共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis 总被引:13,自引:0,他引:13
Martín AC del Pozo JC Iglesias J Rubio V Solano R de La Peña A Leyva A Paz-Ares J 《The Plant journal : for cell and molecular biology》2000,24(5):559-567
The increase in the ratio of root growth to shoot growth that occurs in response to phosphate (Pi) deprivation is paralleled by a decrease in cytokinin levels under the same conditions. However, the role of cytokinin in the rescue system for Pi starvation remains largely unknown. We have isolated a gene from Arabidopsis thaliana (AtIPS1) that is induced by Pi starvation, and studied the effect of cytokinin on its expression in response to Pi deprivation. AtIPS1 belongs to the TPSI1/Mt4 family, the members of which are specifically induced by Pi starvation, and the RNAs of which contain only short, non-conserved open reading frames. Pi deprivation induces AtIPS1 expression in all cells of wild-type plants, whereas in the pho1 mutant grown on Pi-rich soils, AtIPS1 expression in the root was delimited by the endodermis. This supports the view that pho1 is impaired in xylem loading of Pi, and that long-distance signals controlling the Pi starvation responses act via negative control. Exogenous cytokinins repress the expression of AtIPS1 and other Pi starvation-responsive genes in response to Pi deprivation. However, cytokinins did not repress the increase in root-hair number and length induced by Pi starvation, a response dependent on local Pi concentration rather than on whole-plant Pi status. Our results raise the possibility that cytokinins may be involved in the negative modulation of long-distance, systemically controlled Pi starvation responses, which are dependent on whole-plant Pi status. 相似文献
4.
5.
When plants are subjected to a deficiency in inorganic phosphate (Pi), they exhibit an array of responses to cope with this nutritional stress. In this work, we have characterized two Arabidopsis mutants, hps3-1 and hps3-2 (hypersensitive to Pi starvation 3), that have altered expression of Pi starvation-induced (PSI) genes and enhanced production of acid phosphatase (APase) when grown under either Pi sufficiency or deficiency conditions. hps3-1 and hps3-2, however, accumulate less anthocyanin than the wild type when grown on a Pi-deficient medium. Molecular cloning indicated that the phenotypes of hps3 mutants were caused by mutations within the ETO1 (ETHYLENE OVERPRODUCTION 1) gene. In Arabidopsis, ETO1 encodes a negative regulator of ethylene biosynthesis, and mutation of ETO1 causes Arabidopsis seedlings to overproduce ethylene. The ethylene biosynthesis inhibitor aminoethoxyvinyl glycine or the ethylene perception inhibitor Ag(+) suppressed all the mutant phenotypes of hps3. Taken together, these results provide further genetic evidence that ethylene is an important regulator of multiple plant responses to Pi starvation. Furthermore, we found that a change in ethylene level has differential effects on the expression of PSI genes, maintenance of Pi homeostasis, production of APase and accumulation of anthocyanin. We also demonstrated that ethylene signaling mainly regulates the activity of root surface-associated APases rather than total APase activity. 相似文献
6.
7.
8.
Regulation of phosphate starvation responses in higher plants 总被引:8,自引:0,他引:8
Background
Phosphorus (P) is often a limiting mineral nutrient for plant growth. Many soils worldwide are deficient in soluble inorganic phosphate (Pi), the form of P most readily absorbed and utilized by plants. A network of elaborate developmental and biochemical adaptations has evolved in plants to enhance Pi acquisition and avoid starvation.Scope
Controlling the deployment of adaptations used by plants to avoid Pi starvation requires a sophisticated sensing and regulatory system that can integrate external and internal information regarding Pi availability. In this review, the current knowledge of the regulatory mechanisms that control Pi starvation responses and the local and long-distance signals that may trigger Pi starvation responses are discussed. Uncharacterized mutants that have Pi-related phenotypes and their potential to give us additional insights into regulatory pathways and Pi starvation-induced signalling are also highlighted and assessed.Conclusions
An impressive list of factors that regulate Pi starvation responses is now available, as is a good deal of knowledge regarding the local and long-distance signals that allow a plant to sense and respond to Pi availability. However, we are only beginning to understand how these factors and signals are integrated with one another in a regulatory web able to control the range of responses demonstrated by plants grown in low Pi environments. Much more knowledge is needed in this agronomically important area before real gains can be made in improving Pi acquisition in crop plants. 相似文献9.
10.
When inorganic phosphate is limiting, Arabidopsis has the facultative ability to metabolize exogenous nucleic acid substrates, which we utilized previously to identify insensitive phosphate starvation response mutants in a conditional genetic screen. In this study, we examined the effect of the phosphate analog, phosphite (Phi), on molecular and morphological responses to phosphate starvation. Phi significantly inhibited plant growth on phosphate-sufficient (2 mM) and nucleic acid-containing (2 mM phosphorus) media at concentrations higher than 2.5 mM. However, with respect to suppressing typical responses to phosphate limitation, Phi effects were very similar to those of phosphate. Phosphate starvation responses, which we examined and found to be almost identically affected by both anions, included changes in: (a) the root-to-shoot ratio; (b) root hair formation; (c) anthocyanin accumulation; (d) the activities of phosphate starvation-inducible nucleolytic enzymes, including ribonuclease, phosphodiesterase, and acid phosphatase; and (e) steady-state mRNA levels of phosphate starvation-inducible genes. It is important that induction of primary auxin response genes by indole-3-acetic acid in the presence of growth-inhibitory Phi concentrations suggests that Phi selectively inhibits phosphate starvation responses. Thus, the use of Phi may allow further dissection of phosphate signaling by genetic selection for constitutive phosphate starvation response mutants on media containing organophosphates as the only source of phosphorus. 相似文献
11.
12.
13.
14.
Cell division activity determines the magnitude of phosphate starvation responses in Arabidopsis 总被引:1,自引:0,他引:1
Lai F Thacker J Li Y Doerner P 《The Plant journal : for cell and molecular biology》2007,50(3):545-556
Phosphate (P(i)) is a major limiting factor for plant growth. Plants respond to limiting P(i) supplies by inducing a suite of adaptive responses comprising altered growth behaviour, enhanced P(i) acquisition and reduced P(i) demand that together define a distinct physiological state. In P(i)-starved plants, continued root growth is required for P(i) acquisition from new sources, yet meristem activity consumes P(i). Therefore, we analysed the relationship between organ growth, phosphate starvation-responsive (PSR) gene expression and P(i) content in Arabidopsis thaliana under growth-promoting or inhibitory conditions. Induction of PSR gene expression after transfer of plants to P(i)-depleted conditions quantitatively reflects prior levels of P(i) acquisition, and hence is sensitive to the balance of P(i) supply and demand. When plants are P(i)-starved, enhanced root or shoot growth exacerbates, whereas growth inhibition suppresses, P(i) starvation responses, suggesting that the magnitude of organ growth activity specifies the level of P(i) demand. Inhibition of cell-cycle activity, but not of cell expansion or cell growth, reduces P(i) starvation-responsive gene expression. Thus, the level of cell-cycle activity specifies the magnitude of P(i) demand in P(i)-starved plants. We propose that cell-cycle activity is the ultimate arbiter for P(i) demand in growing organs, and that other factors that influence levels of PSR gene expression do so by affecting growth through modulation of meristem activity. 相似文献
15.
16.
17.
18.
Arya Sagar S. Mahto Binod K. Ramkumar Thakku R. Lenka Sangram K. 《Journal of plant biochemistry and biotechnology.》2020,29(4):769-784
Journal of Plant Biochemistry and Biotechnology - Arabidopsis thaliana is considered as an indispensable model system across various disciplines of modern plant biology. The short life cycle, well... 相似文献
19.
20.
Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation 下载免费PDF全文
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) constitute the major glycolipids of the thylakoid membranes in chloroplasts. In Arabidopsis, the formation of MGDG is catalyzed by a family of three MGDG synthases, which are encoded by two types of genes, namely type A (atMGD1) and type B (atMGD2 and atMGD3). Although the roles of the type A enzyme have been intensively investigated in several plants, little is known about the contribution of type B enzymes to MGDG synthesis in planta. From our previous analyses, unique expression profiles of the three MGDG synthase genes were revealed in various organs and developmental stages. To characterize the expression profiles in more detail, we performed histochemical analysis of these genes using beta-glucuronidase (GUS) assays in Arabidopsis. The expression of atMGD1::GUS was detected highly in all green tissues, whereas the expression of atMGD2::GUS and atMGD3::GUS was observed only in restricted parts, such as leaf tips. In addition, intense staining was detected in pollen grains of all transformants. We also detected GUS activity in the pollen tubes of atMGD2::GUS and atMGD3::GUS transformants grown in wild-type stigmas but not in atMGD1::GUS, suggesting that type B MGDG synthases may have roles during pollen germination and pollen tube growth. GUS analysis also revealed that expression of atMGD2 and atMGD3, but not atMGD1, are strongly induced during phosphate starvation, particularly in roots. Because only DGDG accumulates in roots during phosphate deprivation, type B MGDG synthases may be acting primarily to supply MGDG as a precursor for DGDG synthesis. 相似文献