首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Innate and adaptive immune responses have many interactions that are regulated by the balance of signals initiated by a variety of activatory and inhibitory receptors. Among these, the NKG2D molecule was identified as expressed by T lymphocytes, including most CD8+ cells and a minority of CD4+ cells, designated TNK cells in this paper. Tumor cells may overexpress the stress-inducible NKG2D ligands (NKG2DLs: MICA/B, ULBPs) and the NKG2D signaling has been shown to be involved in lymphocyte-mediated anti-tumor activity. Aberrant expression of NKG2DLs by cancer cells, such as the release of soluble form of NKG2DLs, can lead to the impairment of these immune responses. Here, we discuss the significance of NKG2D in TNK-mediated anti-tumor activity. Our studies demonstrate that NKG2D+ T cells (TNK) are commonly recruited at the tumor site in melanoma patients where they may exert anti-tumor activity by engaging both TCR and NKG2D. Moreover, NKG2D and TCR triggering was also observed by peripheral blood derived T lymphocyte- or T cell clone-mediated tumor recognition, both in melanoma and colorectal cancer (CRC) patients. Notably, heterogeneous expression of NKG2DLs was found in melanoma and CRC cells, with a decrease of these molecules along with tumor progression. Therefore, through the mechanisms that govern NKG2D engagement in anti-tumor activity and the expression of NKG2DLs by tumor cells that still need to be dissected, we showed that NKG2D expressing TNK cells are a relevant T cell subtype for immunosurveillance of tumors and we propose that new immunotherapeutic interventions for cancer patients should be aimed also at enhancing NKG2DLs expression by tumor cells. This paper is a focused research review based on a presentation given at the sixth annual meeting of the Association for Immunotherapy of Cancer (CIMT), held in Mainz, Germany, 15–16 May 2008.  相似文献   

2.
MHC Ⅰ类链相关分子(MICA)是自然杀伤细胞和T 细胞上NKG2D 受体的主要活化性配体,在上皮源性肿瘤细胞表面过表达。NKG2D 与MICA 的结合可有效刺激效应细胞对肿瘤细胞的细胞毒作用。然而,临床观察表明,MICA 会在肿瘤的增殖过程中脱落而形成可溶性MICA(sMICA),这被认为是肿瘤细胞逃脱NKG2D 介导的免疫监视的重要原因。综述在肿瘤细胞中MICA 和NKG2D 的表达与功能、sMICA 的形成与肿瘤免疫逃逸的关联以及介导MICA 脱落的机制,由此探讨肿瘤免疫治疗的新靶点和新策略。  相似文献   

3.
Most tumors grow in immunocompetent hosts despite expressing NKG2D ligands (NKG2DLs) such as the MHC class I chain-related genes A and B (MICA/B). However, their participation in tumor cell evasion is still not completely understood. Here we demonstrate that several human melanomas (cell lines and freshly isolated metastases) do not express MICA on the cell surface but have intracellular deposits of this NKG2DL. Susceptibility to NK cell-mediated cytotoxicity correlated with the ratio of NKG2DLs to HLA class I molecules but not with the amounts of MICA on the cell surface of tumor cells. Transfection-mediated overexpression of MICA restored cell surface expression and resulted in an increased in vitro cytotoxicity and IFN-gamma secretion by human NK cells. In xenografted nude mice, these melanomas exhibited a delayed growth and extensive in vivo apoptosis. Retardation of tumor growth was due to NK cell-mediated antitumor activity against MICA-transfected tumors, given that this effect was not observed in NK cell-depleted mice. Also, mouse NK cells killed MICA-overexpressing melanomas in vitro. A mechanistic analysis revealed the retention of MICA in the endoplasmic reticulum, an effect that was associated with accumulation of endoH-sensitive (immature) forms of MICA, retrograde transport to the cytoplasm, and degradation by the proteasome. Our study identifies a novel strategy developed by melanoma cells to evade NK cell-mediated immune surveillance based on the intracellular sequestration of immature forms of MICA in the endoplasmic reticulum. Furthermore, this tumor immune escape strategy can be overcome by gene therapy approaches aimed at overexpressing MICA on tumor cells.  相似文献   

4.
Recently, it has become apparent that surface proteins commonly transfer between immune cells in contact. Inhibitory receptors and ligands exchange between cells during NK cell surveillance and we report here that NK cells also acquire activating ligands from target cells. Specifically, the stress-inducible activating ligand for NKG2D, MHC class I-related chain A (MICA), transferred to NK cells upon conjugation with MICA-expressing target cells. Acquisition of MICA from target cells was dependent on cell contact and occurred after accumulation of MICA at the immunological synapse. Moreover, transfer of MICA was facilitated by specific molecular recognition via NKG2D and augmented by Src kinase signaling. Importantly, MICA associated with its new host NK cell membrane in an orientation that allowed engagement with NKG2D in trans and indeed could down-regulate NKG2D in subsequent homotypic interactions with other NK cells. MICA captured from target cells could subsequently transfer between NK cells and, more importantly, NK cell degranulation was triggered in such NK cell-NK cell interactions. Thus, NK cells can influence other NK cells with proteins acquired from target cells and our data specifically suggest that NK cells could lyse other NK cells upon recognition of activating ligands acquired from target cells. This mechanism could constitute an important function for immunoregulation of NK cell activity.  相似文献   

5.
Evasion of host immune responses is well documented for viruses and may also occur during tumor immunosurveillance. The mechanisms involve alterations in MHC class I expression, Ag processing and presentation, chemokine and cytokine production, and lymphocyte receptor expression. Epithelial tumors overexpress MHC class I chain-related (MIC) molecules, which are ligands for the activating receptor NKG2D on NK and T cells. We report that NK cells from patients with colorectal cancer lack expression of activating NKG2D and chemokine CXCR1 receptors, both of which are internalized. Serum levels of soluble MIC (sMIC) are elevated and are responsible for down-modulation of NKG2D and CXCR1. In contrast, high serum levels of CXC ligands, IL-8, and epithelial-neutrophil-activating peptide (ENA-78) do not down-modulate CXCR1. In vitro, internalization of NKG2D and CXCR1 occurs within 4 and 24 h, respectively, of incubating normal NK cells with sMIC-containing serum. Furthermore, natural cytotoxicity receptor NKp44 and chemokine receptor CCR7 are also down-modulated in IL-2-activated NK cells cocultured in MIC-containing serum-an effect secondary to the down-modulation of NKG2D and not directly caused by physical association with sMIC. The patients' NK cells up-regulate expression of NKG2D, NKp44, CXCR1, and CCR7 when cultured in normal serum or anti-MIC Ab-treated autologous serum. NKG2D(+) but not NKG2D(-) NK cells are tumoricidal in vitro, and in vivo they selectively traffic to the xenografted carcinoma, form immunological synapse with tumor cells, and significantly retard tumor growth in the SCID mice. These results suggest that circulating sMIC in the cancer patients deactivates NK immunity by down-modulating important activating and chemokine receptors.  相似文献   

6.
NK cells express different TLRs, such as TLR3, TLR7, and TLR9, but little is known about their role in NK cell stimulation. In this study, we used specific agonists (poly(I:C), loxoribine, and synthetic oligonucleotides containing unmethylated CpG sequences to stimulate human NK cells without or with suboptimal doses of IL-12, IL-15, or IFN-alpha, and investigated the secretion of IFN-gamma, cytotoxicity, and expression of the activating receptor NKG2D. Poly(I:C) and loxoribine, in conjunction with IL-12, but not IL-15, triggered secretion of IFN-gamma. Inhibition of IFN-gamma secretion by chloroquine suggested that internalization of the TLR agonists was necessary. Also, secretion of IFN-gamma was dependent on MEK1/ERK, p38 MAPK, p70(S6) kinase, and NF-kappaB, but not on calcineurin. IFN-alpha induced a similar effect, but promoted lesser IFN-gamma secretion. However, cytotoxicity (51Cr release assays) against MHC class I-chain related A (MICA)- and MICA+ tumor targets remained unchanged, as well as the expression of the NKG2D receptor. Excitingly, IFN-gamma secretion was significantly increased when NK cells were stimulated with poly(I:C) or loxoribine and IL-12, and NKG2D engagement was induced by coculture with MICA+ tumor cells in a PI3K-dependent manner. We conclude that resting NK cells secrete high levels of IFN-gamma in response to agonists of TLR3 or TLR7 and IL-12, and this effect can be further enhanced by costimulation through NKG2D. Hence, integration of the signaling cascades that involve TLR3, TLR7, IL-12, and NKG2D emerges as a critical step to promote IFN-gamma-dependent NK cell-mediated effector functions, which could be a strategy to promote Th1-biased immune responses in pathological situations such as cancer.  相似文献   

7.
Dendritic cells (DCs) augment effector functions of NK cells, but the underlying mechanisms are not fully understood. Here we show in an in vitro coculture system that human monocyte-derived DCs enhance IFN-gamma production, CD69 expression, and K562 cytolytic ability of NK cells when DCs are prestimulated with various maturation stimuli such as IFN-alpha or LPS. Of interest is the finding that NK cell activation mediated by LPS-stimulated DCs was dependent on IL-12 produced in DC/NK coculture, but that IFN-alpha-stimulated DC-mediated activation was not. Alternatively, MHC class I-related chain A and B (MICA/B), ligands for NKG2D activating receptor, were found to be induced on DCs upon IFN-alpha stimulation and to be responsible for the NK activation because mAb-mediated masking of MICA/B as well as inhibition of direct cell-to-cell contact using transwell insert completely abolished DC-dependent NK cell activation by IFN-alpha. Finally, DCs recovered from chronic hepatitis C virus-infected patients showed defects in the induction of MICA/B and impaired ability to activate NK cells in response to IFN-alpha stimulation. These findings suggested that MICA/B induction on DCs may be one of the mechanisms by which IFN-alpha activates NK cells; this impairment might affect IFN-alpha responsiveness in hepatitis C virus infection.  相似文献   

8.
Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding   总被引:26,自引:0,他引:26  
The immunoreceptor NKG2D stimulates tumor immunity through activation of CD8 T cells and NK cells. Its ligand MICA has been shown to be broadly expressed on human tumors of epithelial origin. MICA expression correlates with an enrichment of Vdelta1 T cells in tumor tissue. We report that human tumor cells spontaneously release a soluble form of MICA encompassing the three extracellular domains, which is present at high levels in sera of patients with gastrointestinal malignancies, but not in healthy donors. Release of MICA from tumor cells is blocked by inhibition of metalloproteinases, concomitantly causing accumulation of MICA on the cell surface. Shedding of MICA by tumor cells may modulate NKG2D-mediated tumor immune surveillance. In addition, determination of soluble MICA levels may be implemented as an immunological diagnostic marker in patients with epithelial malignancies.  相似文献   

9.
Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells without prior sensitization. One pivotal activating NK receptor is NKG2D, which binds a family of eight ligands, including the major histocompatibility complex (MHC) class I-related chain A (MICA). Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus causing morbidity and mortality in immunosuppressed patients and congenitally infected infants. HCMV encodes multiple antagonists of NK cell activation, including many mechanisms targeting MICA. However, only one of these mechanisms, the HCMV protein US9, counters the most prevalent MICA allele, MICA*008. Here, we discover that a hitherto uncharacterized HCMV protein, UL147A, specifically downregulates MICA*008. UL147A primarily induces MICA*008 maturation arrest, and additionally targets it to proteasomal degradation, acting additively with US9 during HCMV infection. Thus, UL147A hinders NKG2D-mediated elimination of HCMV-infected cells by NK cells. Mechanistic analyses disclose that the non-canonical GPI anchoring pathway of immature MICA*008 constitutes the determinant of UL147A specificity for this MICA allele. These findings advance our understanding of the complex and rapidly evolving HCMV immune evasion mechanisms, which may facilitate the development of antiviral drugs and vaccines.  相似文献   

10.
11.
Natural killer (NK) cells play a crucial role in the detection and destruction of virally infected and tumor cells during innate immune responses. The cytolytic activity of NK cells is regulated through a balance of inhibitory and stimulatory signals delivered by NK receptors that recognize classical major histocompatabilty complex class I (MHC-I) molecules, or MHC-I homologs such as MICA, on target cells. The Ly49 family of NK receptors (Ly49A through W), which includes both inhibitory and activating receptors, are homodimeric type II transmembrane glycoproteins, with each subunit composed of a C-type lectin-like domain tethered to the membrane by a stalk region. We have determined the crystal structure, at 3.0 A resolution, of the murine inhibitory NK receptor Ly49I. The Ly49I monomer adopts a fold similar to that of other C-type lectin-like NK receptors, including Ly49A, NKG2D and CD69. However, the Ly49I monomers associate in a manner distinct from that of these other NK receptors, forming a more open dimer. As a result, the putative MHC-binding surfaces of the Ly49I dimer are spatially more distant than the corresponding surfaces of Ly49A or NKG2D. These structural differences probably reflect the fundamentally different ways in which Ly49 and NKG2D receptors recognize their respective ligands: whereas the single MICA binding site of NKG2D is formed by the precise juxtaposition of two monomers, each Ly49 monomer contains an independent binding site for MHC-I. Hence, the structural constraints on dimerization geometry may be relatively relaxed within the Ly49 family. Such variability may enable certain Ly49 receptors, like Ly49I, to bind MHC-I molecules bivalently, thereby stabilizing receptor-ligand interactions and enhancing signal transmission to the NK cell.  相似文献   

12.
13.
Reciprocal interactions between NK cells and dendritic cells have been shown to influence activation of NK cells, maturation, or lysis of dendritic cells and subsequent adaptive immune responses. However, little is known about the crosstalk between monocytes and NK cells and the receptors involved in this interaction. We report in this study that human monocytes, upon TLR triggering, up-regulate MHC class I-Related Chain (MIC) A, but not other ligands for the activating immunoreceptor NKG2D like MICB or UL-16 binding proteins 1-3. MICA expression was associated with CD80, MHC class I and MHC class II up-regulation, secretion of proinflammatory cytokines, and apoptosis inhibition, but was not accompanied by release of MIC molecules in soluble form. TLR-induced MICA on the monocyte cell surface was detected by autologous NK cells as revealed by NKG2D down-regulation. Although MICA expression did not render monocytes susceptible for NK cell cytotoxicity, LPS-treated monocytes stimulated IFN-gamma production of activated NK cells which was substantially dependent on MICA-NKG2D interaction. No enhanced NK cell proliferation or cytotoxicity against third-party target cells was observed after stimulation of NK cells with LPS-activated monocytes. Our data indicate that MICA-NKG2D interaction constitutes a mechanism by which monocytes and NK cells as an early source of IFN-gamma may communicate directly during an innate immune response to infections in humans.  相似文献   

14.
Dendritic cells (DCs) are characterized by their unique capacity for primary T cell activation, providing the opportunity for DC-based cancer vaccination protocols. Novel findings reveal that besides their role as potent inducers of tumor-specific T cells, human DCs display additional antitumor effects. Most of these data were obtained with monocyte-derived DCs, whereas studies investigating native blood DCs are limited. In the present study, we analyze the tumoricidal capacity of M-DC8(+) DCs, which represent a major subpopulation of human blood DCs. We demonstrate that IFN-gamma-stimulated M-DC8(+) DCs lyse different tumor cell lines but not normal cells. In addition, we show that tumor cells markedly enhance the production of TNF-alpha by M-DC8(+) DCs via cell-to-cell contact and that this molecule essentially contributes to the killing activity of M-DC8(+) DCs. Furthermore, we illustrate the ability of M-DC8(+) DCs to promote proliferation, IFN-gamma production, and tumor-directed cytotoxicity of NK cells. The M-DC8(+) DC-mediated enhancement of the tumoricidal potential of NK cells is mainly dependent on cell-to-cell contact. These results reveal that, in addition to their crucial role in activating tumor-specific T cells, blood DCs exhibit direct tumor cell killing and enhance the tumoricidal activity of NK cells. These findings point to the pivotal role of DCs in triggering innate and adaptive immune responses against tumors.  相似文献   

15.
The stress-inducible heat shock protein (HSP) 70 is known to function as an endogenous danger signal that can increase the immunogenicity of tumors and induce CTL responses. We show in this study that HSP70 also activates mouse NK cells that recognize stress-inducible NKG2D ligands on tumor cells. Tumor size and the rate of metastases derived from HSP70-overexpressing human melanoma cells were found to be reduced in T and B cell-deficient SCID mice, but not in SCID/beige mice that lack additionally functional NK cells. In the SCID mice with HSP70-overexpressing tumors, NK cells were activated so that they killed ex vivo tumor cells that expressed NKG2D ligands. In the tumors, the MHC class I chain-related (MIC) A and B molecules were found to be expressed. Interestingly, a counter selection was observed against the expression of MICA/B in HSP70-overexpressing tumors compared with control tumors in SCID, but not in SCID/beige mice, suggesting a functional relevance of MICA/B expression. The melanoma cells were found to release exosomes. HSP70-positive exosomes from the HSP70-overexpressing cells, in contrast to HSP70-negative exosomes from the control cells, were able to activate mouse NK cells in vitro to kill YAC-1 cells, which express NKG2D ligands constitutively, or the human melanoma cells, in which MICA/B expression was induced. Thus, HSP70 and inducible NKG2D ligands synergistically promote the activation of mouse NK cells resulting in a reduced tumor growth and suppression of metastatic disease.  相似文献   

16.
17.
Human cytomegalovirus (HCMV) employs a variety of strategies to modify or evade the host immune response, and natural killer (NK) cells play a crucial role in controlling cytomegalovirus infections in mice and humans. Activation of NK cells through the receptor NKG2D/DAP10 leads to killing of NKG2D ligand-expressing cells. We have previously shown that HCMV is able to down-regulate the surface expression of some NKG2D ligands, ULBP1, ULBP2, and MICB via the viral glycoprotein UL16. Here, we show that the viral gene product UL142 is able to down-regulate another NKG2D ligand, MICA, leading to protection from NK cytotoxicity. UL142 is not able to affect surface expression of all MICA alleles, however, which may reflect selective pressure on the host to thwart viral immune evasion, further supporting an important role for the MICA-NKG2D interaction in immune surveillance.  相似文献   

18.
The contribution of innate immunity to immunosurveillance of the oncogenic Human Herpes Virus 8 (HHV8) has not been studied in depth. We investigated NK cell phenotype and function in 70 HHV8-infected subjects, either asymptomatic carriers or having developed Kaposi''s sarcoma (KS). Our results revealed substantial alterations of the NK cell receptor repertoire in healthy HHV8 carriers, with reduced expression of NKp30, NKp46 and CD161 receptors. In addition, down-modulation of the activating NKG2D receptor, associated with impaired NK-cell lytic capacity, was observed in patients with active KS. Resolution of KS after treatment was accompanied with restoration of NKG2D levels and NK cell activity. HHV8-latently infected endothelial cells overexpressed ligands of several NK cell receptors, including NKG2D ligands. The strong expression of NKG2D ligands by tumor cells was confirmed in situ by immunohistochemical staining of KS biopsies. However, no tumor-infiltrating NK cells were detected, suggesting a defect in NK cell homing or survival in the KS microenvironment. Among the known KS-derived immunoregulatory factors, we identified prostaglandin E2 (PGE2) as a critical element responsible for the down-modulation of NKG2D expression on resting NK cells. Moreover, PGE2 prevented up-regulation of the NKG2D and NKp30 receptors on IL-15-activated NK cells, and inhibited the IL-15-induced proliferation and survival of NK cells. Altogether, our observations are consistent with distinct immunoevasion mechanisms that allow HHV8 to escape NK cell responses stepwise, first at early stages of infection to facilitate the maintenance of viral latency, and later to promote tumor cell growth through suppression of NKG2D-mediated functions. Importantly, our results provide additional support to the use of PGE2 inhibitors as an attractive approach to treat aggressive KS, as they could restore activation and survival of tumoricidal NK cells.  相似文献   

19.
CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer   总被引:12,自引:0,他引:12  
CD4+CD25+ regulatory T cells (Treg) that suppress T cell-mediated immune responses may also regulate other arms of an effective immune response. In particular, in this study we show that Treg directly inhibit NKG2D-mediated NK cell cytotoxicity in vitro and in vivo, effectively suppressing NK cell-mediated tumor rejection. In vitro, Treg were shown to inhibit NKG2D-mediated cytolysis largely by a TGF-beta-dependent mechanism and independently of IL-10. Adoptively transferred Treg suppressed NK cell antimetastatic function in RAG-1-deficient mice. Depletion of Treg before NK cell activation via NKG2D and the activating IL-12 cytokine, dramatically enhanced NK cell-mediated suppression of tumor growth and metastases. Our data illustrate at least one mechanism by which Treg can suppress NK cell antitumor activity and highlight the effectiveness of combining Treg inhibition with subsequent NK cell activation to promote strong innate antitumor immunity.  相似文献   

20.
Zhou Z  Zhang C  Zhang J  Tian Z 《PloS one》2012,7(5):e36928
Natural killer (NK) cells and their crosstalk with other immune cells are important for innate immunity against tumor. To explore the role of the interaction between NK cells and macrophages in the regulation of anti-tumor activities of NK cells, we here demonstrate that poly I:C-treated macrophages increased NK cell-mediated cytotoxicity against target tumor cells in NKG2D-dependent manner. In addition, IL-15, IL-18, and IFN-β secreted by poly I:C-treated macrophages are also involved in NKG2D expression and NK cell activation. Interestingly, the increase in expression of NKG2D ligands on macrophages induced a highly NK cell-mediated cytotoxicity against tumor cells, but not against macrophages themselves. Notably, a high expression level of Qa-1, a NKG2A ligand, on macrophages may contribute to such protection of macrophages from NK cell-mediated killing. Furthermore, Qa-1 or NKG2A knockdown and Qa-1 antibody blockade caused the macrophages to be sensitive to NK cytolysis. These results suggested that macrophages may activate NK cells to attack tumor by NKG2D recognition whereas macrophages protect themselves from NK lysis via preferential expression of Qa-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号