首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Primary cultures of chondrocytes from the Swarm rat chondrosarcoma were labelled with either [3H]glucosamine or [14C]glucosamine, and hyaluronate synthesized by the cells was isolated from the cell layer. Parallel cultures were labelled with either [3H]serine or [3H]lysine, and identical fractions were isolated from the cell layer. Some cultures were dual-labelled. 2. In cultures labelled with [3H]serine for between 30 min and 24 h and extracted with 4.0 M-guanidine, a procedure that solubilizes predominantly extracellular macromolecules, small amounts of [3H]serine-labelled molecules were found associated with the hyaluronate fraction purified from the extract by dissociative CsCl-density-gradient centrifugation and dissociative Sepharose CL-2B chromatography. About 75% of the [3H]serine-labelled molecules in the fraction were specifically associated with hyaluronate, since they could be removed by prior treatment with proteinase-free Streptomyces hyaluronidase. The association of the [3H]serine-labelled molecules with hyaluronate was non-covalent, since they could be separated from it by further centrifugation in CsCl density gradients containing 4 M-guanidinium chloride and a zwitterionic detergent. 3. In other experiments the cultures were extracted with a sequential zwitterionic-detergent/guanidinium chloride procedure that completely solubilized the cell layer and enabled fractions containing newly synthesized cell-associated hyaluronate to be isolated. Zwitterionic detergent was present throughout. No [3H]lysine was incorporated into these fractions, irrespective of whether the cultures were pulsed concurrently with [3H]lysine and [14C]glucosamine or sequentially with [3H]lysine to prelabel the protein pool (24 h) followed by [14C]-glucosamine to label hyaluronate (1 h). 4. The results show that newly synthesized hyaluronate is not associated with covalently bound protein, and suggest that chain synthesis is initiated by a mechanism other than on to a core protein. Small amounts of [3H]serine-labelled molecules are, however, non-covalently associated with extracellular hyaluronate. Their identity is at present unknown, but they are probably of low molecular weight.  相似文献   

2.
Incorporation of [3H]glucosamine into hyaluronate synthesized by chondrocyte cultures was dependent on the concentration of foetal calf serum in the culture medium. [3H]Hyaluronate levels in cultures supplemented with 2% serum, or maintained without serum, were about 60 and 43%, respectively, of that in cultures maintained with 15% serum. Addition of insulin to cultures maintained with 15% serum had no significant effect on [3H]hyaluronate synthesis. Addition of the hormone to cultures maintained with 2% serum increased [3H]hyaluronate synthesis to levels either the same (1 ng insulin/ml), or greater than (100 ng insulin/ml) that in cultures maintained with 15% serum. The [3H]hyaluronate synthesized by the cultures was of very high molecular weight irrespective of the level of synthesis. [3H]Hyaluronate formed about 12% of the total [3H]glycosaminoglycan synthesized under all culture conditions. Synthesis of 35S, 3H-labelled proteoglycan was reduced, or increased, by the same relative amounts as [3H]hyaluronate, under the different culture conditions. Incorporation of [3H]glucosamine into hyaluronate by near confluent cultures of fibroblasts derived from the Swarm rat chondrosarcoma was reduced by 50% in cultures treated with 2% foetal calf serum compared to those maintained with 15% serum. [3H]Hyaluronate synthesis by fibroblast cultures treated with 2% serum was not stimulated by addition of insulin.  相似文献   

3.
1. Incubation of rabbit tracheal explants with N-[(3)H]acetyl-d-glucosamine and N-acetyl-d-[1-(14)C]glucosamine led to labelling of a number of soluble macromolecular products separable from the medium, after papain digestion, by ion-exchange chromatography. 2. With N-acetyl-d-[1-(14)C]glucosamine in the incubation medium, a neutral glycoprotein, two acidic glycoprotein fractions, hyaluronic acid and a glycosaminoglycan fraction were obtained and all were radioactively labelled. Similar labelling occurred with N-fluoroacetyl-d-[1-(14)C]glucosamine or N-fluoro[(3)H]acetylglucosamine as precursor. 3. Maximal labelling was obtained at 96h after incubation of cultures. N-Fluoroacetyl-glucosamine under these conditions was incorporated into hyaluronate less efficiently than N-acetylglucosamine. 4. With N-fluoroacetyl-d-[1-(14)C]glucosamine as precursor, a hyaluronate component was separated that on enzymic degradation by glycosidases (hyaluronidase, beta-glucuronidase and N-acetyl-beta-hexosaminidase) yielded a (14)C-labelled oligosaccharide fraction together with N-acetyl-d-[1-(14)C]glucosamine and N-fluoroacetyl-d-[1-(14)C]glucosamine, consistent with some exchange of N-acetyl groups having occurred. 5. The results on enzymic degradation of labelled macromolecules by glycosidases suggest that the presence of incorporated N-fluoroacetyl side chains may render the hyaluronate analogue more resistant to hyaluronidase.  相似文献   

4.
CD44 is an integral membrane glycoprotein of approximately 90 kDa which has been implicated in the binding of hyaluronate to the cell surface. The expression of CD44 in astrocytes was investigated by means of indirect immunofluorescence on cultured cells. The vast majority of these cells were found to express CD44. Western blot analysis of these cells revealed a highly polydisperse species having an M(r) corresponding to 74-86 kDa. In order to visualize hyaluronate-binding cells, living cultures were probed with fluorescein-conjugated hyaluronate (FI-HA). Some astrocytes were able to bind FI-HA, provided that they were first treated with hyaluronidase. Streptomyces hyaluronidase, which is hyaluronate-specific, was effective in exposing the hyaluronate-binding capacity of these cells. This leads one to conclude that hyaluronate is bound to the surface of these cells and that it masks their capacity to bind hyaluronate. Provided that they were first treated with hyaluronidase, the U-87 MG (glioblastoma-astrocytoma), U-373 MG (glioblastoma), and Hs 683 (glioma) cell lines were also able to bind FI-HA. The U-138 MG (glioblastoma) cell line was unable to bind FI-HA, with or without prior hyaluronidase treatment. A quantitative assay was developed with the use of [3H]hyaluronate ([3H]HA). This revealed the binding to be highly specific, inasmuch as the addition of unlabeled hyaluronate, but not other glycosaminoglycans, was effective in inhibiting the binding of the [3H]HA. An anti-CD44 monoclonal antibody, 50B4, was able to inhibit the binding of the [3H]HA to the U-373 MG cell line. In this cell line, then, CD44 functions as a hyaluronate receptor and one may infer that this is also the case in some astrocytes.  相似文献   

5.
Proteoglycan monomer and link protein isolated from the Swarm rat chondrosarcoma both contain glycosylamine-linked oligosaccharides. In monomer, these N-linked oligosaccharides are concentrated in a region of the protein core which interacts specifically with both hyaluronate and link protein to form proteoglycan aggregates present in cartilage matrix. Chondrocyte cultures were treated with tunicamycin to inhibit synthesis of the N-linked oligosaccharides, and the ability of the deficient proteoglycan and link protein to form aggregates was studied. Cultures were pretreated with tunicamycin for 3 h and then labeled with either [3H]mannose, [3H]glucosamine, [3H]serine, or with [35S]sulfate for 6 h in the presence of tunicamycin. Formation of link protein-stabilized proteoglycan aggregates in the culture medium was inhibited by up to 40% when the cells were treated with 3 micrograms of tunicamycin/ml, a concentration which inhibited 3H incorporation with mannose as a precursor by about 90%, but by only 15% with glucosamine as a precursor. When exogenous proteoglycan aggregate was added to the culture medium, however, it was found that both endogenous monomer and link protein synthesized in the presence of tunicamycin were fully able to form link-stabilized aggregates. This suggests that glycosylamine-linked oligosaccharides on monomer and on link protein are not necessary for their specific interactions with hyaluronate and with each other. Further, although tunicamycin did not inhibit net synthesis of hyaluronate, transfer of hyaluronate from the cell layer to the culture medium was retarded. This phenomenon accounted for most if not all of the decrease in the amount of proteoglycan which formed aggregates in the medium of cultures treated with tunicamycin.  相似文献   

6.
Hyaluronate is synthesized at plasma membranes   总被引:17,自引:5,他引:12       下载免费PDF全文
The hybrid cell B6 line, which synthesizes large amounts of hyaluronate as the predominant glycosaminoglycan, was grown in the presence of [3H]glucosamine. The [3H]hyaluronate has a high molecular weight and was excluded by Sephacryl S-1000. After disruption of the cells the [3H]hyaluronate could further be elongated by incubation with UDP-GlcNAc and UDP-[14C]GlcA, yielding a hybrid molecule of hyaluronate labelled with [3H]GlcNAc and [14C]GlcA. Treatment of the cells with hyaluronidase before disruption eliminated the large [3H]hyaluronate and elongation of nascent chains in vitro commenced from low-molecular-weight chains. Thus nascent hyaluronate chains were degraded extracellularly by hyaluronidase and were therefore synthesized at the inner side of plasma membranes and extruded to the cell surface.  相似文献   

7.
The process of lens regeneration in newts involves the dedifferentiation of pigmented iris epithelial cells and their subsequent conversion into lens fibers. In vivo this cell-type conversion is restricted to the dorsal region of the iris. We have examined the patterns of hyaluronate accumulation and endogenous hyaluronidase activity in the newt iris during the course of lens regeneration in vivo. Accumulation of newly synthesized hyaluronate was estimated from the uptake of [3H]glucosamine into cetylpyridinium chloride-precipitable material that was sensitive to Streptomyces hyaluronidase. Endogenous hyaluronidase activity was determined from the quantity of reducing N-acetylhexosamine released upon incubation of iris tissue extract with exogenous hyaluronate substrate. We found that incorporation of label into hyaluronate was consistently higher in the regeneration-activated irises of lentectomized eyes than in control irises from sham-operated eyes. Hyaluronate labeling was higher in the dorsal (lens-forming) region of the iris than in ventral (non-lens-forming) iris tissue during the regeneration process. Label accumulation into hyaluronate was maximum between 10 and 15 days after lentectomy, the period of most pronounced dedifferentiation in the dorsal iris epithelium. Both normal and regenerating irises demonstrated a high level of endogenous hyaluronidase activity with a pH optimum of 3.5-4.0. Hyaluronidase activity was 1.7 to 2 times higher in dorsal iris tissue than in ventral irises both prior to lentectomy and throughout the regeneration process. We suggest that enhanced hyaluronate accumulation may facilitate the dedifferentiation of iris epithelial cells in the dorsal iris and prevent precocious withdrawal from the cell cycle. The high level of hyaluronidase activity in the dorsal iris may promote the turnover and remodeling of extracellular matrix components required for cell-type conversion.  相似文献   

8.
Hyaluronate in cultured skin fibroblasts derived from patients with Werner's syndrome, who excrete large amounts of urinary hyaluronate, was investigated. The amount of hyaluronate secreted into the medium by Werner's fibroblasts was 2-3-times that of normal fibroblasts, whereas no difference in enzyme activities related to the degradation of hyaluronate was found. Werner's fibroblasts were then cultured in the presence of [3H]glucosamine, and the amount of [3H]hyaluronate and its chain lengths in the medium and matrix (trypsinate) fractions were compared with those of normal cells. No significant difference in the chain length of hyaluronate was observed between normal and Werner's fibroblasts. On the other hand, a significant increase of hyaluronate was found in the matrix fraction of Werner's fibroblasts when the cells reached confluency. In addition, a hyaluronate of small chain length was found in the matrix fraction of Werner's fibroblasts, although this was absent from that of normal cells. It was concluded that the constituents of the extracellular matrix of Werner's fibroblasts differed from those of normal cells, characterized by the presence of a large amount of hyaluronate and a relatively small hyaluronate chain.  相似文献   

9.
The effect of tunicamycin (TM) on the synthesis and secretion of sulfated proteoglycans and hyaluronate was examined in chick embryo fibroblasts and chondrocytes. The incorporation of the precursors [3H]glucosamine, [3H]mannose and [35S]sulfate into glycoconjugates in both the cell layer and medium of cultures was determined. In the chick embryo fibroblast, but not in the chondrocyte, synthesis of sulfated proteoglycan was inhibited 60–75% by TM (5 × 10−8 M), while synthesis of hyaluronate and protein was only inhibited slightly. The inhibition of sulfate incorporation into glycosaminoglycans of the chick embryo fibroblast was overcome to a great extent by addition of β-xyloside, which provides an exogenous initiator for chondroitin sulfate synthesis. TM treatment also altered cell shape and surface morphology in chick embryo fibroblasts, as observed by phase contrast and scanning electron microscopy (SEM). Cells treated with TM became rounded, and increased numbers of microvilli and blebs appeared on the cell surface. These alterations in cell morphology were reversed by removal of TM, but not by exogenous addition of xyloside, chondroitin sulfate or the adhesive cell surface glycoprotein fibronectin. These results demonstrate that TM inhibits synthesis of sulfated proteoglycans in the chick embryo fibroblast and causes a dramatic alteration in cell shape and surface morphology.  相似文献   

10.
Arterial basement membrane-like material was prepared by a sonication-differential centrifugation technique from cultures of rabbit aortic myomedial cells after metabolic labelling with [35S]sulphate and [3H]glucosamine. Labelled glycosaminoglycans were obtained from isolated basement membrane-like material by proteinase digestion and gel filtration. Glycosaminoglycans were identified by a combination of Sephadex G-50 chromatography and sequential degradation with nitrous acid, Streptomyces hyaluronidase, testicular hyaluronidase and chondroitinase ABC. The data showed that heparan sulphate and chondroitin sulphate were the predominant glycosaminoglycans of myomedial basement membrane-like material. Heparan sulphate accounted for about 55% of [3H]glucosamine-labelled glycosaminoglycans. In addition small amounts of hyaluronic acid was present. Only trace amounts of dermatan sulphate was found. The glycosaminoglycans were analysed by DEAE-cellulose chromatography. Two major peaks were found in the chromatogram consistent with the predominance of heparan sulphate and chondroitin sulphate.  相似文献   

11.
Hyaluronate degradation in 3T3 and simian virus-transformed 3T3 cells   总被引:4,自引:0,他引:4  
The cellular control of hyaluronate levels was examined in cultures of simian virus 40-transformed 3T3 (SV3T3) and 3T3 cells which are known to differ in their metabolism of hyaluronate. When [3H]hyaluronate was added to cultures of the two cell lines, four times more ligand was bound per mg of protein by the SV3T3 cells than by the 3T3 cells. Of the bound [3H] hyaluronate, 40% was degraded by the SV3T3 cells to oligosaccharides characteristic of the breakdown of hyaluronate, but only 2% was degraded by 3T3 cells. Hyaluronidase activity was found in the cell layer and medium of the SV3T3 cultures, but was not detectable in 3T3 cells. The SV3T3 enzyme was active only at acidic pH, but at neutral pH the secreted SV3T3 hyaluronidase was thermally more stable then the cell-associated enzyme. In contrast, both cell lines were found to contain similar amounts of beta-glucuronidase and beta-N-acetylglucosaminidase activity. We conclude that the elevated capacity of SV3T3 cells to degrade hyaluronate may be partially responsible for their lack of the hyaluronate-containing pericellular coat which is prominent around 3T3 cells.  相似文献   

12.
High-affinity, cell surface binding sites for hyaluronate were demonstrated on highly invasive human bladder carcinoma cells. These binding sites were shown to be specific for hyaluronate, saturable and exhibit a Km of 0.94 x 10(-9) M and a Bmax of 65 ng hyaluronate/10(6) cells. The binding of [3H]hyaluronate to a fixed cell-affinity column was competed with unlabeled hyaluronate and hyaluronate-hexasaccharide but not with hyaluronate-tetrasaccharide, chondroitin sulfate, heparin or non-sulfated dextran. Pre-treatment of cells with protease destroyed the binding activity whereas pretreatment with Streptomyces hyaluronidase to reveal occupied binding sites had no effect. No hyaluronate-binding activity was observed on normal human fibroblasts.  相似文献   

13.
The present study examined the effects of high doses of vanadate on glycosaminoglycan (GAG) synthesis and tyrosine phosphorylation in rabbit chondrocytes in confluent cultures. Although 6 microM vanadate increased the incorporation of [3H]glucosamine into chondroitin sulfate proteoglycans twofold, 40-60 microM vanadate suppressed this incorporation fourfold. Although 6 microM vanadate had little effect on [3H]glucosamine incorporation into hyaluronate, 40-60 microM vanadate increased this incorporation threefold. Chemical analyses confirmed that the increase in [3H]glucosamine incorporation into hyaluronate and the decrease in the incorporation into chondroitin sulfate proteoglycan correlated with increased hyaluronate content and decreased chondroitin sulfate content in the cell layers of vanadate-transformed cells. Chondrocytes exposed to 40-60 microM vanadate became typically transformed spindlelike cells. Furthermore, vanadate, at 6 and 60 microM, increased the overall level of phosphotyrosine by 8- and 31-fold, respectively, and 60 microM vanadate enhanced phosphorylation of many phosphotyrosine-containing proteins. These observations suggest that vanadate induces transformation-associated changes in the pattern of GAG synthesis when it induces excess phosphorylation on tyrosine in chondrocyte proteins.  相似文献   

14.
Mesodermal cells in the developing chick embryo limb bud appear morphologically homogeneous until stage 21. At stage 22 the prechondrogenic and premyogenic areas begin to condense, culminating in the appearance of cartilage and muscle by stage 25-26. We have examined changes in the hyaluronate-dependent pericellular matrices elaborated by mesodermal cells of the limb bud from different developmental stages and the corresponding changes in production of cell surface-associated and secreted glycosaminoglycans. When placed in culture, most early mesodermal cells (stage 17 lateral plate and stage 19 limb bud) exhibited pericellular coats as visualized by the exclusion of particles. These coats were removed by treatment of the cultures with Streptomyces hyaluronidase. Cells from stage 20-21 limb buds (precondensation) had smaller coats, whereas cells derived from stage 22, 24, and 26 limb buds (condensed chondrogenic and myogenic regions) lacked coats. However, coats were reformed during subsequent cytodifferentiation of chondrocytes; chondrocytes from stage 28 and 30 limb buds, and more mature chondrocytes from stage 38 tibiae, had pericellular coats. Thus, cytodifferentiation of cartilage is accompanied by extensive intercellular matrix accumulation in vivo and reacquisition of pericellular coats in vitro. Although their structure was still dependent on hyaluronate, chondrocyte coats were associated with increased proteoglycan content compared to the coats of early mesodermal cells. The amount of incorporation of [3H]acetate into cell surface hyaluronate remained relatively constant from stages 17 to 38, whereas in the medium compartment, incorporation into hyaluronate was more than 4-fold greater by stage 17 and 19 mesodermal cells than by cells from stages between 20 and 38. However, there was a progressive increase in incorporation into cell surface and medium chondroitin sulfate throughout these developmental stages. Thus, at the time of cellular condensation in the limb bud in vivo, we have observed a reduction in size of hyaluronate-dependent pericellular coats and a dramatic change in the relative proportion of hyaluronate and chondroitin sulfate produced by the mesodermal cells in vitro.  相似文献   

15.
Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine and [35S]-sulfate for varying periods of time. Incorporation of 3H into macromolecules appearing in the medium was linear after approximately 45 min, and incorporation of 35S was linear after approximately 30 min. The amounts of 35S-proteoglycan formed by each of the cultures during 5-h incubations were compared and were found to be fairly similar for the six lines, varying from 0.08 to 0.14 nmol sulfate/microgram DNA. Isolated 3H,35S-glycosaminoglycans were then treated with chondroitin ABC lyase to characterize the location and degree of sulfation. Results indicated a considerable variation in completeness of chondroitin/dermatan sulfation and in proportions of 6-sulfation to 4-sulfation among the various lines. However these variations did not seem to be related to whether the cells were from normals or diabetics. 3H,35S-Labeled disaccharides were isolated and ratios of 3H to 35S determined in order to calculate the [3H]glucosamine dilution by endogenous glucosamine derived from glucose or other sources during the period of incubation. Dilutions varied widely from 160- to 635-fold among the different cell lines, but the variations did not seem to be related to whether the cells were from normals or diabetics.  相似文献   

16.
Mouse oocytes secrete a factor that enables cumulus cells to undergo expansion in response to FSH (1 microg/ml), whereas expansion of the porcine cumulus oophorus has been shown to be independent of the oocyte. The aim of this study was to assess FSH-induced synthesis of hyaluronic acid (HA) by porcine cumulus cells before and after oocytectomy. In addition, we studied the effect of insulin-like growth factor-I (IGF-I) on the ability of cumulus cells to synthesize and retain HA in response to FSH in serum-free medium. Porcine oocyte-cumulus complexes and complexes from which the oocytes had been removed by oocytectomy were cultured for 24 h in the presence of 2.5 microCi of D-[6-(3)H]glucosamine hydrochloride, fetal calf serum (FCS, 5%), and FSH. After 24 h, incorporation of [(3)H]glucosamine into HA was measured either in complexes alone (retained HA) or in medium plus complexes (total HA). Specificity of incorporation of radioactivity into HA was confirmed by the sensitivity to highly specific Streptomyces hyaluronidase. Our results suggest that 1) the synthesis of HA by pig cumulus cells in vitro is stimulated by FSH and that oocytectomy does not change this synthesis; 2) oocytes do not influence retention of HA within the complex; 3) FSH-induced synthesis of HA by cumulus cells is decreased in medium with polyvinylpyrrolidone (PVP)-supplemented (total and retained HA) compared to FCS-supplemented medium; 4) IGF-I enabled cumulus cells to synthesize HA in response to FSH in PVP-supplemented medium in a manner similar to that observed when serum is present in the medium.  相似文献   

17.
This study demonstrates that the dorsal ectoderm of the stage 14 chick embryo synthesizes hyaluronic acid. About 49 to 52% of the H3 glucosamine-labeled glycosaminoglycan that is synthesized by explanted ectoderm can be identified as hyaluronic acid on the basis of its susceptibility to Streptomyces hyaluronidase or isolation of chondroitinase ABC digestion products. In addition, autoradiographic evidence shows that the ectoderm, unlike adjacent tissues like epithelial somites or neural tube, incorporates glucosamine into hyaluronidase-sensitive material which becomes largely extracellular and localized in the subectodermal cell-free space. Ultrastructural evidence shows that there is a fine fibrillar matrix between the ectodermal cells and in the subectodermal spaces when tannic acid is included in the primary fixative. This material resembles authentic hyaluronate, similarly fixed, and is absent when tannic acid is omitted from the fixative or when embryos have been previously treated in ovo with Streptomyces hyaluronidase. The concomitant reduction in the intercellular and subectodermal cell-free spaces after in ovo treatment with Streptomyces hyaluronidase supports the hypothesis that the dorsal ectoderm plays a morphogenetic role by contributing hyaluronate to the forming extracellular spaces. It is proposed that ectodermally derived hyaluronate might influence the morphogenesis of subjacent tissues such as the dermatome and neural crest.  相似文献   

18.
Conditions were established for short-term primary suspension culture of chondrocytes from the Swarm rat chondrosarcoma. Proteoglycan and hyaluronate synthesis on Day 0 to Day 2 in culture was investigated and compared with that for plated cultures. Incorporation of [35S]sulfate into proteoglycans was the same for both suspension and plated cultures. 35S-Proteoglycan synthesis decreased by about 80% between Days 0 and 1 irrespective of culture conditions. Suspension culture chondrocytes synthesized proteoglycans which were very similar to those made in plated cultures, with respect to hydrodynamic size, glycosaminoglycan, chain length, and composition. [3H]Hyaluronate synthesis accounted for 18 and 23% of the total 3H-glycosaminoglycans synthesized from [3H]glucosamine by suspension and plated cultures, respectively. Suspension culture chondrocytes responded to exogenous hyaluronate (1 mg/ml) by reducing their 35S-proteoglycan synthesis by about 50%. [3H]Hyaluronate synthesis was inhibited by 13% under these conditions. The inhibition was dependent on the concentration of exogenous hyaluronate and reached a plateau level within 2 h. Plated chondrocyte cultures showed little or no response to hyaluronate. Suspension cultures of chondrocytes were prelabeled with [3H]lysine and lysed, and a heavy membrane fraction (12,000g) was extracted with the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. A Sepharose-hyaluronate affinity gel was used to show that the extract contained hyaluronate binding 3H-labeled proteins and evidence was obtained suggesting that these came from the external face of the plasma membrane.  相似文献   

19.
Human-embryo fibroblasts were synchronized by means of colchicine and cytochalasin, and the production of hyaluronate was determined by [3H]glucosamine incorporation and ion-exchange chromatography. Cells arrested by colchicine synthesized small amounts of hyaluronate, whereas cells blocked by cytochalasin were stimulated in hyaluronate production. When the colchicine block was released, there was an increased synthesis of hyaluronate, which appeared first in the cellular fraction and was then shed into the culture medium. After release of the cytochalasin block, the hyaluronate production declined to that found with unsynchronized cells. A comparable increase of hyaluronate synthase activity was observed during mitosis. When hyaluronate synthesis was blocked by periodate-oxidized UDP-glucuronic acid, the cells were arrested in mitosis before rounding of cells. These results suggest that hyaluronate synthesis is required for detachment and rounding of cells during mitosis.  相似文献   

20.
Monensin (10nm-1mum) inhibited the incorporation of [(35)S]sulphate and [(3)H]glucosamine into proteoglycans by rat chondrosarcoma cells, but the incorporation of [(3)H]glucosamine into hyaluronate was unaffected. The results suggest that hyaluronate synthesis occurs in a cell compartment separate from chondroitin sulphate synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号