首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of disulfiram on succinate oxidase and succinate dehydrogenase activities of beef heart submitochondrial particles was studied. Results show that disulfiram inhibits both functions. Succinate and malonate suppress the inhibitory action of disulfiram when succinate dehydrogenase is stabilized in an active conformation. Disulfiram is not able to inhibit the enzyme when succinate dehydrogenase is inactivated by oxaloacetate. The inhibitory effect of disulfiram is reverted by the addition of dithiothreitol. From these results, it is proposed that disulfiram inhibits the utilization of succinate by a direct modification of an -SH group located in the catalytically active site of succinate dehydrogenase.  相似文献   

2.
Dihydroorotate dehydrogenase (EC 1.3.3.1 or EC 1.3.99.11) catalyzes the fourth sequential step in the de novo synthesis of uridine monophosphate. In eukaryotes it is located in the inner mitochondrial membrane, with ubiquinone as the proximal and cytochrome oxidase as the ultimate electron transfer system, whereas the rest of pyrimidine biosynthesis takes place in the cytosol. Here, the distribution of dihydroorotate dehydrogenase activity in cryostat sections of various rat tissues, and tissue samples of human skin and kidney, was visualized by light microscopy using the nitroblue tetrazolium technique. In addition, a hydrogen peroxide-producing oxidase side-reactivity of dihydroorotate dehydrogenase could be visualized by trapping the peroxide with cerium-diaminobenzidine. The pattern of activity was similar to that of succinate dehydrogenase, but revealed a less intensive staining. High activities of dihydroorotate dehydrogenase were found in tissues with known proliferative, regenerative, absorptive or excretory activities, e.g., mucosal cells of the ileum and colon crypts in the gastro-intestinal tract, cultured Ehrlich ascites tumor cells, and proximal tubules of the kidney cortex, whilst lower activities were present in the periportal area of the liver, testis and spermatozoa, prostate and other glands, and skeletal muscle. Dihydroorotate dehydrogenase and succinate dehydrogenase activity in Ehrlich ascites tumor cells grown in suspension culture were quantified by application of nitroblue tetrazolium or cyanotolyl tetrazolium and subsequent extraction of the insoluble formazans with organic solvents. The ratio of dihydroorotate dehydrogenase to succinate dehydrogenase activity was 14. This was in accordance with that of 15 obtained from oxygen consumption measurement of isolated mitochondria on addition of dihydroorotate or succinate. The ratio determined with mitochondria from animal tissues was up to 115 (rat liver, bovine heart). The application of the enzyme inhibitors brequinar sodium and toltrazuril verified the specificity of the histochemical and biochemical methods applied.  相似文献   

3.
The activities of the mitochondrial enzymes citrate synthase (citrate oxaloacetatelyase, EC 4.1.3.7), NADP-linked isocitrate dehydrogenase (threo-Ds-isocitrate:NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42), and succinate dehydrogenase (succinate: FAD oxidoreductase, EC 1.3.99.1) as well as their kinetic behavior in the two developmental forms of Trypanosoma cruzi at insect vector stage, epimastigotes and infective metacyclic trypomastigotes, were studied. The results presented in this work clearly demonstrate a higher mitochondrial metabolism in the metacyclic forms as is shown by the extraordinary enhanced activities of metacyclic citrate synthase, isocitrate dehydrogenase, and succinate dehydrogenase. In epimastigotes, the specific activities of citrate synthase at variable concentrations of oxalacetate and acetyl-CoA were 24.6 and 26.6 mU/mg of protein, respectively, and the Michaelis constants were 7.88 and 6.84 microM for both substrates. The metacyclic enzyme exhibited the following kinetic parameters: a specific activity of 228.4 mU/mg and Km of 3.18 microM for oxalacetate and 248.5 mU/mg and 2.75 microM, respectively, for acetyl-CoA. NADP-linked isocitrate dehydrogenase specific activities for epimastigotes and metacyclics were 110.2 and 210.3 mU/mg, whereas the apparent Km's were 47.9 and 12.5 microM, respectively. No activity for the NAD-dependent isozyme was found in any form of T. cruzi differentiation. The particulated succinate dehydrogenase showed specific activities of 8.2 and 39.1 mU/mg for epimastigotes and metacyclic trypomastigotes, respectively, although no significant changes in the Km (0.46 and 0.48 mM) were found. The cellular role and the molecular mechanism that probably take place during this significant shift in the mitochondrial metabolism during the T. cruzi differentiation have been discussed.  相似文献   

4.
Succinate dehydrogenase activities in homogenates of rat and ob/ob mouse pancreatic islets were only 13% of the activities in homogenates of liver and were also several times lower than in homogenates of pancreatic acinar tissue. This indicates that the content of mitochondria in pancreatic islet cells is very low. The very low activity of succinate dehydrogenase is in agreement with the low mitochondrial volume in the cytoplasmic ground substance of pancreatic islet cells as observed in morphometric studies. This may represent the poor equipment of pancreatic islet cells with electron transport chains and thus provide a regulatory role for the generation of reducing equivalents and chemical energy for the regulation of insulin secretion. The activities of succinate dehydrogenase in tissue homogenates of pancreatic islets, pancreatic acinar tissue, and liver were significantly inhibited by malonate and diazoxide but not by glucose, mannoheptulose, streptozotocin, or verapamil. Tolbutamide inhibited only pancreatic islet succinate dehydrogenase significantly, providing evidence for a different behavior of pancreatic islet cell mitochondria. Therefore diazoxide and tolbutamide may affect pancreatic islet function through their effects on succinate dehydrogenase activity. The activities of alpha-glycerophosphate dehydrogenase in homogenates of pancreatic islets and liver from rats and ob/ob mice were in the same range, while activities in homogenates of pancreatic acinar tissue were lower. None of the test agents affected alpha-glycerophosphate dehydrogenase activity. Thus the results provide no support for the recent contention that alpha-glycerophosphate dehydrogenase activity may be critical for the regulation of insulin secretion.  相似文献   

5.
When strain C3 of Klebsiella pneumoniae is grown on a minimal medium with excess glucose, isocitrate dehydrogenase, malate dehydrogenase, and succinate dehydrogenase specific activities increase in the last period of the exponential growth phase and in the beginning of the stationary phase. Glucose exhaustion does not alter the development of malate dehydrogenase and succinate dehydrogenase, but specific activities are higher than those obtained with excess glucose. In contrast, glucose exhaustion can be correlated with a decrease of isocitrate dehydrogenase specific activity in the stationary phase. Induction of strain C3 isocitrate dehydrogenase by glucose in complex medium and repression by cAMP in mineral medium were observed. Glucose induction and the NADP/NADPH ratio are suggested as regulatory mechanisms controlling isocitrate dehydrogenase synthesis in the Enterobacteriaceae, but the former appears to be restricted to some Klebsiella strains.  相似文献   

6.
Changes in oxidative metabolism of hepatopancreas and muscle tissues of penaeid prawn, Metapenaeus monoceros was studied, following its exposure to selected organophosphorous insecticides phosphamidon, dichlorovos and methylparathion. The OPI are found to inhibit the activity levels of acetylcholinesterase, succinate dehydrogenase, isocitrate dehydrogenase, pyruvate dehydrogenase, lactate dehydrogenase and cytochrome-c-oxidase and cause accumulation of acetylcholine in the hepatopancreas and muscle tissues. These changes in the activity levels of selected oxidative enzymes during insecticide exposure in these tissues of prawn indicates the shift in the metabolic emphasis from aerobic to anaerobic conditions and is interpreted as a functional adaptation to insecticide induced metabolic stress. These observed changes at cellular level pave way for successful survival of prawns in insecticide polluted environ.  相似文献   

7.
We evaluated the effect of sodium molybdate on carbohydrate metabolizing enzymes and mitochondrial enzymes in diabetic rats. Diabetic rats showed a significant reduction in the activities of glucose metabolising enzymes like hexokinase, glucose-6-phosphate dehydrogenase, glycogen synthase and in the level of glycogen. An elevation in the activities of aldolase, glucose-6-phosphatase, fructose 1,6- bisphosphatase, glycogen phosphorylase and in the level of blood glucose were also observed in diabetic rats when compared to control rats. The activities of mitochondrial enzymes isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH-dehydrogenase and cytochrome-C-oxidase were also significantly lowered in diabetic rats. Molybdate administration to diabetic rats reversed the above changes in a significant manner. From our observations, we conclude that administration of sodium molybdate regulated the blood sugar levels in alloxan-induced diabetic rats. Sodium molybdate therapy not only maintained the blood glucose homeostasis but also altered the activities of carbohydrate metabolising enzymes. Molybdate therapy also considerably improved the activities of mitochondrial enzymes, thereby suggesting its role in mitochondrial energy production.  相似文献   

8.
The metabolic pathways by which the glycogen is utilized by fetal tissues is not well established. In the present study the ontogeny of seven key enzymes involved in glycolysis and the tricarboxylic acid cycle has been established for rabbit fetal lung, heart, and liver. In the fetal lung the activities of phosphofructokinase, pyruvate kinase, lactic dehydrogenase, citrate synthase, and malate dehydrogenase increase from day 21 to 25. Thereafter the levels either drop to day 19 levels or do not change. The isocitrate dehydrogenase activity continues to increase from day 19 of gestation to maximum level on day 31 of gestation. In fetal heart the pattern of activity is similar, but in fetal liver most of the enzymes reach maximum levels earlier and, with the exception of pyruvate kinase, do not show a significant fall in activity near term. The pattern of development of pyruvate dehydrogenase complex is different; maximum activity is observed on day 27 in fetal lung and heart and on day 21 in fetal liver. These results indicate that all three fetal tissues can oxidize glucose. Also, the accumulation of glycogen, particularly in fetal lung, appears to ensure that at specific times during gestation adequate quantities of energy (ATP) and substrates, required for surfactant phospholipid synthesis, are available independent of maternal supply of glucose or during brief episodes of hypoxia.  相似文献   

9.
Using a microdensitometer, lactate dehydrogenase and succinate dehydrogenase activities were measured in the membrana granulosa of the rat ovulatory follicle. Ovaries were removed on each day of the oestrous cycle; oestrus, dioestrus-1, dioestrus-2, and proestrus; and enzyme activities measured in the membrana granulosa as a whole and in four regions within it: peripheral (PR), antral (AR), cumulus oophorus (CO) and corona radiata (CR). Throughout the cycle, lactate dehydrogenase activity was greatest in PR. On oestrus, lactate dehydrogenase activity was progressively less in AR, CO and CR. On dioestrus-1, activity was identical in AR and CO and less in CR. On dioestrus-2, activity was greater in AR than in CO or CR. By proestrus, activity was equal in AR, CO and CR. In the membrana granulosa as a whole, and in each region, lactate dehydrogenase activity declined as ovulation approached. In contrast, succinate dehydrogenase activity in the membrana granulosa as a whole and in PR was constant throughout the cycle. Activity fluctuated in the other regions. Succinate dehydrogenase activity on oestrus was greatest in PR, less in AR and CO and least in CR. On the remaining days, succinate dehydrogenase activity was greatest in PR and less but equal in the remainder of the membrana granulosa.  相似文献   

10.
During the ischemic shock caused by the removal of tourniquets placed on the hind paws of the rat, a marked decrease in the enzyme activities of Krebs cycle yielding ATP (malate dehydrogenase, isocitrate dehydrogenase, succinate dehydrogenase) at the level of the gastrocnemius muscle and the liver, was observed together with a plasma increase of these enzymes. The intraperitoneal injection of ATP diminishes significantly the variations observed.  相似文献   

11.
A recent review suggested that the activity of NADH-fumarate reductase from trypanosomatids could be catalyzed by succinate dehydrogenase working in reverse (Tielens and van Hellemond, Parasitol. Today 14, 265-271, 1999). The results reported in this study demonstrate that the two activities can easily be separated without any loss in either activity, suggesting that fumarate reductase and succinate dehydrogenase are separate enzymes.  相似文献   

12.
In corpora lutea of pregnancy of dairy cows delta 5-3 beta-hydroxysteroid dehydrogenase and succinate dehydrogenase were demonstrated histochemically and evaluated densitometrically. Serum progesterone was determined radioimmunologically. Activities per volume unit of delta 5-3 beta-hydroxysteroid dehydrogenase and succinate dehydrogenase in large and small luteal cells as well as progesterone concentrations, exhibited no typical and correlated pattern during pregnancy. Large luteal cells in regressive tissue regions showed weaker delta 5-3 beta-hydroxysteroid dehydrogenase activities than in maturing or well-developed tissue regions. Succinate dehydrogenase activities of small luteal cells were highest in regressive luteal tissue. The results indicate that structural development of bovine luteal tissue during pregnancy is reflected by corresponding enzyme activities.  相似文献   

13.
The biological effects of near infrared radiation (850 nm) modulated by an acoustic frequency of 101 Hz were studied. The study was conducted on rats; the effect was registered by succinate dehydrogenase activity in lymphocytes in blood smears after the administration of an activating dose of adrenaline, which simulates the state of the organism at early stages of a pathogenic action (stress). A pronounced regulating effect of infrared radiation on the activity of succinate dehydrogenase in animals that were activated by adrenaline was shown. Infrared radiation has a normalizing effect via the reduction of the degree of inhibition or activation of the enzyme induced by adrenaline and has no effect on the control animals. Thus, by modulation of the activity of succinate dehydrogenase, infrared radiation regulates energy production in mitochondria that is provided by the most potent oxidation substrate, viz., succinic acid; the effect is especially pronounced under stress.  相似文献   

14.
A simple method for microphotometric evaluation of cryostat sections from human renal tissue routinely stained for succinate dehydrogenase activity by means of tetranitro-blue tetrazolium chloride is described and tested for validity. Manual absorbance measurement within single nephron segments from the same section allows to directly visualize the distribution pattern of this enzyme along the nephron. Photometric data can be expressed in relative enzyme activities by using the cortical collecting ducts within the same section as reference. This allows to compare measurements of different kidney sections stained by various incubation procedures. The agreement found between relative succinate dehydrogenase activities and recently published morphometric data on mitochondrial inner membranes along the rat nephron suggests that quantitative succinate dehydrogenase microphotometry is a useful histochemical tool for the assessment of renal mitochondrial cristae membranes.  相似文献   

15.
The kinetic parameters of the individual reaction of pig heart alpha-ketoglutarate dehydrogenase complex, succinate thiokinase and the alpha-ketoglutarate dehydrogenase complex-succinate thiokinase coupled system were studied. The KCoAm of alpha-ketoglutarate dehydrogenase complex and the K-succinyl CoAm of succinate thiokinase decreased in the coupled system when compared to those of the individual enzyme reactions. This phenomenon can be explained by the interaction between the alpha-ketoglutarate dehydrogenase complex and succinate thiokinase. By means of poly(ethylene glycol) precipitation, ultracentrifugation and gel chromatography we were able to detect a physical interaction between the alpha-ketoglutarate dehydrogenase complex and succinate thiokinase. Of the seven investigated proteins only succinate thiokinase showed association with alpha-ketoglutarate dehydrogenase complex. On the other hand, succinate thiokinase did not associate with other high molecular weight mitochondrial enzymes such as pyruvate dehydrogenase complex and glutamate dehydrogenase. On this basis, the interaction between succinate thiokinase and alpha-ketoglutarate dehydrogenase complex was assumed to be specific. These in vitro data raise the possibility that a portion of the citric acid cycle enzymes exists as a large multienzyme complex in the mitochondrial matrix.  相似文献   

16.
Reaction rates of succinate and lactate dehydrogenase activity in cryostat sections of rat liver, tracheal epithelium and heart muscle were monitored by continuous measurement of formazan formation by cytophotometry at room temperature. Incubation media contained polyvinyl alcohol as tissue protectant and Tetranitro BT as final electron acceptor. Control media lacked either substrate or substrate and coenzyme. Controls were also performed by adding malonate (a competitive inhibitor of succinate dehydrogenase), pyruvate (a non-competitive inhibitor of lactate dehydrogenase), oxalate (a competitive inhibitor of lactate dehydrogenase) or N-ethylmaleimide (a blocker of SH groups). A specific malonate-sensitive linear test minus control response for succinate dehydrogenase activity was obtained in liver (1.6 mumol H2cm-3 min-1) and tracheal epithelium (0.8 mumol H2cm-3 min-1) but not in heart muscle. All variations in the incubation conditions tested did not result in a linear test minus control response in the latter tissue. Because the reaction was sensitive to malonate, it was concluded that the initial reaction rate was the specific rate of succinate dehydrogenase activity in heart muscle (9.1 mumol H2 cm-3 min-1). Test minus control reactions for lactate dehydrogenase activity were distinctly non-linear for all tissues tested. This appeared to be due to product inhibition by pyruvate generated during the reaction and therefore it was concluded that the appropriate control reaction was the test reaction in the presence of 20 mM pyruvate. The initial rate of the test minus this control was the true rate of lactate dehydrogenase activity. The lactate dehydrogenase activity thus found in liver parenchyma was 5.0 mumol of H2 generated per cm3 liver tissue per min.  相似文献   

17.
Succinate dehydrogenase was purified from the particulate fraction of Desulfobulbus. The enzyme catalyzed both fumarate reduction and succinate oxidation but the rate of fumarate reduction was 8-times less than that of succinate oxidation. Quantitative analysis showed the presence of 1 mol of covalently bound flavin and 1 mol of cytochrome b per mol of succinate dehydrogenase. The enzyme contained three subunits with molecular mass 68.5, 27.5 and 22 kDa. EPR spectroscopy indicated the presence of at least two iron sulfur clusters. 2-Heptyl-4-hydroxy-quinoline-N-oxide inhibited the electron-transfer between succinate dehydrogenase and a high redox potential cytochrome c3 from Desulfobulbus elongatus.  相似文献   

18.
Succinate dehydrogenase activity was found in both the cytoplasmic and the membrane fractions from disrupted Halobacterium halobium cells. The cytoplasmic enzyme was found to be soluble in aqueous media and had an apparent molecular weight of 90,000. The enzyme activity of the cytoplasmic succinate dehydrogenase was salt dependent, with preference for KCl over KNO3. The Km values for succinate of the soluble and the membrane-bound succinate dehydrogenases from H. halobium were 2.3 +/- 0.3 and 0.7 +/- 0.1 mM, respectively. The soluble succinate dehydrogenase was obtained from two different strains of H. halobium and was obtained independently of the method used to disrupt the bacteria. Thus, the archaebacterium, H. halobium, contains a succinate dehydrogenase which differs from the succinate dehydrogenase in most eucaryotic and eubacterial cells, where the enzyme is tightly membrane-bound.  相似文献   

19.
The activities of cytochrome oxidase (CYO) and succinate dehydrogenase (SDH) in brains of progeny of rabbits treated with dichlorvos (DDVP) 6 mg/kg/day during last ten days of pregnancy were investigated. Biochemical estimation of mitochondrial fraction of the brain tissue and the histochemical studies of fresh cryostat slices were carried out in 1, 8 and 16 day old rabbits. In comparison with control animals the decrease in CYO and SDH activity and the disturbances in "enzymatic maturation" rythm were observed in progeny of rabbits submitted to treatment with DDVP. In neuropil the changes were more pronounced than in pericarium of the nerve cells. In the brain structures which are sensitive to the metabolic disturbances (Ammon horn) SDH activities decreased.  相似文献   

20.
Mitochondria are an important intracellular source and target of reactive oxygen species. The life span of a species is thought to be determined, in part, by the rate of mitochondrial damage inflicted by oxygen free radicals during the course of normal cellular metabolism. In the present study, we have investigated the protective effect of squalene supplementation for 15 days and 30 days on energy status and antioxidant defense system in liver mitochondria of 18 young and 18 aged rats. The dietary supplementation of 2% squalene significantly minimized aging associated alterations in mitochondrial energy status by maintaining the activities of TCA cycle enzymes (isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase) and respiratory marker enzymes (NADH dehydrogenase and cytochrome-c-oxidase) at higher level in the liver mitochondria of aged rats compared with unsupplemented controls. It exerted an antioxidant effect by inhibiting mitochondrial lipid peroxidation (malondialdehyde) in liver of young and aged rats. Supplementation with squalene also maintained the mitochondrial antioxidant defense system at higher rate by increasing the level of reduced glutathione and the activities of glutathione-dependent antioxidant enzymes (glutathione peroxidase and glutathione-S-transferase) and antiperoxidative enzymes (superoxide dismutase and catalase) in the liver of young and aged rats. The results of this study provide evidence that dietary supplementation with squalene can improve liver mitochondrial function during aging and minimize the age-associated disorders in which reactive oxygen species are a major cause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号