首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiologic importance of afferent sensory pathways in the esophageal motor functions has been recently recognised. Capsaicin-sensitive sensory afferents were shown to play a role in the maintenance of mucosal integrity of the GI tract, and regulation of human esophageal motility. The aim of this study was to investigate the effect of topical application of capsaicin-containing red pepper sauce (Tabasco, 25%v/v, pH:7.0) suspension on the phasic activity of the human esophagus of healthy volunteers and patients with Barrett’s esophagus. Methods: The diagnosis of Barrett’s esophagus was based on the findings of esophagoscopy and histology taken from the squamocolumnar junction of the esophagus. Esophageal motility was measured by perfusion manometry before and after application of red pepper sauce. Results: Capsaicin containing red pepper sauce increases the motility response (LES tone, contraction amplitude, propagation velocity) of the human esophagus in healthy volunteers. This response failed in patients with Barrett’s esophagus. Conclusion: Impaired esophageal sensorymotor function may serve as one etiologic role in the development of Barrett’s esophagus.  相似文献   

2.
Current techniques used to investigate the mechanisms responsible for the sensory responses to distension of the human esophagus provide limited information because the degree of circumferential stretch required to determine tension can only be inferred. We used impedance planimetry to measure the cross-sectional area during esophageal distension to ascertain the degree of stretch and tension that initiated motor and sensory responses. Hyoscine-N-butyl bromide (HBB), a cholinergic muscarinic receptor blocker, was also used to alter esophageal tension during distension. Motor activity was initiated at a lower degree of stretch and tension than that which initiated sensory awareness; both increased directly with increasing distension. HBB reduced both esophageal motility and tension during distension without altering the relationship between sensation intensity and cross-sectional area. Esophageal stretch, rather than tension, thus appears to be the major factor influencing sensory responses to esophageal distension.  相似文献   

3.
The aim of this study was to determine the role of the superior laryngeal nerve (SLN) in the following esophageal reflexes: esophago-upper esophageal sphincter (UES) contractile reflex (EUCR), esophago-lower esophageal sphincter (LES) relaxation reflex (ELIR), secondary peristalsis, pharyngeal swallowing, and belch. Cats (N = 43) were decerebrated and instrumented to record EMG of the cricopharyngeus, thyrohyoideus, geniohyoideus, and cricothyroideus; esophageal pressure; and motility of LES. Reflexes were activated by stimulation of the esophagus via slow balloon or rapid air distension at 1 to 16 cm distal to the UES. Slow balloon distension consistently activated EUCR and ELIR from all areas of the esophagus, but the distal esophagus was more sensitive than the proximal esophagus. Transection of SLN or proximal recurrent laryngeal nerves (RLN) blocked EUCR and ELIR generated from the cervical esophagus. Distal RLN transection blocked EUCR from the distal cervical esophagus. Slow distension of all areas of the esophagus except the most proximal few centimeters activated secondary peristalsis, and SLN transection had no effect on secondary peristalsis. Slow distension of all areas of the esophagus inconsistently activated pharyngeal swallows, and SLN transection blocked generation of pharyngeal swallows from all levels of the esophagus. Slow distension of the esophagus inconsistently activated belching, but rapid air distension consistently activated belching from all areas of the esophagus. SLN transection did not block initiation of belch but blocked one aspect of belch, i.e., inhibition of cricopharyngeus EMG. Vagotomy blocked all aspects of belch generated from all areas of esophagus and blocked all responses of all reflexes not blocked by SLN or RLN transection. In conclusion, the SLN mediates all aspects of the pharyngeal swallow, no portion of the secondary peristalsis, and the EUCR and ELIR generated from the proximal esophagus. Considering that SLN is not a motor nerve for any of these reflexes, the role of the SLN in control of these reflexes is sensory in nature only.  相似文献   

4.
Studies were performed to investigate the effect of prostaglandin E2 on esophageal motility in 12 healthy volunteers. PGE2 infusion caused a dose-dependent reduction in the lower esophageal sphincter pressure. The threshold dose was less than 0.05 mug-kg-1-min-1 and maximal reduction of pressure (60%) occurred with a dose of 0.4 mug-kg-1-min-1. In contrast to its effect on the lower esophageal sphincter, PGE2 did not alter the pressure in the upper esophageal sphincter. PGE2 did not influence resting esophageal pressures; the amplitude of peristaltic contractions was reduced in the lower but not in the upper part of the body of the esophagus. These studies show that in man PGE2 exerts selective inhibitory influence on the activity of the lower part of the esophagus and lower esophageal sphincter which are composed of smooth muscle fibers.  相似文献   

5.
Barrett's esophagus, a squamous-to-columnar cell metaplasia that develops as a result of chronic gastroesophageal reflux disease (GERD), is a risk factor for esophageal adenocarcinoma. The molecular events underlying the pathogenesis of Barrett's metaplasia are poorly understood, but recent studies suggest that interactions among developmental signaling pathways, morphogenetic factors, and Caudal homeobox (Cdx) genes play key roles. Strong expression of Cdx genes normally is found in the intestine but not in the esophagus and stomach. When mice are genetically engineered so that their gastric cells express Cdx, the stomach develops a metaplastic, intestinal-type epithelium similar to that of Barrett's esophagus. Exposure to acid and bile has been shown to activate the Cdx promoter in certain esophageal cell lines, and Cdx expression has been found in inflamed esophageal squamous epithelium and in the specialized intestinal metaplasia of Barrett's esophagus. Barrett's metaplasia must be sustained by stem cells, which might be identified by putative, intestinal stem cell markers like leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and doublecortin and CaM kinase-like-1 (DCAMKL-1). Emerging concepts in tumor biology suggest that Barrett's cancers may develop from growth-promoting mutations in metaplastic stem cells or their progenitor cell progeny. This report reviews the roles of developmental signaling pathways and the Cdx genes in the development of normal gut epithelia and the potential mechanisms whereby GERD may induce the esophageal expression of Cdx genes and other morphogenetic factors that mediate the development of Barrett's metaplasia. The role of stem cells in the development of metaplasia and in carcinogenesis and the potential for therapies directed at those stem cells also is addressed.  相似文献   

6.
Several reports suggest that duodenogastroesophageal reflux may produce esophagitis, Barrett's esophagus and esophageal carcinoma. And it is well known that the incidence of adenocarcinoma arising from Barrett's esophagus has been increasing during the past decade. On the other hand, cyclooxygenase-2 and prostaglandins, produced by the catalytic reaction of cyclooxygenase-2, are considered to relate to carcinogenesis of the digestive tract and other malignant tumors. Recent reports suggest that cyclooxygenase-2 is induced in Barrett's esophagus and esophageal carcinoma. The purpose of this study is to investigate the reaction of cyclooxygenase-2 expression and prostaglandinE2 production on normal human esophageal epithelial cells cultured with gastroduodenal components. Normal human esophageal epithelial cells were cultured with chenodeoxycholic acid, trypsin and in acidic condition, individually and with different combinations of these three factors. After culturing, cyclooxygenase-2 expression in the cells and amount of prostglandinE2 in culture media was evaluated by immunoblotting and enzyme-immunoassay, respectively after culturing the cells. Cyclooxygenase-2 expression was up-regulated by bile acid and prostaglandinE2 production was enhanced by bile acid with trypsin, acidic condition or both of these components, without a synergistic effect on cyclooxygenase-2 expression. Production of prostaglandinE2 via these factors was suppressed by the cyclooxygenase-2 selective inhibitor JTE-522.The results suggest that duodenogastroesophageal reflux may induce cyclooxygenase-2 expression and prostaglandinE2 production in esophageal epithelial cells, cyclooxygenase-2 specific inhibitors may have a chemopreventive effect on esophageal carcinoma.  相似文献   

7.
It is generally accepted that esophageal adenocarcinoma arises from a Barrett's metaplastic lesion. Altered glycoprotein expression has been demonstrated in tissue from patients with Barrett's esophagus and esophageal cancer but the mechanisms regarding such changes are unknown. The bile acid deoxycholic acid (DCA) alters many cell signaling pathways and is implicated in esophageal cancer progression. We have demonstrated that DCA disrupts Golgi structure and affects protein secretion and glycosylation processes in cell lines derived from normal squamous epithelium (HET-1A) and Barrett's metaplastic epithelium (QH). Cell surface expression of glycans was identified using carbohydrate-specific probes (wheat germ agglutinate, conconavalin A, peanut agglutinin, lithocholic acid and Ulex europaeus agglutinin) that monitored N-glycosylation, O-glycosylation and core fucosylation in resting and DCA-treated cells. DCA altered intracellular localization and reduced cell surface expression of N-acetyl-D-glucosamine, α-methyl-mannopyranoside (Man/Glc) and fucose in both cell lines. Furthermore, DCA reduced the expression of epithelial growth factor receptor and E-cadherin in a manner analogous to treatment of cells with the N-glycan biosynthesis inhibitor tunicamycin. This is the first study to identify an altered Golgi structure and glycomic profile in response to DCA in esophageal epithelial cells, a process which could potentially contribute to metaplasia, dysplasia and cancer of the esophagus.  相似文献   

8.
We hypothesized that, in esophageal squamous epithelial cells, there are differences among individuals in the signal transduction pathways activated by acid reflux that might underlie the development of Barrett's esophagus. To explore that hypothesis, we immortalized nonneoplastic, esophageal squamous cells from patients with gastroesophageal reflux disease (GERD) with (NES-B3T) and without (NES-G2T) Barrett's esophagus and used those cells to study acid effects on MAPK proteins. During endoscopy in patients with GERD with and without Barrett's esophagus, we took biopsy specimens from the distal squamous esophagus to study MAPK proteins before and after esophageal perfusion with 0.1 N HCl. We used immunoblotting and Western blotting to study MEK1/2 phosphorylation at two activating sites (serines 217/221), MEK1 phosphorylation at an inhibitory site (threonine 286), and MEK1/2 activity. After acid exposure, both cell lines exhibited increased MEK1/2 phosphorylation at the activating sites; the NES-B3T cells had higher levels of MEK1 phosphorylation at the inhibitory site, however, and only the NES-G2T cells showed an acid-induced increase in MEK1/2 activity. Similarly, in the squamous epithelium of patients with GERD with and without Barrett's esophagus, acid perfusion increased MEK1/2 phosphorylation at the activating sites in both patient groups; the Barrett's patients had higher levels of MEK1 phosphorylation at the inhibitory site, however, and only the patients without Barrett's demonstrated an acid-induced increase in ERK1/2 phosphorylation. In esophageal squamous cell lines and biopsies from patients with GERD with and without Barrett's esophagus, we have found differences in MAPK pathways activated by acid exposure. We speculate that these differences might underlie the development of Barrett's metaplasia.  相似文献   

9.
Telomeres are repetitive DNA sequences located at the ends of chromosomes. Telomeres are shortened by repeated cell divisions and by oxidative DNA damage, and cells with critically shortened telomeres cannot divide. We hypothesized that chronic gastroesophageal reflux disease (GERD)-induced injury of the esophageal squamous epithelium results in progressive telomeric shortening that eventually might interfere with mucosal healing. To address our hypothesis, we compared telomere length and telomerase activity in biopsy specimens of esophageal squamous epithelium from GERD patients and control patients. Endoscopic biopsies were taken from the esophageal squamous epithelium of 38 patients with GERD [10 long-segment Barrett's esophagus (LSBE), 15 short-segment (SSBE), 13 GERD without Barrett's esophagus] and 16 control patients without GERD. Telomere length was assessed using the terminal restriction fragment assay, and telomerase activity was studied by the PCR-based telomeric repeat amplification protocol assay. Patients with GERD had significantly shorter telomeres in the distal esophagus than controls [8.3 +/- 0.5 vs. 10.9 +/- 1.5 (SE) Kbp, P = 0.043]. Among the patients with GERD, telomere length in the distal esophagus did not differ significantly in those with and without Barrett's esophagus (LSBE 7.9 +/- 0.8, SSBE 8.6 +/- 0.9, GERD without BE 8.7 +/- 1.0 Kbp). No significant differences in telomerase activity in the distal esophagus were noted between patients with GERD and controls (4.0 +/- 0.39 vs. 5.2 +/- 0.53 RIUs). Telomeres in the squamous epithelium of the distal esophagus of patients who have GERD, with and without Barrett's esophagus, are significantly shorter than those of patients without GERD despite similar levels of telomerase activity.  相似文献   

10.
The most significant precancerosis in the esophageal cancer is Barrett's esophagus. The risk of malignant transformation is determined primarily in accordance with the degree of dysplastic alterations of the mucosa. Indication of "preventive" extirpation of the esophagus should be supported by other factors, for example by detection of p53 mutation or expression. The study reports on the evaluation of a group of 20 patients with Barrett's esophagus treated at the 1st Department of Surgery, the p53 level and its correlation with histological findings evaluated in these patients. A good correlation was found between the grade of Barrett's esophagus dysplasia and high p53 positivity. This correlation was also confirmed by detection of early carcinoma in patients with "preventive" extirpation of the esophagus due to a high-grade dysplasia. Preliminary results show that examination of p53 level in specimens taken from the esophageal mucosa may be helpful for the estimation of malignant potential of the dysplastic mucosa.  相似文献   

11.
12.
We hypothesized that differences among individuals in reflux-induced oxidant production by esophageal squamous epithelial cells might contribute to the development of Barrett's esophagus. We studied the effects of acid and bile acids on the production of reactive oxygen species (ROS) in esophageal squamous cell lines derived from gastroesophageal reflux disease patients with (NES-B3T) and without (NES-G2T) Barrett's esophagus and in a Barrett's epithelial cell line (BAR-T). Cells were incubated with an ROS-sensitive probe and exposed to acidic medium, neutral bile acid medium, or acidic bile acid medium. ROS were quantified in the presence and absence of diphenyleneiodonium chloride (DPI, an NADPH oxidase inhibitor), N(G)-monomethyl-l-arginine (l-NMMA, a nitric oxide synthase inhibitor), and rotenone (a mitochondrial electron transport chain inhibitor). Acidic bile acid medium induced ROS production in both squamous cell lines; however, only DPI blocked ROS production by NES-B3T cells, whereas both DPI and l-NMMA blocked ROS production by NES-G2T cells. In BAR-T cells, acidic medium and acidic bile acid medium induced the production of ROS; l-NMMA prevented ROS production after exposure to acidic medium, whereas ROS production induced by acidic bile acid medium was blocked by DPI. These studies demonstrate that there are differences between esophageal squamous cells and Barrett's epithelial cells and between esophageal squamous cells from gastroesophageal reflux disease patients with and without Barrett's esophagus in the mechanisms of oxidant production induced by exposure to acid and bile acids.  相似文献   

13.
Barrett's esophagus (BE) is a metaplastic disorder in which specialized columnar epithelium replaces healthy squamous epithelium (intestinal metaplasia). Even though its pathophysiology and the steps of its neoplastic progression are not completely understood, BE can be considered as a complication of gastroesophageal reflux disease (GERD). Given that esophageal adenocarcinoma, which is continually increasing in the Western world, still has a poor prognosis and suffers from late diagnosis, and because BE is a precancerous lesion, there is a strong need for good molecular markers of malignant progression in Barrett's metaplasia (BM). The aim of this review is to examine the published data regarding the role that assessment of p53 may play in the management of BE, trying to understand if it may be a useful marker to early diagnose BE malignant transformation.  相似文献   

14.
We have evaluated esophageal tone in two different conditions that, in some cases, similarly impair phasic esophageal motility. Studies were performed in 14 healthy volunteers, 10 patients with total esophageal aperistalsis secondary to gastroesophageal reflux disease (GERD), and 25 untreated achalasia patients. We quantified esophageal compliance and relaxation induced by a nitric oxide donor using a barostat. Intraesophageal volume at a minimal distending pressure (2 mmHg) was not significantly different among all three groups (4.1 +/- 0.7, 3.8 +/- 0.7, and 4.2 +/- 1.2 ml for healthy, GERD, and achalasia groups, respectively). Esophageal compliance was significantly increased (P < 0.05 vs. healthy group) in the two groups of patients with aperistalsis (1.9 +/- 0.2, 3.0 +/- 0.2, and 3.1 +/- 0.3 ml/mmHg for healthy, GERD, and achalasia groups, respectively). Esophageal relaxation was decreased in GERD patients (Delta diameter: 0.4 +/- 0.1 cm) and increased in achalasia patients (Delta diameter: 1.3 +/- 0.4 cm) relative to healthy subjects (Delta diameter: 0.9 +/- 0.2 cm) (P < 0.05 for GERD vs. achalasia and healthy groups). Our results indicate that diseases that similarly impair phasic esophageal motility may affect esophageal tone differently.  相似文献   

15.
A subthreshold pharyngeal stimulus induces lower esophageal sphincter (LES) relaxation and inhibits progression of ongoing peristaltic contraction in the esophagus. Recent studies show that longitudinal muscle contraction of the esophagus may play a role in LES relaxation. Our goal was to determine whether a subthreshold pharyngeal stimulus induces contraction of the longitudinal muscle of the esophagus and to determine the nature of this contraction. Studies were conducted in 16 healthy subjects. High resolution manometry (HRM) recorded pressures, and high frequency intraluminal ultrasound (HFIUS) images recorded longitudinal muscle contraction at various locations in the esophagus. Subthreshold pharyngeal stimulation was induced by injection of minute amounts of water in the pharynx. A subthreshold pharyngeal stimulus induced strong contraction and caudal descent of the upper esophageal sphincter (UES) along with relaxation of the LES. HFIUS identified longitudinal muscle contraction of the proximal (3-5 cm below the UES) but not the distal esophagus. Pharyngeal stimulus, following a dry swallow, blocked the progression of dry swallow-induced peristalsis; this was also associated with UES contraction and descent along with the contraction of longitudinal muscle of the proximal esophagus. We identify a unique pattern of longitudinal muscle contraction of the proximal esophagus in response to subthreshold pharyngeal stimulus, which we propose may be responsible for relaxation of the distal esophagus and LES through the stretch sensitive activation of myenteric inhibitory motor neurons.  相似文献   

16.
Barrett's esophagus is the transformation of normal esophageal squamous epithelium to specialized intestinal metaplasia (SIM). Among the Barrett's specialized cells, those that can develop protective mechanisms against apoptosis may have potential to become malignant. Studies have shown that overexpression of metallothionein (MT), low molecular protein that protects cells from apoptotic stimuli, appears to be associated with more advanced, highly malignant tumors. We thus investigated the relationship between MT expression and apoptosis in different stages of Barrett's carcinogenesis. Terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling and immunohistochemical dual-staining assay were performed in human biopsy samples of normal, SIM, dysplasia, and adenocarcinoma. Apoptotic index and MT expression were quantified by using an image system to analyze the converted digital data. A negative correlation between MT expression and apoptotic index was found. MT expression was significantly increased along with the histologic progression towards adenocarcinoma. This study thus suggests that MT may contribute to cytoprotection, thereby inhibiting apoptosis and leading to carcinogenesis of Barrett's esophageal cells.  相似文献   

17.
Although visceral hypersensitivity is thought to be important in generating symptoms in functional gastrointestinal disorders, the neural mechanisms involved are poorly understood. We recently showed that central sensitization (hyperexcitability of spinal cord sensory neurones) may play an important role. In this study, we demonstrate that after a 30-min infusion of 0.15 M HCl acid into the healthy human distal esophagus, we see a reduction in the pain threshold to electrical stimulation of the non-acid-exposed proximal esophagus (9.6 +/- 2.4 mA) and a concurrent reduction in the latency of the N1 and P2 components of the esophageal evoked potentials (EEP) from this region (10.4 +/- 2.3 and 15.8 +/- 5.3 ms, respectively). This reduced EEP latency indicates a central increase in afferent pathway velocity and therefore suggests that hyperexcitability within the central visceral pain pathway contributes to the hypersensitivity within the proximal, non-acid-exposed esophagus (secondary hyperalgesia/allodynia). These findings provide the first electrophysiological evidence that central sensitization contributes to human visceral hypersensitivity.  相似文献   

18.
Chang BS  Huang SC 《Regulatory peptides》2008,146(1-3):224-229
Natriuretic peptides have been demonstrated to cause relaxation of the human gallbladder muscle through interaction with natriuretic peptide receptor-B (NPR-B/NPR2). Effects of natriuretic peptides in the human esophageal muscle were unknown. To investigate the effects of natriuretic peptides in the human esophagus, we measured relaxation of muscularis mucosae strips isolated from the human esophagus caused by C-type natriuretic peptide (CNP), brain natriuretic peptide (BNP), atrial natriuretic peptide (ANP) and des[Gln(18), Ser(19), Gly(20), Leu(21), Gly(22)]ANP(4-23) amide (cANP(4-23)), a selective natriuretic peptide receptor-C (NPR-C) agonist. In endothelin-1 or carbachol-contracted mucosal muscle strips, CNP caused moderate, sustained and concentration-dependent relaxation. BNP caused a very mild relaxation whereas ANP and cANP(4-23) did not cause any relaxation. CNP was much more potent than BNP and ANP in causing relaxation. These suggest the existence of NPR-B mediating relaxation. The CNP-induced relaxation was not affected by tetrodotoxin or atropine in endothelin-1-contracted esophageal strips and not by tetrodotoxin in carbachol-contracted strips, indicating a direct effect of CNP on the human esophageal muscularis mucosae. Taken together, these results demonstrate that natriuretic peptides cause relaxation of the muscularis mucosae of the human esophagus and suggest that the relaxation is through interaction with NPR-B. Natriuretic peptides may play an important role in the control of human esophageal motility.  相似文献   

19.
Although symptoms arising from the esophagus such as heartburn and pain can at times become challenging clinical problems, esophageal viscerosensation, especially with regard to chemical stimulation in humans, is incompletely understood. Our aims were 1) to characterize and ascertain the reproducibility of cerebral cortical registration of heartburn and 2) to elucidate the differences between these findings and those of esophageal subliminal acid stimulation in asymptomatic controls. We studied 11 gastroesophageal reflux disease (GERD) patients (9 males, 30-55 yr) and 15 healthy controls (8 males, 21-49 yr). Cerebral cortical functional magnetic resonance imaging (fMRI) activity was recorded twice in each subject, during two 5-min intervals of 0.1 N HCl, separated by 5 min of NaCl perfusion. Time from onset of acid perfusion to instant of fMRI signal increase and first report of heartburn averaged 1.60 +/- 0.80 and 1.85 +/- 0.60 min, respectively. Average maximum percent signal increase in the GERD patients (16.3 +/- 3.5%) was significantly greater than that of healthy controls (3.8 +/- 0.9%; P < 0.01). Temporal fMRI signal characteristics during heartburn were significantly different from those of subliminal acid stimulation in controls (P < 0.01). Activated cortical regions included sensory/motor, parieto-occipital, cingulate and prefrontal regions, and the insula. There was 92% concordance between the activated Brodmann areas in repeated studies of GERD patients. Cortical activity associated with perceived and unperceived esophageal acid exposure in GERD patients and healthy controls, respectively, involves multiple brain regions but occurs more rapidly and with greater intensity in GERD patients than the activity in response to subliminal acid exposure in healthy controls. The cortical pain-processing pathway seems to be involved in perception of esophageal acid exposure and could explain the variations encountered in clinical practice defining this sensation.  相似文献   

20.
Nocturnal acid breakthrough is defined as the presence of intragastric pH < 4 during the overnight period for at least 60 continuous minutes in patients taking a proton-pump inhibitor (PPI). Nocturnal acid breakthrough occurs in more than 70% of Helicobacter pylori-negative patients on PPI therapy and has clinical consequences in particular in patients with complicated gastroesophageal reflux disease (GERD), Barrett's esophagus, and esophageal motility abnormalities. The clinical importance of nocturnal acid breakthrough and the benefit of adding histamine-2 receptor antagonists (H2RAs) to PPI therapy have been debated ever since these concepts were introduced. In our experience, the addition of bedtime H2RAs is clinically effective in controlling nocturnal acid breakthrough and GERD symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号