首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal ion activation of saccharide binding has been studied for concana-valin A near pH 7.0. Although two metal ions, a transition metal ion and a Ca2+ ion, can bind, both are not required. Ca2+ alone, Mn2+ alone, or Ca2+ with other transition metal ions can activate this lectin. Only one Ca2+ ion per subunit or only one Mn2+ per subunit is sufficient. Metal ion binding was studied by magnetic resonance techniques and direct binding assays. Saccharide binding activity was monitored by following the fluorescence of 4-methylumbelliferyl a-D-mannopyranoside. When Ca2+ binds to demetalized concanavalin A, the transition metal ion site is hindered. When Mn2+ alone binds to demetalized concanavalin A, saccharide binding activity is induced. A subsequent conformational change, not necessary for carbohydrate binding activity, covers the Mn2+.  相似文献   

2.
Lentil lectin (LcH) and pea lectin (PSA) belong to the class of D-glucose/D-mannose binding lectins and resemble concanavalin A (Con A) closely in physicochemical, structural, and biological properties. LcH and PSA, like Con A, are Ca2+-Mn2+ metalloproteins that require the metal ions for their saccharide binding and biological activities. Studies of the relationship between the metal ions binding and saccharide binding activity in LcH and PSA have been difficult due to the problem of metal ion replacement in these proteins. We now report a method of metal ion replacement in both lectins that allows substitution of the Mn2+ in the native proteins with a variety of transition metal ions, as well as substitution of the Ca2+ with Cd2+ in a particular complex. The following metal ion derivatives of both LcH and PSA have been prepared: Ca2+-Zn2+, Ca2+-Co2+, Ca2+-Ni2+, and Cd2+-Cd2+. All of these derivatives are as active as the native lectins, as demonstrated by precipitation with specific polysaccharides, saccharide inhibition of precipitation, and hemagglutination assays. The yields of these derivatives are good (generally greater than 70%), and the degree of metal ion incorporation is high (generally greater than 90%). The method of preparation is quite different from that for metal ion substitution in Con A, which proceeds via the apoprotein. In contrast, the apoproteins of LcH and PSA are unstable, aggregate above pH 4.0, and cannot be remetallized once formed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The interaction between Concanavalin A (ConA) and the lanthanide ions La3+ and Gd3+ has been studied calorimetrically at 25 degrees C. The measurements were carried out at a pH of 4.5, where the protein exists prevailingly as a dimer. Calorimetry allows the direct determination of the binding enthalpy and the evaluation of both the apparent association constant, and the apparent free energy and entropy. Three groups of data were collected. The first concerns the interaction of the 'native' protein, i.e., fully metallized with Mn2+ and Ca2+, with the lanthanides. The second concerns the interaction of the completely demetallized protein with La3+ and Gd3+. Finally, the affinity of each complex was tested for the specific sugar alpha-methylmannopyranoside. The analysis of the thermodynamic parameters obtained, led to the following conclusions: 1) a specific site, named S3, exists on the protein for the lanthanides, distinct from the S1 site of the transition metal and from the S2 site, specific for calcium. There is only one S3 site per protomer when the protein has Mn2+ in S1 and Ca2+ in S2. Moreover, there is no appreciable competition for S1 and S2 from the lanthanides. The 'native' protein, metallized with La3+ or Gd3+, is a fully functional protein. 2) The demetallized protein (ApoCon A) has at least two sites per protomer for the lanthanides. The hypothesis is that, besides the S3 site, the lanthanides, in the absence of Mn2+, can also occupy the S1, but not the S2, site. The protein metallized only with gadolinium ion is completely inactive toward the interaction with the mannoside. The same happens when, along with gadolinium, only calcium or manganese is present. Hence, in the absence of the transition metal in S1 or of calcium in S2, the protein is not in the conformation suitable to interact with its specific substrate.  相似文献   

4.
Abstract

The affinity of the lectin Concanavalin A (Con A) for saccharides, and its requirement for metal ions such as Mn2+ and Ca2+, have been known for about 50 years. However the relationship between metal ion binding and the saccharide binding activity of Con A has only recently been examined in detail. Brown et al. (Biochemistry 16, 3883 (1977)) showed that Con A exists as a mixture of two conformational states: a “locked” form and an “unlocked” form. The unlocked form of the protein weakly binds metal ions and saccharide, and is the predominate conformation of demetallized Con A (apo-Con A) at equilibrium. The locked form binds two metal ions per monomer with the resulting complex(es) possessing full saccharide binding activity. Brown and coworkers measured the kinetics of the transition of the unlocked form to the fully metallized locked conformation containing Mn2+and Ca2+. They also demonstrated that Mn2+ alone could form a locked ternary complex with Con A, and that rapid removal of the ions resulted in a metastable form of apo-Con A in the locked conformation which slowly (hours at 25°C) reverted back to (predominantly) the unlocked conformation. The ability to form either conformation in the absence or presence of metal ions has thus allowed us to explore the relationship between metal ion binding and conformational transitions in Con A as determinants of the saccharide binding activity of the lectin.

Based on the kinetics of the transition of unlocked apo-Con A to fully metallized locked Con A, and X-ray crystallographic data, it appears that the transition between the two conformations of Con A involves a cis-trans isomerization of an Ala-Asp peptide bond in the backbone of the protein, near one of the two metal ion binding sites. The relatively large activation energy for the transition (~ 22 kcal M?1) results in relatively slow interconversions between the conformations (from minutes to days), whereas the equilibria with metal ions and saccharide are rapid. Thus, many metastable complexes can be formed and a variety of transition pathways between the two conformations studied.

We have identified and characterized binary, ternary, and quaternary complexes of both conformations of Con A containing Mn2+ and saccharide, and have determined both metalion and saccharide dissociation constants for all of them, as well as equilibrium and kinetic values for the conformational transitions between them. The main finding is that saccharide binds very weakly (Kd~2 M) to unlocked apo-Con A and very tightly to the locked ternary Mn2+-Con A complex (Kd~ 10?4 M). Saccharide binding increases along the various pathways connecting these two species in a nonadditive fashion. Thus, both conformation and metal ion binding determine the saccharide affinity of each complex, although the specificity of saccharide binding of the various species is maintained throughout.  相似文献   

5.
The addition of Mn2+, Zn2+, Co2+, Ca2+ or Pb2+ to apo-concanavalin A results in a slow conformational conversion of the protein to the active saccharide binding form. The rates of conversion are dependent upon the sample pH and identity of the ions which occupy the native transition metal and calcium ion sites yet the affinity of each metalloform for the fluorescent sugar, 4-methylumbelliferyl-α-D-mannopyranoside, is independent of these same parameters (above pH 5.6). EDTA quickly removes all metal ions from the active Mn2+ or Co2+-concanavalin A samples leaving a metastable metal free structure which retains its high saccharide affinity for several hours at room temperature. This form of apo-concanavalin A and the metallized derivatives have equally high saccharide binding affinities in 1M NaCL but the former dramatically loses its sugar affinity as the ionic strength is lowered.  相似文献   

6.
Lanthanides are useful probes in Ca2+ binding proteins, including sarcoplasmic reticulum (Ca2+,Mg2+)-ATPase. Here, we report that lanthanides compete with Rb+ and Na+ for occlusion in renal (Na+,K+)-ATPase. The lanthanides appear to bind at a single site and act as competitive antagonists, without themselves becoming occluded. All lanthanides tested are effective with the order of potencies Pr greater than Nd greater than La greater than Eu greater than Tb greater than Ho greater than Er, but differences are small. The presence of Mg2+ ions does not affect competition of La3+ with Na+ or K+ suggesting that the effects are not exerted via divalent metal sites. Lanthanides compete with Rb+ and Na+ in membranes digested with trypsin so as to produce 19-kDa and smaller fragments of the alpha-chain (Karlish, S.J.D., Goldshleger, R., and Stein, W. D. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4566-4570), also suggestive of a direct interaction of lanthanides with Na+ and K+ sites. Effects of lanthanides on conformational changes of fluorescein-labeled (Na+,K+)-ATPase are Na(+)-like. They stabilize the E1 state and compete with K+ ions. The Ki for La3+ is 0.445 microM. The apparent affinity in fluorescence assays is proportional to enzyme concentration (Ki = 32.4*[protein] + 0.445 microM La3+), suggesting that lanthanides are also bound nonspecifically (possibly to phospholipids). Direct assays confirm that Tb3+ binding is nonspecific. Measurements of the rate of various conformational transitions show that the rate of E2(K+)----E1(X) (X = Na+ or La3+) is significantly inhibited by La3+ compared to Na+. La3+ ions also slightly accelerate the rate of the E1----E2(K+) conformational transition. The dissociation rate of La3+ has been measured by monitoring the rate of E1(La3+)----E2(K+). It is 1.741 s-1 at 25 degrees C. Based on this value, it is unlikely that La3+ ions are stably occluded, consistent with the conclusion from occlusion experiments. In the future, lanthanides bound to monovalent cation sites with high affinity may become useful probes for location and characterization of sites, although it will be necessary to take into account the large amount of nonspecific binding.  相似文献   

7.
Divalent metal ions are absolutely required for the structure and catalytic activities of ribosomes. They are partly coordinated to highly structured RNA, which therefore possesses high-affinity metal ion binding pockets. As metal ion induced RNA cleavages are useful for characterising metal ion binding sites and RNA structures, we analysed europium (Eu3+) induced specific cleavages in both 16S and 23S rRNA of E. coli. The cleavage sites were identified by primer extension and compared to those previously identified for calcium, lead, magnesium, and manganese ions. Several Eu3+ cleavage sites, mostly those at which a general metal ion binding site had been already identified, were identical to previously described divalent metal ions. Overall, the Eu3+ cleavages are most similar to the Ca2+ cleavage pattern, probably due to a similar ion radius. Interestingly, several cleavage sites which were specific for Eu3+ were located in regions implicated in the binding of tRNA and antibiotics. The binding of erythromycin and chloramphenicol, but not tetracycline and streptomycin, significantly reduced Eu3+ cleavage efficiencies in the peptidyl transferase center. The identification of specific Eu3+ binding sites near the active sites on the ribosome will allow to use the fluorescent properties of europium for probing the environment of metal ion binding pockets at the ribosome's active center.  相似文献   

8.
The selectivity of ion channels produced by latrotoxin obtained from a black widow spider venom and by venom from the spider Steatoda paykulliana in bilayer phospholipid membrane was studied. Experimental current-voltage curves of these channels were used for the estimation of parameters of a two barrier model of their energy profiles. Selectivities of both types of channels are similar. Alkaline earth cations are permeable, the permeability increasing in the order Mg2+ less than Ca2+ less than Sr2+ less than Ba2+. In contrast transition metal cations block the channel, their efficiency decreases in the order: Cd2+ greater than or equal to Ni2+ greater than Zn2+ greater than Co2+ greater than Mn2+ (Steatoda paykulliana spider venom) and Cd2+ greater than Co2+ greater than Ni2+ greater than Zn2+ greater than Mn2+ (latrotoxin). Amplitudes of current carried by corresponding ions are mainly determined by the depth of the potential well for this ion, i.e., by its affinity to the cation binding site in the channel. The channels are also permeable to monovalent cations but they do not bind them. Selectivity for monovalent cations depends on Ca2+ concentration at the cis-side of membrane in the micromolar range. However, the addition of Ca2+ to the trans-side up to 10 mM does not affect currents carried by monovalent ions. It is suggested that venom-induced calcium channels have two conformational states with different selectivities which interconvert upon binding one calcium ion. Possible general schemes for the organisation of calcium channels in excitable membranes are also discussed. Finally, using a mathematical model of synaptic transmission, possible mechanisms of toxic action of spider venoms are considered.  相似文献   

9.
CD studies carried out on A23187 indicate a solvent-dependent conformation for the free acid. Alkali metal ions were found to bind to the ionophore weakly. Divalent metal ions such as Mg2+, Ca2+, Sr2+, Ba2+ and Co2+ and trivalent lanthanide metal ions like La3+ were found to form predominantly 2:1 (ionophore-metal ion) complexes at low concentrations of metal ions, but both 2:1 and 1:1 complexes were formed with increasing salt concentration. Mg2+ and Co2+ exhibit similar CD behaviour that differs from that observed for the other divalent and lanthanide metal ions. The structure of 2:1 complexes involves two ligand molecules coordinated to the metal ion through the carboxylate oxygen, benzoxazole nitrogen and keto-pyrrole oxygen from each ligand molecule along with one or more solvent molecules. Values of the binding constant were determined for 2:1 complexes of the ionophore with divalent and lanthanide metal ions.  相似文献   

10.
The lentil (LcH) and pea (PSA) lectins, which are members of the class of D-glucose/D-mannose binding lectins, are Ca2+ X Mn2+ metalloproteins that require the metal ions for their saccharide binding and biological activities. We have prepared a variety of Cd2+ derivatives of PSA and LcH, with Cd2+ in either the transition metal (S1) or calcium (S2) sites, or in both. Thus, Cd2+ X Zn2+, Cd2+ X Mn2+, and Ca2+ X Cd2+ derivatives were prepared, in addition to the Cd2+ X Cd2+ derivatives which we have recently reported. This is the first report of stable mixed metal Cd2+ complexes of lectins. The physical and saccharide binding properties of the Cd2+ derivatives of both lectins were characterized by a variety of physiochemical techniques and found to be the same as those of the corresponding native proteins. 113Cd NMR spectra of mono- and disubstituted 113Cd2+ complexes of LcH and PSA were recorded and compared with 113Cd NMR data for concanavalin A (ConA) (Palmer, A.R., Bailey, D.B., Behnke, W.D., Cardin, A.D., Yang, P.P., and Ellis, P.D. (1980) Biochemistry 19, 5063-5070). The data for the PSA and LcH derivatives were found to be very similar, indicating close homology of their metal ion binding sites. 113Cd resonances at 44.6 ppm and -129.4 ppm for 113Cd2+ X 113Cd2+ X LcH, and at 46.6 and -130.4 for the corresponding PSA derivative, are chemical shifts very similar to those observed for 113Cd2+ X 113Cd2+ X ConA. Assignment of the resonances to the transition metal (S1) and calcium (S2) sites were unambiguous since the Ca2+ X 113Cd2+ and 113Cd2+ X Zn2+ derivatives of both lectins showed single resonances characteristic of the S1 and S2 sites, respectively. The results indicate that, unlike ConA, 113Cd2+ binds tightly to PSA and LcH. Binding of monosaccharide to both lectins induce small (2 ppm) upfield shifts in their S2 113Cd resonances, in contrast to the larger shift (8 ppm) observed in ConA. The 113Cd2+ X Mn2+ complexes of PSA and LcH fail to show a 113Cd resonance characteristic of these derivatives, which provides evidence for the close proximity of the metal ions in the two proteins. The present findings indicate that the coordinating ligand atoms to the metal ions at the S1 and S2 sites in LcH, PSA, and ConA are the same.  相似文献   

11.
A study has been carried out of the redox-linked metal ion uptake processes of the iron-sulphur cluster [3Fe-4S] in the bacterial ferredoxin, Fd III from Desulphovibrio africanus using a combination of electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectroscopy and direct, unmediated electrochemistry of the Fd in a film deposited at a pyrolytic graphite electrode. Reduction of the three-iron cluster is required before a divalent metal ion becomes bound as in the reaction sequence [formula: see text] The redox potentials of these processes and the metal binding constants have been determined. The affinities of the [3Fe-4S]0 cluster for divalent ions lie in the sequence Cd greater than Zn much greater than Fe. In addition, specific binding of a monovalent ion, Thallium(I), is detected for [3Fe-4S]1+ as well as for [3Fe-4S]0. The results provide a clear and quantitative demonstration of the capability of the open triangular tri-mu 2-sulphido face of a [3Fe-4S] cluster to bind a variety of metal ions if the protein environment permits. In each case the entering metal ion is coordinated by at least one additional ligand which may be from solvent (H2O or OH-) or from a protein side chain (e.g., carboxylate from aspartic acid). Hence the [3Fe-4S] core can be a redox-linked sensor of divalent metal ions, Fe(II) or Zn(II), that may trigger conformational change.  相似文献   

12.
E E Snyder  B W Buoscio  J J Falke 《Biochemistry》1990,29(16):3937-3943
The molecular mechanisms by which protein Ca(II) sites selectively bind Ca(II) even in the presence of high concentrations of other metals, particularly Na(I), K(I), and Mg(II), have not been fully described. The single Ca(II) site of the Escherichia coli receptor for D-galactose and D-glucose (GGR) is structurally related to the eukaryotic EF-hand Ca(II) sites and is ideally suited as a model for understanding the structural and electrostatic basis of Ca(II) specificity. Metal binding to the bacterial site was monitored by a Tb(III) phosphorescence assay: Ca(II) in the site was replaced with Tb(III), which was then selectively excited by energy transfer from protein tryptophans. Photons emitted from the bound Tb(III) enabled specific detection of this substrate; for other metals binding was detected by competitive displacement of Tb(III). Representative spherical metal ions from groups IA, IIA, and IIIA and the lanthanides were chosen to study the effects of metal ion size and charge on the affinity of metal binding. A dissociation constant was measured for each metal, yielding a range of KD's spanning over 6 orders of magnitude. Monovalent metal ions of group IA exhibited very low affinities. Divalent group IIA metal ions exhibited affinities related to their size, with optimal binding at an effective ionic radius between those of Mg(II) (0.81 A) and Ca(II) (1.06 A). Trivalent metal ions of group IIIA and the lanthanides also exhibited size-dependent affinities, with an optimal effective ionic radius between those of Sc(III) (0.81 A) and Yb(III) (0.925 A). The results indicate that the GGR site selects metal ions on the basis of both charge and size.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The S100 proteins are a unique class of EF-hand Ca2+ binding proteins distributed in a cell-specific, tissue-specific, and cell cycle-specific manner in humans and other vertebrates. These proteins are distinguished by their distinctive homodimeric structure, both intracellular and extracellular functions, and the ability to bind transition metals at the dimer interface. Here we summarize current knowledge of S100 protein binding of Zn2+, Cu2+ and Mn2+ ions, focusing on binding affinities, conformational changes that arise from metal binding, and the roles of transition metal binding in S100 protein function.  相似文献   

14.
Divalent metal ions play a crucial role in forming the catalytic centres of DNA endonucleases. Substitution of Mg2+ ions by Fe2+ ions in two archaeal intron-encoded homing endonucleases, I-DmoI and I-PorI, yielded functional enzymes and enabled the generation of reactive hydroxyl radicals within the metal ion binding sites. Specific hydroxyl radical-induced cleavage was observed within, and immediately after, two conserved LAGLIDADG motifs in both proteins and at sites at, and near, the scissile phosphates of the corresponding DNA substrates. Titration of Fe2+-containing protein-DNA complexes with Ca2+ ions, which are unable to support endonucleolytic activity, was performed to distinguish between the individual metal ions in the complex. Mutations of single amino acids in this region impaired catalytic activity and caused the preferential loss of a subset of hydroxyl radical cleavages in both the protein and the DNA substrate, suggesting an active role in metal ion coordination for these amino acids. The data indicate that the endonucleases cleave their DNA substrates as monomeric enzymes, and contain a minimum of four divalent metal ions located at or near the catalytic centres of each endonuclease. The metal ions involved in cleaving the coding and the non-coding strand are positioned immediately after the N- and C-terminally located LAGLIDADG motifs, respectively. The dual protein/nucleic acid footprinting approach described here is generally applicable to other protein-nucleic acid complexes when the natural metal ion can be replaced by Fe2+.  相似文献   

15.
Metal ion binding to the insulin hexamer has been investigated by crystallographic analysis. Cadmium, lead, and metal-free hexamers have been refined to R values of 0.181, 0.172, and 0.172, against data of 1.9-, 2.5-, and 2.5-A resolution, respectively. These structures have been compared with each other and with the isomorphous two-zinc insulin. The structure of the metal-free hexamer shows that the His(B10) imidazole rings are arranged in a preformed site that binds a water molecule and is poised for Zn2+ coordination. The structure of the cadmium derivative shows that the binding of Cd2+ at the center of the hexamer is unusual. There are three symmetry-related sites located within 2.7 A of each other, and this position is evidently one-third occupied. It is also shown that the coordinating B13 glutamate side chains of this derivative have two partially occupied conformations. One of these conformations is two-thirds occupied and is very similar to that seen in two-zinc insulin. The other, one-third-occupied conformation, is seen to coordinate the one-third-occupied metal ion. The binding of Ca2+ to insulin is assumed to be essentially identical with that of Cd2+. Thus, we conclude that the Ca2+ binding site in the insulin hexamer is unlike that of any other known calcium binding protein. The crystal structures reported herein explain how binding of metal ions stabilizes the insulin hexamer. The role of metal ions in hexamer assembly and dissociation is discussed.  相似文献   

16.
Calcium is an essential cofactor in the oxygen-evolving complex (OEC) of photosystem II (PSII). The removal of Ca2+ or its substitution by any metal ion except Sr2+ inhibits oxygen evolution. We used steady-state enzyme kinetics to measure the rate of O2 evolution in PSII samples treated with an extensive series of mono-, di-, and trivalent metal ions in order to determine the basis for the affinity of metal ions for the Ca2+-binding site. Our results show that the Ca2+-binding site in PSII behaves very similarly to the Ca2+-binding sites in other proteins, and we discuss the implications this has for the structure of the site in PSII. Activity measurements as a function of time show that the binding site achieves equilibrium in 4 h for all of the PSII samples investigated. The binding affinities of the metal ions are modulated by the 17 and 23 kDa extrinsic polypeptides; their removal decreases the free energy of binding of the metal ions by 2.5 kcal/mol, but does not significantly change the time required to reach equilibrium. Monovalent ions are effectively excluded from the Ca2+-binding site, exhibiting no inhibition of O2 evolution. Di- and trivalent metal ions with ionic radii similar to that of Ca2+ (0.99 A) bind competitively with Ca2+ and have the highest binding affinity, while smaller metal ions bind more weakly and much larger ones do not bind competitively. This is consistent with a size-selective Ca2+-binding site that has a rigid array of coordinating ligands. Despite the large number of metal ions that competitively replace Ca2+ in the OEC, only Sr2+ is capable of partially restoring activity. Comparing the physical characteristics of the metal ions studied, we identify the pK(a) of the aqua ion as the factor that determines the functional competence of the metal ion. This suggests that Ca2+ is directly involved in the chemistry of water oxidation and is not only a structural cofactor in the OEC. We propose that the role of Ca2+ is to act as a Lewis acid, binding a substrate water molecule and tuning its reactivity.  相似文献   

17.
13C NMR spectra are presented for the calcium binding protein parvalbumin (pI 4.25) from carp muscle in several different metal bound forms: with Ca2+ in both the CD and EF calcium binding sites, with Cd2+ in both sites, with 113Cd2+ in both sites, and with 113Cd2+ in the CD site and Lu3+ in the EF site. The different metals differentially shift the 13C NMR resonances of the protein ligands involved in chelation of the metal ion. In addition, direct 13C-113Cd spin-spin coupling is observed which allows the assignment of protein carbonyl and carboxyl 13C NMR resonances to ligands directly interacting with the metal ions in the CD and EF binding sites. The displacement of 113Cd2+ from the EF site by Lu3+ further allows these resonances to be assigned to the CD or EF site. The occupancy of the two sites in the two cadmium species and in the mixed Cd2+/Lu3+ species is verified by 113Cd NMR. The resolution in these 113Cd NMR spectra is sufficient to demonstrate direct interaction between the two metal binding sites.  相似文献   

18.
The relative permeability of endplate channels to monovalent and divalent metal ions was determined from reversal potentials. Thallium is the most permeant ion with a permeability ratio relative to Na+ of 2.5. The selectivity among alkali metals is weak with a sequence, Cs+ greater than Rb+ greater than K+ greater than Na+ greater than Li+, and permeability ratios of 1.4, 1.3, 1.1, 1.0, and 0.9. The selectivity among divalent ions is also weak, with a sequence for alkaline earths of Mg++ greater than Ca++ greater than Ba++ greater than Sr++. The transition metal ions Mn++, Co++, Ni++, Zn++, and Cd++ are also permeant. Permeability ratios for divalent ions decreased as the concentration of divalent ion was increased in a manner consistent with the negative surface potential theory of Lewis (1979 J. Physiol. (Lond.). 286: 417--445). With 20 mM XCl2 and 85.5 mM glucosamine.HCl in the external solution, the apparent permeability ratios for the alkaline earth cations (X++) are in the range 0.18--0.25. Alkali metal ions see the endplate channel as a water-filled, neutral pore without high-field-strength sites inside. Their permeability sequence is the same as their aqueous mobility sequence. Divalent ions, however, have a permeability sequence almost opposite from their mobility sequence and must experience some interaction with groups in the channel. In addition, the concentrations of monovalent and divalent ions are increased near the channel mouth by a weak negative surface potential.  相似文献   

19.
Tsvetkov  P. O.  Devred  F.  Makarov  A. A. 《Molecular Biology》2010,44(5):832-835
Regulatory protein S100A2 is localized in the cell nucleus and takes part in the regulation of the cell cycle and cancerogenesis. It belongs to a large family of S100 proteins and can simultaneously bind calcium and zinc ions. Using a direct thermodynamical method of isothermal titration calorimetry we have determined that in the absence of calcium ions the S100A2 can bind three zinc ions per each monomer. Besides that, it was determined that the thermodynamics of zinc binding to different binding sites on the S100A2 are significantly different. Zinc binding to the first two sites on the S100A2 is enthalpically unfavorable and is driven only by entropic factors, while binding of the third zinc ion is enthalpically favorable. Analysis of the zinc ion adsorption isotherms shows that their binding occurs in a consecutive order.  相似文献   

20.
We have determined the relative affinities in solution for various metals which bind to the lone calcium-binding site of the D-galactose-binding protein which resembles the EF-hand loop. In order of affinity the metals are: Ca2+ approximately Tb3+ approximately Pb2+ greater than Cd2+ greater than Sr2+ greater than Mg2+ much greater than Ba2+. The binding affinity for calcium (Kd = 2 microM) and the slow off-rate determined for terbium (1 x 10(-3) s-1) and that the metal-binding site is unperturbed by sugar binding argue for a structural role. Furthermore, we have crystallographically refined the structure of the binding protein with the calcium substituted by cadmium, compared it with the calcium-bound structure, and found them to be identical. The results of these structural and solution studies support the hypothesis that for a given metal-binding loop, cation hydration energy, size, and charge are major factors contributing to binding affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号