA esters. These data provide further support for a model in which malonyl-CoA and long chain acyl-CoAs esters serve as metabolic coupling factors when pancreatic beta-cells are stimulated with glucose and other nutrient secretagogues.  相似文献   

13.
The aim of the present study was to investigate the actions of zymosan on glucose release and fatty acid oxidation in perfused rat livers and to determine if Kupffer cells and Ca2+ ions are implicated in these actions. Zymosan caused stimulation of glycogenolysis in livers from fed rats. In livers from fasted rats zymosan caused gradual inhibition of glucose production and oxygen consumption from lactate plus pyruvate. Ketogenesis, oxygen consumption, and [14C-]-CO2 production were inhibited by zymosan when the [1-14C]-palmitate was supplied exogenously. However, ketogenesis and oxygen consumption from endogenous sources were not inhibited. An interference with substrate-uptake by the liver may be the cause of the changes in gluconeogenesis and oxidation of fatty acids from exogenous sources. The pretreatment of the rats with gadolinium chloride and the removal of Ca2+ ions did not suppress the effects of zymosan on glucose release, a finding that argues against the participation of Kupffer cells or Ca2+ ions in the liver responses. The hepatic metabolic changes caused by zymosan could play a role in the systemic metabolic alterations reported to occur after in vivo zymosan administration.  相似文献   

14.
1. Acetylcarnitine added in catalytic amounts to kidney mitochondria produces an active oxidation of endogenous fatty acids. 2. In conditions of mitochondrial ;aging', under which acetate is not oxidized, acetylcarnitine also promotes the oxidation of this exogenous substrate. 3. Dinitrophenol completely abolishes the action of acetylcarnitine. 4. Carnitine is ineffective both in the oxidation of endogenous fatty acids and of exogenous acetate. 5. The action of acetylcarnitine is shared, though to a smaller extent, by pyruvate. 6. The mechanism of acetylcarnitine action has been interpreted by considering that the readily oxidizable acetyl group of acetylcarnitine can supply the initial investment of energy needed to start fatty acid oxidation.  相似文献   

15.
The effects on oxidation and composition of fatty acids in rat liver were compared after administration of fatty acids with sulfur substituted in different positions. It has been hypothesized that drugs with hydrophobic backbone have lipid-lowering effects because they are not easily catabolized by mitochondrial beta-oxidation. Thia fatty acids cannot be beta-oxidized when sulfur is in 3-position, but beta-oxidation is possible when sulfur is positioned further from the carboxyl group. To investigate whether catabolism of thia fatty acids would affect their ability to influence lipid metabolism, a series of thia fatty acids were synthesized and administered by oral gavage to male Wistar rats (300 mg/kg bodyweight/day for 7 days). Depending on the position of the sulfur atom and the chain length, the thia fatty acids were beta-oxidized, desaturated and/or elongated, and the accumulated amounts were lower as the sulfur atom were positioned further from the carboxyl group. All thia fatty acids led to high peroxisomal beta-oxidation of endogenous fatty acids, whereas the mitochondrial beta-oxidation was high when sulfur was in 3-position, low when sulfur was in 4-position and similar to controls when sulfur was in 5- or 7-position. The changes in hepatic fatty acid composition were more pronounced when sulfur was positioned close to the carboxyl group. In conclusion, both the position of the sulfur atom and the chain length appear to determine the catabolic fate of thia fatty acids, and the non-beta-oxidizable thia fatty acids were most potent in regulating oxidation and composition of endogenous fatty acids in rat liver.  相似文献   

16.
Acylation of cellular proteins with endogenously synthesized fatty acids   总被引:14,自引:0,他引:14  
D Towler  L Glaser 《Biochemistry》1986,25(4):878-884
A number of cellular proteins contain covalently bound fatty acids. Previous studies have identified myristic acid and palmitic acid covalently linked to protein, the former usually attached to proteins by an amide linkage and the latter by ester or thio ester linkages. While in a few instances specific proteins have been isolated from cells and their fatty acid composition has been determined, the most frequent approach to the identification of protein-linked fatty acids is to biosynthetically label proteins with fatty acids added to intact cells. This procedure introduces possible bias in that only a selected fraction of proteins may be labeled, and it is not known whether the radioactive fatty acid linked to the protein is identical with that which is attached to the protein when the fatty acid is derived from endogenous sources. We have examined the distribution of protein-bound fatty acid following labeling with [3H]acetate, a general precursor of all fatty acids, using BC3H1 cells (a mouse muscle cell line) and A431 cells (a human epidermoid carcinoma). Myristate, palmitate, and stearate account for essentially all of the fatty acids linked to protein following labeling with [3H]acetate, but at least 30% of the protein-bound palmitate in these cells was present in amide linkage. In BC3H1 cells, exogenous palmitate becomes covalently bound to protein such that less than 10% of the fatty acid is present in amide linkage. These data are compatible with multiple protein acylating activities specific for acceptor protein fatty acid chain length and linkage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Growth of and fatty acid synthesis in Escherichia coli were inhibited by oxygen at partial pressures above 1 atm and were prevented by exposure to oxygen at 4.2 atm on membranes incubated on a minimal medium. Growth and fatty acid synthesis returned to control rates when cells were removed from hyperoxia to air. The spectrum of fatty acids produced was unchanged by oxygen at pressures which reduced the rate of synthesis. In situ fatty acids were stable to oxygen at pressures which prevented growth and synthesis. Reinitiation of synthesis after complete inhibition in hyperoxia occurred without production of aberrant fatty acids. Fatty acid synthetase specific activity was virtually unchanged, compared with air controls, in cells exposed either to 3.2 or to 15.2 atm of oxygen. The spectrum of fatty acids synthesized by cell-free extracts during incubation in 4.2 atm of oxygen was not different from air-incubated controls. Synthetase assays included added NADPH, acyl carrier protein, mercaptoethanol, and malonyl coenzyme A; hence, damage, other than reversible sulfhydryl oxidation, to the apoenzymes of synthetase was ruled out.  相似文献   

18.
It has been proposed that in the heart, ranolazine shifts the energy source from fatty acids to glucose oxidation by inhibiting fatty acid oxidation. Up to now no mechanism for this inhibition has been proposed. The purpose of this study was to investigate if ranolazine also affects hepatic fatty acid oxidation, with especial emphasis on cell membrane permeation based on the observations that the compound interacts with biological membranes. The isolated perfused rat liver was used, and [1-14C]oleate transport was measured by means of the multiple-indicator dilution technique. Ranolazine inhibited net uptake of [1-14C]-oleate by impairing transport of this fatty acid. The compound also diminished the extra oxygen consumption and ketogenesis driven by oleate and the mitochondrial NADH/NAD+ ratio, but stimulated 14CO2 production. These effects were already significant at 20 μM ranolazine. Ranolazine also inhibited both oxygen consumption and ketogenesis driven by endogenous fatty acids in substrate-free perfused livers. In isolated mitochondria ranolazine inhibited acyl-CoA oxidation and β-hydroxybutyrate or α-ketoglutarate oxidation coupled to ADP phosphorylation. It was concluded that ranolazine inhibits fatty acid uptake and oxidation in the liver by at least two mechanisms: inhibition of cell membrane permeation and by an inhibition of the mitochondrial electron transfer via pyridine nucleotides.  相似文献   

19.
20.
The short-term effect of T3 both on de novo synthesized and on exogenously added fatty acids was studied in isolated rat hepatocytes. Lipogenesis from [14C] acetate or [3H] H2O was stimulated by the addition of T3. In contrast, the utilization of exogenous [14C] palmitate for the synthesis of longer chain fatty acids was markedly reduced. This T3-induced inhibition was removed by octanoylcarnitine, an inhibitor of carnitine palmitoyl-transferase I and of fatty acid oxidation. T3 also stimulated glycerolipid synthesis from acetate, neutral lipids being more influenced than phospholipids, but reduced the incorporation of palmitate in all the lipid fractions. It is suggested that T3 exerts opposing effects on the hepatic utilization of newly synthesized and exogenous fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号