首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
The effect of a neutral synthetic Ca2+ -ligand, which induces selective Ca2+ transport in electrodialysis experiments in bulk membranes, on the Ca2+ permeability of phospholipid bilayers has been investigated. The ligand is able to promote the transport of Ca2+ across synthetic phospholipid bilayers and can therefore be classified as a Ca2+ -ionophore. Its activity is enhanced by the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The efficiency of the neutral carrier-mediated Ca2+ transport is rather low as compared with that of the charged Ca2+ -ionophore X537A. The Ca2+ selectivity of the nuetral ionophore is decreased by its incorporation in the low dielectric ambient of the phospholipid bilayer.  相似文献   

2.
The effect of a synthetic neutral ligand on the Ca2+ permeability of several biological membranes has been investigated. The ligand had been previously shown to possess Ca2+-ionophoric activities in artificial phospholipid membranes. The neutral ionophore is able to transport Ca2+ across the membranes of erythrocytes and sarcoplasmic reticulum, when lipophilic anions such as tetraphenylborate or carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) are present, presumably to facilitate the diffusion of the charged Ca2+-ionophore complex across the hydrophobic core of the membrane.In mitochondria, the neutral ionophore promotes the active transport of Ca2+ in response to the negative membrane potential generated by respiration, in the presence of the specific inhibitor of the natural carrier ruthenium red.  相似文献   

3.
The effect of a synthetic neutral ligand on the Ca2+ permeability of several biological membranes has been investigated. The ligand had been previously shown to possess Ca2+-ionophoric activities in artificial phospholipid membranes. The neutral ionophore is able to transport Ca2+ across the membranes of erythrocytes and sarcoplasmic reticulum, when lipophilic anions such as tetraphenylborate or carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) are present, presumably to facilitate the diffusion of the charged Ca2+-ionophore complex across the hydrophobic core of the membrane.In mitochondria, the neutral ionophore promotes the active transport of Ca2+ in response to the negative membrane potential generated by respiration, in the presence of the specific inhibitor of the natural carrier ruthenium red.  相似文献   

4.
Black lipid membranes and liposomes loaded with Ca2+ or 5,6-carboxyfluorescein were used for exploring the mechanism of action of insulin-releasing sulfonylureas. Unlike the Ca2+/H+ exchanging ionophore A-23187, tolbutamide did not stimulate the net efflux of Ca2+ from the liposomes. Glibenclamide caused a sustained release of Ca2+, but this effect could be attributed to labilization of the liposomal membrane as indicated by a quantitatively similar loss of the stability marker 5,6-carboxyfluorescein. Unlike the neutral ionophore nonactin or the channel forming quasi-ionophore gramicidin A, the sulfonylureas did not alter the conductance of black lipid membranes in medium containing Na+, K+, Ca2+, Mg2+, and Cl-. It is concluded that the sulfonylureas tested lack ionophore properties but that glibenclamide can labilize membranes.  相似文献   

5.
The requirement of extracellular Ca2+ for insulin action has been indicated by past studies. With a view to understand the interaction of insulin with Ca2+ in the vicinity of the cell membrane, we have examined the ability of insulin and its constituent polypeptide chains A and B to translocate Ca2+ and Mg2+ across the lipid bilayer in two sets of synthetic liposomes. The first were unilamellar vesicles made of dimyristoylphosphatidylcholine and contained the Ca2+ sensor dye arsenazo III. Peptide-mediated Ca2+ and Mg2+ transport in these vesicles was monitored at 37 degrees C in a neutral buffer containing CaCl2 or MgCl2 using a difference absorbance method. In the second set, multilamellar vesicles of egg lecithin containing trapped fura-2 were employed and the cation transport was followed at 20 degrees C by fluorescence changes in the dye. Control experiments indicated that the hormonal peptides caused no appreciable perturbation of the vesicles leading to leakage of contents or membrane fusion. In both liposome systems, substantial Ca2+ and Mg2+ transport was observed with insulin and the B chain; the A chain was less effective as an ionophore. Quantitative analysis of the transport kinetic data on the B chain showed a 1:1 peptide-Ca2+ complex formed inside the membrane. In light of the available structural data on Ca2+ binding by insulin and insulin receptor, our results suggest the possibility of the hormone interacting with the receptor with the bound Ca2+.  相似文献   

6.
Purified plasma membrane vesicles from GH3 rat anterior pituitary cells exhibit a Mg2+-ATP-dependent Ca2+ transport activity. Concentrative uptake of Ca2+ is abolished by exclusion of either Mg2+ or ATP or by inclusion of the Ca2+ ionophore A23187. Furthermore, addition of A23187 to vesicles which have reached a steady state of ATP-supported Ca2+ accumulation rapidly and completely discharges accumulated cation. Ca2+ uptake is unaffected by treatment of vesicles with oligomycin, the uncoupler CCCP, or valinomycin and is greatly reduced in non-plasma membrane fractions. Likewise, Ca2+ accumulation is not stimulated by oxalate, consistent with the plasma membrane origin of this transport system. (Na+, K+)-ATPase participation in the Ca2+ transport process (i.e. via coupled Na+/Ca2+ exchange) was eliminated by omitting Na+ and including ouabain in the reaction medium. Ca2+ transport activity in GH3 vesicles has a similar pH dependence as that seen in a number of other plasma membrane systems and is inhibited by orthovanadate in the micromolar range. Inhibition is enhanced if the membranes are preincubated with vanadate for a short time. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ and ATP are 0.7 and 125 microM, respectively. The average Vmax is 3.6 nmol of Ca2+/min/mg of protein at 37 degrees C. Addition of exogenous calmodulin or calmodulin antagonists had no significant effect on these kinetic properties. GH3 plasma membranes also contain a Na+/Ca2+ exchange system. The apparent Km for Ca2+ is almost 10-fold higher in this system than that for ATP-driven Ca2+ uptake. When both processes are compared under similar conditions, the Vmax of the exchanger is approximately 2-3 times that of ATP-dependent Ca2+ accumulation. Similar results are obtained when purified plasma membranes from bovine anterior pituitary glands were investigated. It is suggested that both Na+/Ca2+ exchange and the (Ca2+ + Mg2+)-ATPase are important in controlling intracellular levels of Ca2+ in anterior pituitary cells.  相似文献   

7.
Transport by the synthetic cyclic peptide ionophore CYCLEX-2E (Deber, C.M. Young, M.E.M., and Tom-Kun, J. (1980) Biochemistry 19, 6194-6198), which in contrast to Ca2+ ionophore A23187 contains no ionizable protons, has been studied with respect to Ca2+ and Na+ transport, and the involvement of exchanged, or counter-transported ions during the transport process. CYCLEX-2E was found to equilibrate Na+ and Ca2+ gradients across phospholipid vesicle membranes. Experiments using the indicator dye Arsenazo III established that calcium ions were indeed reaching the aqueous intravesicular compartments. Absence of metal cations in the external buffer slowed, but did not eliminate, the efflux of Ca2+ from phosphatidylcholine vesicles. As an example of its activity in a biological membrane, CYCLEX-2E was shown to be capable of producing Ca2+ efflux from sarcoplasmic reticulum vesicles which has been loaded with Ca2+ in an ATP-dependent manner. The overall results suggest that in transport by synthetic peptide ionophores typified by CYCLEX-2E, electroneutrality is achieved either through (a) peptide-mediated compensating (but not coupled) fluxes of other cations, or where this is not an option, by (b) transmembrane diffusion of permeant ions such as H+, OH-, or Cl-.  相似文献   

8.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

9.
Ca2+-ATPase from sarcoplasmic reticulum was reconstituted into phospholipid/cholesterol (9:1) vesicles (RO). Sucrose density gradient centrifugation of the RO vesicles separated a light layer (RL) with a high lipid/protein ratio and a heavy layer (RH). RH vesicles exhibited a high rate of Ca2+-dependent ATP hydrolysis but did not accumulate Ca2+. RL vesicles, on the other hand, showed an initial molar ratio of Ca2+ uptake to ATP hydrolysis of approximately 1.0. Internal trapping of transported Ca2+ facilitated studies over periods of several minutes. Ca2+ transport and ATP hydrolysis declined concomitantly, reaching levels near 0 with external Ca2+ concentrations less than or equal to 2 microM. Ca2+ uptake was inhibited by the Ca2+ ionophore A23187, the detergent Triton X-100, and the metabolic inhibitor quercetin. Ca2+ transport generated a transient electrical potential difference, inside positive. This finding is consistent with the hypothesis that the Ca2+ pump is electrogenic. Steady state electrical potentials across the membrane were clamped by using potassium gradients and valinomycin, and monitored with voltage-sensitive dyes. Over a range of +50 to -100 mV, there was an inverse relationship between the initial rate of Ca2+ uptake and voltage, but the rate of ATP hydrolysis was nearly constant. In contrast, lowering the external Ca2+ concentration depressed both transport and ATP hydrolysis. These findings suggest that the membrane voltage influences the coupling between Ca2+ transport and ATP hydrolysis.  相似文献   

10.
A rat liver plasma membrane fraction showed an ATP-dependent uptake of Ca2+ which was released by the ionophore A23187. This activity represents a plasma membrane component and is not due to microsomal contamination. The Ca2+ transport displayed several properties which were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes (Lotersztajn et al. (1981) J. Biol. Chem. 256, 11209-11215; Birch-Machin, M.A. and Dawson, A.P. (1986) Biochim. Biophys. Acta 855, 277-285). These observations have shown that Ca2+-ATPase does not require added Mg2+ whereas we have demonstrated that, in the same membrane preparation, Ca2+ uptake required millimolar concentrations of added Mg2+. The Ca2+-ATPase has a broad specificity for the nucleotides ATP, GTP, UTP and ITP while Ca2+ uptake remains specific for ATP. Ca2+ uptake also displayed different affinities for free Ca2+ and MgATP compared to Ca2+-ATPase activity, with apparent Km values of 0.25 microM Ca2+, 0.15 mM MgATP and 1.0 microM Ca2+, 4 microM MgATP respectively. The apparent maximum rate of Ca2+ uptake was about 150-fold less than Ca2+-ATPase activity. These features suggest that the high-affinity Ca2+-ATPase is not the enzymic expression of the ATP-dependent Ca2+ transport mechanism.  相似文献   

11.
We have characterized ATP-dependent Ca2+ transport into highly purified plasma membrane fraction isolated from guinea pig ileum smooth muscle. The membrane fraction contained inside-out sealed vesicles and was enriched 30-40-fold in 5'-nucleotidase and phosphodiesterase I activity as compared to post nuclear supernatant. Plasma membrane vesicles showed high rate (76 nmol/mg/min) and high capacity for ATP dependent Ca2+ transport which was inhibited by addition of Ca2+ ionophore A23187. The inhibitors of mitochondrial Ca2+ transport, i.e., sodium azide, oligomycin and ruthenium red did not inhibit ATP-dependent Ca2+ uptake into plasma membrane vesicles. The energy dependent Ca2+ uptake into plasma membranes showed very high specificity for ATP as energy source and other nucleotide triphosphates were ineffective in supporting Ca2+ transport. Phosphate was significantly better as Ca2+ trapping anion to potentiate ATP-dependent Ca2+ uptake into plasma membrane fraction as compared to oxalate. Orthovanadate, an inhibitor of cell membrane (Ca2+-Mg2+)-ATPase activity, completely inhibited ATP-dependent Ca2+ transport and the Ki was approximately 0.6 microM. ATP-dependent Ca2+ transport and formation of alkali labile phosphorylated intermediate of (Ca2+-Mg2+)-ATPase increased with increasing concentrations of free Ca2+ in the incubation mixture and the Km value for Ca2+ was approximately 0.6-0.7 microM for both the reactions.  相似文献   

12.
Active Ca2+ transport and passive release were characterized in crude and purified human platelet membranes to facilitate comparison with skeletal muscle sarcoplasmic reticulum. Endoplasmic reticulum markers were enriched from 3- to 14-fold in the purified membranes, while surface membrane antigens were reduced 4-fold and mitochondrial contamination was completely eliminated. The pH optimum for active Ca2+ transport in platelet membranes was 7.6, and the optimum for Ca2+-ATPase activity ranged from 7.6 to 8.0. Upon addition of MgATP there was a burst in active Ca2+ transport activity. In the absence of phosphate, steady state was reached within 20 s; added phosphate promoted continued uptake for greater than 1 h. The maximum pump stoichiometry was 2.0 Ca2+/ATP. The Ca2+ ionophore A23187 caused rapid release of 90% of the sequestered Ca2+ in the presence of phosphate. The dependence of Ca2+ transport on MgATP was biphasic with apparent Km values of 0.6 mM and 9.5 microM. Kinetic measurements with varied external Ca2+ yielded a single Km of 0.1 microM. Mg2+ stimulated Ca2+ transport and Ca2+-ATPase activities. Results with crude and purified membranes were similar, and comparison with the Ca2+ pump from sarcoplasmic reticulum revealed nearly identical enzymatic properties. In contrast to the results of comparing active Ca2+ transport, the characteristics of Ca2+ release from platelet membranes were quite different from those of sarcoplasmic reticulum. External Ca2+ did not promote release of sequestered Ca2+ from platelet membranes in contrast to sarcoplasmic reticulum. In addition, spontaneous release of Ca2+ from platelet membranes did not occur after ATP depletion. Inositol trisphosphate induced rapid partial release of Ca2+ from platelet membranes but had no effect on sarcoplasmic reticulum under identical conditions. Thus active Ca2+ transport is quite similar in internal membranes of platelet and skeletal muscle, but the mechanism of Ca2+ release appears to be entirely different.  相似文献   

13.
To assess the availability of Ca2+ in the lumen of the thylakoid membrane that is required to support the assembly of the oxygen-evolving complex of photosystem II, we have investigated the mechanism of 45Ca2+ transport into the lumen of pea (Pisum sativum) thylakoid membranes using silicone-oil centrifugation. Trans-thylakoid Ca2+ transport is dependent on light or, in the dark, on exogenously added ATP. Both light and ATP hydrolysis are coupled to Ca2+ transport through the formation of a transthylakoid pH gradient. The H+-transporting ionophores nigericin/K+ and carbonyl cyanide 3-chlorophenylhydrazone inhibit the transport of Ca2+. Thylakoid membranes are capable of accumulating up to 30 nmol Ca2+ mg-1 chlorophyll from external concentrations of 15 μM over the course of a 15-min reaction. These results are consistent with the presence of an active Ca2+/H+ antiport in the thylakoid membrane. Ca2+ transport across the thylakoid membrane has significant implications for chloroplast and plant Ca2+ homeostasis. We propose a model of chloroplast Ca2+ regulation whereby the activity of the Ca2+/H+ antiporter facilitates the light-dependent uptake of Ca2+ by chloroplasts and reduces stromal Ca2+ levels.  相似文献   

14.
Ca2+-ATPase of human erythrocyte membranes, after being washed to remove Ca2+ after incubation with the ion, was found to be activated. Stimulation of the ATPase was related neither to fluidity change nor to cytoskeletal degradation of the membranes mediated by Ca2+. Activation of the transport enzyme was also unaffected by detergent treatment of the membrane, but was suppressed when leupeptin was included during incubation of the membranes with Ca2+. Stimulation of the ATPase by a membrane-associated Ca2+-dependent proteinase was thus suggested. Much less 138 kDa Ca2+-ATPase protein could be harvested from a Triton extract of membranes incubated with Ca2+ than without Ca2+. Activity of the activated enzyme could not be further elevated by exogenous calpain, even after treatment of the membranes with glycodeoxycholate. There was also an overlap in the effect of calmodulin and the Ca2+-mediated stimulation of membrane Ca2+-ATPase. While Km(ATP) of the stimulated ATPase remained unchanged, a significant drop in the free-Ca2+ concentration for half-maximal activation of the enzyme was observed.  相似文献   

15.
In this report we describe the application of spectroscopic methods to the study of Ca2+ release by isolated native sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle. To date, dual-wavelength spectroscopy of arsenazo III and antipyrylazo III difference absorbance have been the most common spectroscopic methods for the assay of SR Ca2+ transport. The utility of these methods is the ability to manipulate intraluminal Ca2+ loading of SR vesicles. These methods have also been useful for studying the effect of both agonists and antagonists upon SR Ca2+ release and Ca2+ uptake. In this study, we have developed the application of Calcium Green-2, a long-wavelength excitable fluorescent indicator, for the study of SR Ca2+ uptake and release. With this method we demonstrate how ryanodine receptor Ca2+ channel opening and closing is regulated in a complex manner by the relative distribution of Ca2+ between extraluminal and intraluminal Ca2+ compartments. Intraluminal Ca2+ is shown to be a key regulator of Ca2+ channel opening. However, these methods also reveal that the intraluminal Ca2+ threshold for Ca2+-induced Ca2+ release varies as a function of extraluminal Ca2+ concentration. The ability to study how the relative distribution of a finite pool of Ca2+ across the SR membrane influences Ca2+ uptake and Ca2+ release may be useful for understanding how the ryanodine receptor is regulated, in vivo.  相似文献   

16.
17.
D D Friel  R W Tsien 《Neuron》1992,8(6):1109-1125
Sympathetic neurons display robust [Ca2+]i oscillations in response to caffeine and mild depolarization. Oscillations occur at constant membrane potential, ruling out voltage-dependent changes in plasma membrane conductance. They are terminated by ryanodine, implicating Ca(2+)-induced Ca2+ release. Ca2+ entry is necessary for sustained oscillatory activity, but its importance varies within the oscillatory cycle: the slow interspike rise in [Ca2+]i requires Ca2+ entry, but the rapid upstroke does not, indicating that it reflects internal Ca2+ release. Sudden alterations in [Ca2+]o, [K+]o, or [caffeine]o produce immediate changes in d[Ca2+]i/dt and provide information about the relative rates of surface membrane Ca2+ transport as well as uptake and release by internal stores. Based on our results, [Ca2+]i oscillations can be explained in terms of coordinated changes in Ca2+ fluxes across surface and store membranes.  相似文献   

18.
Single Ca2+ channels from brain microsomal membranes were reconstituted in bilayers made at the tips of patch-clamp micropipettes. The single-channel conductance was defined to be 107 pS in 50 mM Ca2+. The channel activity was stimulated by nucleotides and inositol 1,4,5-trisphosphate (Ins-P3), and was inhibited by ruthenium red. Na+ added asymmetrically to the membrane bilayer induced an increase in the Ca2+-channel activity. The described characteristics of these Ca2+ channels suggest that they may be responsible for the Ca2+ transport across the membranes of the endoplasmic reticulum system triggering and modulating various neurosecretory and excitatory processes in nerve cells.  相似文献   

19.
Limited proteolysis of the plasma membrane calcium transport ATPase (Ca2+-ATPase) from human erythrocytes by trypsin produces a calmodulin-like activation of its ATP hydrolytic activity and abolishes its calmodulin sensitivity. We now demonstrate a similar kind of activation of the human erythrocyte membrane Ca2+-ATPase by calpain (calcium-dependent neutral protease) isolated from the human red cell cytosol. Upon incubation of red blood cell membranes with purified calpain in the presence of Ca2+ the membrane-bound Ca2+-ATPase activity was increased and its sensitivity to calmodulin was lost. In contrast to the action of other proteases tested, proteolysis by calpain favors activation over inactivation of the Ca2+-ATPase activity, except at calpain concentrations more than 2 orders of magnitude higher. Exogenous calmodulin protects the Ca2+-ATPase against calpain-mediated activation at concentrations which also activate the Ca2+-ATPase activity. Calcium-dependent proteolytic modification of the Ca2+-ATPase could provide a mechanism for the irreversible activation of the membrane-bound enzyme.  相似文献   

20.
Synaptic plasma membranes isolated from rat brain exhibited a Ca2+ transport process that was strictly dependent on the presence of Mg2+ and activated by ATP hydrolysis. The characteristics of this ATP-activated transport process included a high affinity for Ca2+ and ATP with the Kact for these two substrates being 0.7 and 5 microM, respectively, and a lower affinity for Mg2+, Kact = 54 microM. The estimated constants for ATP-activated Ca2+ transport into synaptic membrane vesicles and the dependence of such transport on Mg2+ were indicative that such transport was related to the previously described high affinity (Ca2+ + Mg2+)-ATPase in synaptic membranes. An ATP- and Mg2+-dependent Ca2+ transport process with very similar kinetic characteristics was present also in a general microsomal membrane fraction obtained from brain tissue. The synaptic and microsomal membrane ATP-activated transport processes exhibited differences in their sensitivity to vanadate inhibition. Interaction with vanadate was fairly complex and best analyzed by a two-component model. Thus, the estimated Ki values for vanadate were 0.2 and 6.6 microM for the synaptic membranes and 0.7 and 13.8 microM for the microsomes. Since the microsomal membranes contain a substantial population of intraneuronal endoplasmic reticulum vesicles, the effects of vanadate on Ca2+ transport into intraneuronal membrane organelles, other than mitochondria, was determined in saponin-permeabilized synaptosomes. The estimated Ki values for vanadate inhibition of Ca2+ transport activity were 0.7 and 13 microM. The accumulation of Ca2+ into synaptic plasma membrane vesicles was readily reversed by activation of the Na+-Ca2+ exchange carrier, whereas the Ca2+ associated with intrasynaptosomal organelles was not affected by changes in [Na+]. Thus, there are at least two ATP-dependent Ca2+ transporting processes localized on two distinct neuronal membranes, one on the plasma membrane and the second on intraneuronal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号