首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of glycosaminoglycans (GAGs) on cell growth and differentiation appear to vary with cell type and stage of development. This study describes the types and distribution of GAGs accumulated by normal and malignant human mammary epithelial cells in primary culture during their exponential and stationary phases of growth. Cultures incubated with [3H]glucosamine or [35S]sulfate were separated into medium, extracellular matrix (ECM), and cell fractions. Labelled GAGs were identified by chemical and enzymatic degradations and cellulose acetate electrophoresis. Cultures of normal cells in the exponential phase of growth released the most labelled GAGs into the medium fraction, the majority of which was hyaluronic acid (HA). The increase in labelled GAG accumulation, the increase in sulfated GAGs localized in the ECM fraction correlated with the reduced proliferative activity and increased cell density of cells in stationary cultures. In contrast, cultures of mammary tumour cells had the same labelled GAG profile, regardless of their growth status. Although there was variation among tumours, in general, the majority of the labelled GAGs were secreted into the medium fraction and the predominant GAG was HA. The results are comparable with those obtained from studies on mammary tissue in vivo. Primary cultures of human mammary epithelial cells should be useful for determining how modulations of GAGs affect growth and differentiation of these cells.  相似文献   

2.
The cartilaginous articular surface of the distal part of the femur of adult dogs was removed and the composition of GAGs was determined in the granulation tissue adhering to the bone wound and in that adhering to the articular capsule 7, 33, and 70 days after operation. The articular cartilage and the synovial layer of the articular capsule of intact adult dogs were also studies. The materials were digested with papain and the released GAGs were fractionated according to Svejcar and Robertson's method. The articular cartilage of non-operated dogs contained, on the average, 65.3% ChS, 13% KS, 5.8% HA and 15.8% GAG of lower molecular weight. The synovial layer of the capsule contained 41.1% HA, 15.3% Ch4-S and Ch6-S, 13.7% DS, 21.7% KS, 2% H and 6% GAG of lower molecular weight. The granulation tissue of the articular surface and that adhering to the capsule show a different developmental course. The former differentiates into cartilage, whereas the latter is simply added to the tissue of the capsule. The two tissues are different in GAG composition as early as on the 7th postoperative day. With time an increase of Ch4-S, Ch6-S and KS can be observed in the tissue of the articular surface. The tissue adhering to the capsule is characterized by a high HA and an increasing DS content. From the study of the composition of GAG's (proportion of GAG building stones) a deeper insight can be obtained into the details of GAG biosynthesis characteristic of cartilage than from the analysis of quantitative data of ChS. In the development of GAG composition characteristic of the tissue, the epimerase reactions participating in GAG biosynthesis, and the mechanisms regulating their activities seem to play a primary role.  相似文献   

3.
Endo-beta-xylosidase from the mid-gut gland of the molluscus Patinopecten is an endo-type glycosidase that hydrolyzes the xylosyl serine linkage between a core protein and a glycosaminoglycan (GAG) chain, releasing the intact GAG chain from proteoglycan. In this study, we investigated GAG chain transfer activity of this enzyme, in order to develop a method for attaching GAG chains to peptide. Peptidochondroitin sulfate (molecular mass of sugar chain, 30 kDa) from bovine tracheal cartilage as a donor and butyloxycarbonyl-leucyl-seryl-threonyl-arginine-(4-methylcoumaryl-7-amide) as an acceptor were incubated with endo-beta-xylosidase. As a result, a reaction product with the same fluorescence as the acceptor peptide was observed. High pressure liquid chromatography analysis, cellulose acetate membrane electrophoresis, and enzymatic digestion showed that this reaction product had the chondroitin sulfate (ChS) from the donor. Furthermore, the acceptor peptide was released from this reaction product after hydrolysis by endo-beta-xylosidase. Therefore, it was confirmed that the ChS chain released from the donor was transferred to the acceptor peptide by the GAG chain transfer reaction of endo-beta-xylosidase. The optimal pH for hydrolysis by this enzyme was found to be about 4.0, whereas that for this reaction was about 3.0. Not only the ChS but also the dermatan sulfate and the heparan sulfate were transferred to the acceptor peptide by this reaction. By using this reaction, the GAG chain could be attached to the peptide in one step. The GAG chain transfer reaction of endo-beta-xylosidase should be a significant glycotechnological tool for the artificial synthesis of proteoglycan.  相似文献   

4.
Summary The glycosaminoglycan (GAG) content of rabbit skin, oral mucosa, and cultured [3H]-glucosamine-labeled dermal and submucosal fibroblasts was compared. Skin contained predominantly dermatan sulfate (DS) and a small amount of hyaluronic acid (HA), whereas mucosa contained primarily keratan sulfate (KS) and smaller quantities of HA and DS. Culture medium from dermal and submucosal fibroblasts contained GAGs co-electrophoresing with DS, HA, and chondroitin sulfate (CS), although the relative proportions of these GAG differed. CS isolated from dermal and mucosal fibroblast culture medium co-electrophoresed with chondroitin 4-sulfate (C4-S) on cellulose acetate, whereas dermal medium CS was resistant to digestion by chondroitinase ABC, and mucosal medium CS was chondroitinase ABC-susceptible. The pericellular matrix of dermal fibroblasts contained primarily DS and C4-S/C6-S, as confirmed by chondroitinase ABC digestion; the corresponding fraction of mucosal fibroblasts contained HS and a GAG co-electrophoresing with a C6-S standard, yet resistant to digestion by chondroitinase ABC. Thus the GAG content of dermal and mucosal fibroblasts differed both qualitatively in terms of the type of GAG secreted into the culture medium and pericellular matrix, and quantitatively, in terms of the relative proportions of these GAGs in both fractions. These differences support the concept of distinctive fibroblastic subpopulations in skin and mucosal tissue, inasmuch as the cells were subjected to identical culturing conditions. This work was supported by research grant 15878 (C.N.B.) from the Shriners Hospitals for Crippled Children and DE 07803 (C.N.B.) from the National Institute of Dental Research, National Institutes of Health, Bethesda, MD.  相似文献   

5.
The composition and the distribution of glycosaminoglycans (GAGs) present in normal human nasal cartilage (HNNC), were examined and compared with those in human scoliotic nasal cartilage (HSNC). In both tissues, hyaluronan (HA), keratan sulfate (KS) and the galactosaminoglycans (GalAGs)--chondroitin sulfate (CS) and dermatan sulfate (DS)--were identified. The overall GAG content in HSNC was approx. 30% higher than the HNNC. Particularly, a 114% increase in HA, and 46% and 86% in KS and DS, respectively, was recorded. CS was the main type of GAG in both tissues with no significant compositional difference. GalAG chains in HSNC exhibited an altered disaccharide composition which was associated with significant increases of non-sulfated and 6-sulfated disaccharides. DS, which was identified and quantitated for the first time in HNNC and HSNC, contained low amounts of iduronic acid (IdoA), 18% and 28% respectively. In contrast to other tissues, where IdoA residues are organized in long IdoA rich repeats, the IdoA residues of DS in human nasal cartilage seemed to be randomly distributed along the chain. DS chains in HSNC were of larger average molecular size than those from HNNC. These results clearly indicate the GAG content and pattern in both HNNC and HSNC and demonstrate that scoliosis of nasal septum cartilage is related to quantitative and structural modifications at the GAG level.  相似文献   

6.
The amount and the types of glycosaminoglycans (GAGs) present in human pancreatic carcinoma were examined and compared with those in normal pancreas. Human pancreatic carcinoma contained increased levels (4-fold) of total GAGs. Particularly, this carcinoma is characterized by a 12-fold increase of hyaluronan (HA) and a 22-fold increase in chondroitin sulfate (CS) content. CS in pancreatic carcinoma exhibited an altered disaccharide composition which is associated with marked increase of non-sulfated and 6-sulfated disaccharides. Dermatan sulfate (DS) was also increased (1.5-fold) in carcinoma, whereas heparan sulfate (HS), the major GAG of normal pancreas, becomes the minor GAG in pancreatic carcinoma without significant changes in the content and in molecular size. In all cases, the galactosaminoglycans (GalGAGs, i.e. CS and DS) derived from pancreatic carcinomas were of lower molecular size compared to those from normal pancreas. The results in this study indicate, for the first time, that human pancreatic carcinoma is characterized by highly increased amounts of HA and of a structurally altered CS.  相似文献   

7.
The type, amount and fine chemical composition of glycosaminoglycans (GAGs) present both in human normal myometrium and uterine leiomyoma have been studied. GAGs were fractionated by ion-exchange chromatography on DEAE-Sephacel, isolated by gel-permeation chromatography on Sepharose CL-6B and characterized using electrophoresis in cellulose acetate membranes, specific enzymic treatments and analysis by high-performance capillary electrophoresis (HPCE). No statistical intrabatch differences in total GAG content in both tissues were identified, whereas significant interbatch differences between normal myometrium and uterine leiomyoma were recorded. Hyaluronan (HA), chondroitin sulphate (CS), dermatan sulphate (DS), heparan sulphate (HS) and keratan sulphate (KS) were identified in both tissues. Statistically significant (P 相似文献   

8.
The interactions between glycosaminoglycans (GAGs), important components of the extracellular matrix, and proteins such as growth factors and chemokines play critical roles in cellular regulation processes. Therefore, the design of GAG derivatives for the development of innovative materials with bio-like properties in terms of their interaction with regulatory proteins is of great interest for tissue engineering and regenerative medicine. Previous work on the chemokine interleukin-8 (IL-8) has focused on its interaction with heparin and heparan sulfate, which regulate chemokine function. However, the extracellular matrix contains other GAGs, such as hyaluronic acid (HA), dermatan sulfate (DS) and chondroitin sulfate (CS), which have so far not been characterized in terms of their distinct molecular recognition properties towards IL-8 in relation to their length and sulfation patterns. NMR and molecular modeling have been in great part the methods of choice to study the structural and recognition properties of GAGs and their protein complexes. However, separately these methods have challenges to cope with the high degree of similarity and flexibility that GAGs exhibit. In this work, we combine fluorescence spectroscopy, NMR experiments, docking and molecular dynamics simulations to study the configurational and recognition properties of IL-8 towards a series of HA and CS derivatives and DS. We analyze the effects of GAG length and sulfation patterns in binding strength and specificity, and the influence of GAG binding on IL-8 dimer formation. Our results highlight the importance of combining experimental and theoretical approaches to obtain a better understanding of the molecular recognition properties of GAG-protein systems.  相似文献   

9.
The glycosaminoglycans (GAG) biosynthesized by a neoplastic human salivary duct cell line, HSGc, and by its nontumorigenic subclone, HSGc-E1, having a myoepithelial-like phenotype, were examined by incorporation of [3H]-acetate into GAG. The rate of GAG radiolabeling in HSGc-E1 was significantly greater than that in HSGc. The radiolabeled GAG recovered from HSGc-E1 showed a distribution of 22-32% in the cells and 68-78% secreted into the medium, while the amounts of GAG in the cells and medium of HSGc were equal. Two-dimensional electrophoresis of GAG extracted from the cells demonstrated that HSGc-E1 contained a much greater amount of heparan sulfate (HS, 53.5% of total), while HSGc synthesized hyaluronic acid (HA, 17.5%), HS 38.8%, chondroitin sulfate (Ch-S, 27.6%) and dermatan sulfate (DS, 16.1%). Moreover, treatment of HSGc with sodium butyrate or dibutyryl cyclic AMP (each is a potent inducer of differentiation to myoepithelial-like cells) strongly enhanced GAG synthesis, while dexamethasone (an inducer of differentiation to a more functional duct epithelium) did not stimulate GAG synthesis. These findings suggest that biosynthetic changes in the GAG content of neoplastic salivary cells are associated with their myoepithelial differentiation.  相似文献   

10.
We have investigated the changes in glycosaminoglycan (GAG) composition between cultured fibroblasts derived from 8- and 16-day chick embryos. GAG composition has been studied after [3H]glucosamine and [35S]sulfate labeling. Both the 8- and 16-day embryo fibroblasts were found to contain hyaluronic acid (HA), dermatan sulfate (DS), heparan sulfate (HS) and chondroitin sulfates (CS), the latter being the major component in 8- and 16-day cells. These four GAGs were quantified after their separation using cellulose acetate electrophoresis. The amounts of HA and CS were respectively shown to increase 2-fold and 4-fold between the 8th and 16th day of development, whereas the amounts of HS and DS resp. diminished 2.5-fold and 1.2-fold. These results show that the relative proportions of the different GAGs alter during embryo development. The fibroblasts from 8-day-old embryos detached more rapidly from the culture dishes than the cells from 16-day-old embryos when treated with trypsin. However, this difference was not directly related to the different GAG content.  相似文献   

11.
Cultured monolayers of NMuMG mouse mammary epithelial cells have augmented amounts of cell surface chondroitin sulfate glycosaminoglycan (GAG) when cultured in transforming growth factor-beta (TGF-beta), presumably because of increased synthesis on their cell surface proteoglycan (named syndecan), previously shown to contain chondroitin sulfate and heparan sulfate GAG. This increase occurs throughout the monolayer as shown using soluble thrombospondin as a binding probe. However, comparison of staining intensity of the GAG chains and syndecan core protein suggests variability among cells in the attachment of GAG chains to the core protein. Characterization of purified syndecan confirms the enhanced addition of chondroitin sulfate in TGF-beta: (a) radiosulfate incorporation into chondroitin sulfate is increased 6.2-fold in this proteoglycan fraction and heparan sulfate is increased 1.8-fold, despite no apparent increase in amount of core protein per cell, and (b) the size and density of the proteoglycan are increased, but reduced by removal of chondroitin sulfate. This is shown in part by treatment of the cells with 0.5 mM xyloside that blocks the chondroitin sulfate addition without affecting heparan sulfate. Higher xyloside concentrations block heparan sulfate as well and syndecan appears at the cell surface as core protein without GAG chains. The enhanced amount of GAG on syndecan is partly attributed to an increase in chain length. Whereas this accounts for the additional heparan sulfate synthesis, it is insufficient to explain the total increase in chondroitin sulfate; an approximately threefold increase in chondroitin sulfate chain addition occurs as well, confirmed by assessing chondroitin sulfate ABC lyase (ABCase)-generated chondroitin sulfate linkage stubs on the core protein. One of the effects of TGF-beta during embryonic tissue interactions is likely to be the enhanced synthesis of chondroitin sulfate chains on this cell surface proteoglycan.  相似文献   

12.
As C-Xyloside has been suggested to be an initiator of glycosaminoglycan (GAG) synthesis, and GAGs such as Dermatan sulfate (DS) are potent enhancers of fibroblast growth factor (FGF)--10 action, we investigated if a C-Xylopyranoside derivative, (C-β-D-xylopyranoside-2-hydroxy-propane, C-Xyloside), could promote DS production by cultured normal human keratinocytes, how this occurs and if C-Xyloside could also stimulate FGF-dependent cell migration and proliferation. C-Xyloside-treated keratinocytes greatly increased secretion of total sulfated GAGs. Majority of the induced GAG was chondroitin sulfate/dermatan sulfate (CS/DS) of which the major secreted GAG was DS. Cells lacking xylosyltransferase enzymatic activity demonstrated that C-Xyloside was able to stimulate GAG synthesis without addition to core proteins. Consistent with the observed increase in DS, keratinocytes treated with C-Xyloside showed enhanced migration in response to FGF-10 and secreted into their culture media GAGs that promoted FGF-10-dependent cellular proliferation. These results indicate that C-Xyloside may enhance epithelial repair by serving as an initiator of DS synthesis.  相似文献   

13.
Pancreatic carcinoma (PC) is a cancer type with highly malignant growth and dissemination pattern of which the mechanisms are poorly understood. However, the malignant phenotype is closely linked to extracellular matrix (ECM) of which proteoglycans (PGs) and hyaluronan (HA) play a crucial role in the control of tumor progression and metastasis. In this study, we demonstrated that versican and decorin, two different PGs with contradictory roles and functions in the pathobiology of cancer, were the main matrix PGs in PC presenting a great increase 27- and 7-fold, respectively, in comparison to normal pancreas (NP). PC was characterized by the disproportional increase of versican compared to decorin, about 4 to 1, with a concurrent increase of HA, which may be closely associated with the growth and aggressiveness of this carcinoma. Significant specific post-translational modifications were also observed in both versican and decorin regarding the type, hydrodynamic size, sulfation pattern and extent of uronate epimerization of their glycosaminoglycan chains (GAGs). In particular, chondroitin sulphate (CS) was the predominant GAG type in both PC-associated versican and decorin. The CS of PC-decorin was increased 11-fold, compared to NP in which dermatan sulfate (DS) was the predominant GAG type in both PGs. The sulfation pattern of GAG chains was significantly altered in PC, since 6-sulfated disaccharides predominated in both versican and decorin with a marked presence of non-sulfated disaccharides accompanied by lower hydrodynamic sizes of both CS and DS chains compared to NP. In conclusion, all these findings agree with the highly malignant phenotype of this cancer and, thus, more studies need to be addressed on the roles of the post-translational modifications of versican and decorin in the biology of cancer.  相似文献   

14.
N Ueno  B Chakrabarti 《Biopolymers》1989,28(11):1891-1902
The progressive periodate oxidation of glycosaminoglycans (GAG), including hyaluronate (HA), chondroitins (CH) (chondroitin, chondroitin 4- and 6-sulfate), dermatan sulfate (DS), and keratan sulfate (KS), were monitored by CD and high performance liquid chromatography (HPLC) using a size-exclusion column. The rate of oxidation also was measured and calculated using first- and second-order kinetics, and the data appear to fit better with first-order kinetics. In both HA and CH, the n - pi amide band at 208 nm decreases in intensity upon oxidation, but in HA it becomes positive after 16 h of periodate treatment. In CH, the band disappears, and the pi - pi amide band below 200 nm becomes optically active. Concomitantly, a second negative band near 290 nm appears for these two oxidized GAG. Oxidation causes a slight change in the CD of DS. It ordinarily displays a very weak n - pi band at 210 nm, but instead shows an intense pi - pi amide band near 190 nm. CD of KS remains unaffected by periodate. Kinetic studies, however, show a higher oxidation rate for DS than HA and CH. With the exception of KS, all other oxidized polymers shown an apparent decrease in molecular weight (higher peak retention time) in HPLC analysis. Both CD and HPLC results have been attributed to a major conformational change of HA and CH, and a minor one for DS. The ease and extent of periodate oxidation as well as the changes in molecular properties following periodate treatment are critically dependent on the configuration of the individual GAG rather than the oxidation rate. There is a distinct difference in the conformational change between HA and CH, as manifested by their dichroic behavior, that was attributed to the equatorial disposition of C-4 hydroxyl group in HA and axial disposition CH.  相似文献   

15.
采用酶解和离子交换色谱的方法,从兔、鸡、猪和羊肝组织中提取和纯化得到了糖胺聚糖(GAGs).通过比较透明质酸(HA)、硫酸软骨素A(CS-A)、硫酸软骨素C(CS-C)、硫酸皮肤素(DS)、肝素(HP)、硫酸乙酰肝素(HS)等标准品在醋酸钡、醋酸锌、吡啶-甲酸等几种不同缓冲体系下的醋酸纤维素薄膜电泳行为,结合灰度积分建立了适合于微量GAGs定性和定量分析的电泳方法.将从不同动物肝脏组织中提取的GAGs运用该方法进行分析,发现 不同动物肝脏组织中,GAG含量和组成均有较大差异:羊肝中GAGs含量最高(0.52 mg/g 组织干粉),种类也最丰富,含有HA、HS、DS和CS,其中HA所占比例最高;鸡肝中GAGs含量最少(0.18 mg/g组织干粉),主要含有HA和DS;兔肝GAGs种类与猪肝相似,均含有HA、HS和DS,但HS是猪肝GAGs的主要成分,DS是兔肝GAGs的主要成分.  相似文献   

16.
Two important glycosaminoglycans (GAGs) with structural roles in the body's cartilage are hyaluronan (HA) and chondroitin sulfate (CS). A simple mass spectrometric method for determining the amount of HA that may be present in isolated CS samples is presented in this article. Samples are subjected to selective enzymatic digestion using a bacterial hyaluronidase (HA lyase, EC 4.2.2, from Streptococcus dysgalactiae) specific for HA. Undigested CS GAG is then removed by centrifugal filtration, and digested HA left in the filtrate is quantified by electrospray ionization mass spectrometry using an internal standard and selected ion monitoring. The described method was applied to the analysis of several CS samples prepared for use in nutritional supplements.  相似文献   

17.
Koźma EM  Wisowski G  Kusz D  Olczyk K 《Glycobiology》2011,21(10):1301-1316
Organ fibrosis is associated with excessive deposition of dermatan sulfate (DS) in the extracellular matrix (ECM) of the affected tissue. However, the significance of DS in fibrosis process is poorly known. Thus, we have analyzed both in vitro and in vivo the binding potential toward fibroblast growth factor-2, platelet-derived growth factor BB and fibronectin (FN) of DS representing glycosaminoglycan (GAG) chains of two proteoglycans decorin and biglycan derived from fascia undergoing fibrosis due to Dupuytren's disease. Moreover, to investigate the relation between DS structure and its binding properties to above ligands, we have also studied the interactions of the GAG chains from normal porcine skin decorin and biglycan. The examined interactions, especially those engaging extractable pool of both human and porcine decorin DS, are characterized by very high affinity and low capacity. Moreover, the presence of iduronate residues is not essential for the DS binding to all studied ligands and the interactions more strongly depend on the GAG sulfation pattern. All investigated interactions have biological relevance as judged from the coexistence of decorin (and biglycan) DS, both growth factors and FN in supra-molecular complexes localized in ECM of both fibrous and normal human fascia. Moreover, these complexes also include collagen type III. It seems that fascia fibrosis process when compared with physiological circumstances is associated with the preservation of at least some functions of decorin and biglycan DSs such as the regulation of growth factor bioavailability and most probably influence FN fibrillogenesis as well as coupling of various fibrilar matrix element assembly.  相似文献   

18.
Bone morphogenetic protein-2 (BMP-2) is considered a promising adjuvant for the treatment of skeletal non-union and spinal fusion. However, BMP-2 delivery in a conventional collagen scaffold necessitates a high dose to achieve an efficacious outcome. To lower its effective dose, we precomplexed BMP-2 with the glycosaminoglycans (GAGs) dermatan sulfate (DS) or heparin (HP), prior to loading it into a hyaluronic acid (HA) hydrogel. In vitro release studies showed that BMP-2 precomplexed with DS or HP had a prolonged delivery compared to without GAG. BMP-2-DS complexes achieved a slightly faster release in the first 24 h than HP; however, both delivered BMP-2 for an equal duration. Analysis of the kinetic interaction between BMP-2 and DS or HP showed that HP had approximately 10 times higher affinity for BMP-2 than DS, yet it equally stabilized the protein, as determined by alkaline phosphatase activity. Ectopic bone formation assays at subcutaneous sites in rats demonstrated that HA hydrogel-delivered BMP-2 precomplexed with GAG induced twice the volume of bone compared with BMP-2 delivered uncomplexed to GAG.  相似文献   

19.
Summary— Normal and otosclerotic bone cells were cultured in vitro in serum-free medium to evaluate single glycosaminoglycan (GAG) class synthesis and secretion. Moreover, the degradative process was studied by inhibiting the lysosomal functions through the addition of ammonium chloride to the cultures, an ammine known to inhibit lysosomal degradation by neutralizing organelle activity. Otosclerotic bone cells accumulated a lower amount of GAG both in the cellular and extracellular pool compared to normal ones. The decrease was markedly higher for secreted GAG. Moreover a different pattern of single GAG class distribution was observed in the two cell types considered. In the medium of otosclerotic cells a percentage increase of hyaluronic acid (HA) and dermatan sulphate (DS) and a percentage decrease of heparan sulfate (HS) and chondroitin sulfate (CS) were observed compared to normal bone cells. Ammonium chloride had a lower effect on pathologic than on normal cells, indicating a decrease in the degradative process in otosclerotic bone cells. These results were also confirmed by the experiments on GAG uptake and degradation and by the dosage of enzymatic activity of two exoglycosidases. Since extracellular GAG composition influences bone deposition and mineralization, these data support the hypothesis that otosclerosis is the result of an error in the connective tissue matrix structure.  相似文献   

20.
In the previous study, we have found that the endo-beta-xylosidase from Patinopecten had the attachment activities of glycosaminoglycan (GAG) chains to peptide. As artificial carrier substrates for this reaction, synthesis of various GAG chains having the linkage region tetrasaccharide, GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl, between GAG chain and core protein of proteoglycan was investigated. Hyaluronic acid (HA), chondroitin (Ch), chondroitin 4-sulfate (Ch4S), chondroitin 6-sulfate (Ch6S), and desulfated dermatan sulfate (desulfated DS) as donors and the 4-metylumbelliferone (MU)-labeled hexasaccharide having the linkage region tetrasaccharide at its reducing terminals (MU-hexasaccharide) as an acceptor were subjected to a transglycosylation reaction of testicular hyaluronidase. The products were analyzed by high-performance liquid chromatography and enzyme digestion, and the results indicated that HA, Ch, Ch4S, Ch6S, and desulfated DS chains elongated by the addition of disaccharide units to the nonreducing terminal of MU-hexasaccharide. It was possible to custom-synthesize various GAG chains having the linkage region tetrasaccharide as carrier substrates for enzymatic attachment of GAG chains to peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号