首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The secretory and endocytic pathways within higher cells consist of multiple membrane-bound compartments, each with a characteristic composition, through which proteins move on their way to or from the cell surface. Sorting of proteins within this system is achieved by their selective incorporation into budding vesicles and the specific fusion of these with an appropriate target membrane. Cytosolic coat proteins help to select vesicle contents, while fusion is mediated by membrane proteins termed SNAREs present in both vesicles and target membranes. SNAREs are not the sole determinants of target specificity, but they lie at the heart of the fusion process. The complete set of SNAREs is known in yeast, and analysis of their locations, interactions and functions in vivo gives a comprehensive picture of the traffic routes and the ways in which organelles such as the Golgi apparatus are formed. The principles of protein and lipid sorting revealed by this analysis are likely to apply to a wide variety of eukaryotic cells.  相似文献   

2.
Membrane trafficking involves the collection of cargo into nascent transport vesicles that bud off from a donor compartment, translocate along cytoskeletal tracks, and then dock and fuse with their target membranes. Docking and fusion involve initial interaction at a distance (tethering), followed by a closer interaction that leads to pairing of vesicle SNARE proteins (v-SNAREs) with target membrane SNAREs (t-SNAREs), thereby catalyzing vesicle fusion. When tethering cannot take place, transport vesicles accumulate in the cytoplasm. Tethering is generally carried out by two broad classes of molecules: extended, coiled-coil proteins such as the so-called Golgin proteins, or multi-subunit complexes such as the Exocyst, COG or Dsl complexes. This review will focus on the most recent advances in terms of our understanding of the mechanism by which tethers carry out their roles, and new structural insights into tethering complex transactions.  相似文献   

3.
Intracellular membrane trafficking along endocytic and secretory transport pathways plays a critical role in diverse cellular functions including both developmental and pathological processes. Briefly, proteins and lipids destined for transport to distinct locations are collectively assembled into vesicles and delivered to their target site by vesicular fusion. SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins are required for these events, during which v-SNAREs (vesicle SNAREs) interact with t-SNAREs (target SNAREs) to allow transfer of cargo from donor vesicle to target membrane. Recently, the t-SNARE family member, syntaxin-6, has been shown to play an important role in the transport of proteins that are key to diverse cellular dynamic processes. In this paper, we briefly discuss the specific role of SNAREs in various mammalian cell types and comprehensively review the various roles of the Golgi- and endosome-localized t-SNARE, syntaxin-6, in membrane trafficking during physiological as well as pathological conditions.  相似文献   

4.
Abstract

Membrane trafficking involves the collection of cargo into nascent transport vesicles that bud off from a donor compartment, translocate along cytoskeletal tracks, and then dock and fuse with their target membranes. Docking and fusion involve initial interaction at a distance (tethering), followed by a closer interaction that leads to pairing of vesicle SNARE proteins (v-SNAREs) with target membrane SNAREs (t-SNAREs), thereby catalyzing vesicle fusion. When tethering cannot take place, transport vesicles accumulate in the cytoplasm. Tethering is generally carried out by two broad classes of molecules: extended, coiled-coil proteins such as the so-called Golgin proteins, or multi-subunit complexes such as the Exocyst, COG or Dsl complexes. This review will focus on the most recent advances in terms of our understanding of the mechanism by which tethers carry out their roles, and new structural insights into tethering complex transactions.  相似文献   

5.
高等植物细胞含有复杂的内膜系统,通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控,如Coat、SM、Tether、SNARE和Rab蛋白等,其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白,分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE,两类SNARE结合形成SNARE复合体,促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

6.
拟南芥SNARE因子在膜泡运输中的功能   总被引:1,自引:0,他引:1  
金红敏  李立新 《植物学报》2010,45(4):479-491
高等植物细胞含有复杂的内膜系统, 通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控, 如Coat、SM、Tether、SNARE和Rab蛋白等, 其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白, 分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE, 两类SNARE结合形成SNARE复合体, 促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

7.
Many proteins are transported to the plant vacuole through the secretory pathway in small transport vesicles by a series of vesicle budding and fusion reactions. Vesicles carrying vacuolar cargo bud from the trans-Golgi network are thought to fuse with a pre-vacuolar compartment before being finally transported to the vacuole. In mammals and yeast, the fusion of a vesicle with its target organelle is mediated by a 20S protein complex containing membrane and soluble proteins that appear to be conserved between different species. A number of membrane proteins have been identified in plants that show sequence similarity with a family of integral membrane proteins (t-SNAREs) on target organelles that are required for the fusion of transport vesicles with that organelle. However, the biochemical function of these proteins has remained elusive. Here, we demonstrate for the first time the formation of a 20S complex in plants that has characteristics of complexes involved in vesicle fusion. This complex contains AtPEP12p, an Arabidopsis protein thought to be involved in protein transport to the prevacuolar compartment. In addition, we have shown that AtPEP12p can bind to alpha-SNAP, indicating that AtPEP12p does indeed function as a SNAP receptor or SNARE. These preliminary data suggest that AtPEP12p may function jointly with alpha-SNAP and NSF in the fusion of transport vesicles containing vacuolar cargo proteins with the pre-vacuolar compartment.  相似文献   

8.
Clathrin-coated vesicles mediate diverse processes such as nutrient uptake, downregulation of hormone receptors, formation of synaptic vesicles, virus entry, and transport of biosynthetic proteins to lysosomes. Cycles of coat assembly and disassembly are integral features of clathrin-mediated vesicular transport (Fig. 1a). Coat assembly involves recruitment of clathrin triskelia, adaptor complexes and other factors that influence coat assembly, cargo sequestration, membrane invagination and scission (Fig. 1a). Coat disassembly is thought to be essential for fusion of vesicles with target membranes and for recycling components of clathrin coats to the cytoplasm for further rounds of vesicle formation. In vitro, cytosolic heat-shock protein 70 (Hsp70) and the J-domain co-chaperone auxilin catalyse coat disassembly. However, a specific function of these factors in uncoating in vivo has not been demonstrated, leaving the physiological mechanism and significance of uncoating unclear. Here we report the identification and characterization of a Saccharomyces cerevisiae J-domain protein, Aux1. Inactivation of Aux1 results in accumulation of clathrin-coated vesicles, impaired cargo delivery, and an increased ratio of vesicle-associated to cytoplasmic clathrin. Our results demonstrate an in vivo uncoating function of a J domain co-chaperone and establish the physiological significance of uncoating in transport mediated by clathrin-coated vesicles.  相似文献   

9.
Eukaryotic cells distribute materials among intracellular organelles and secrete into the extracellular space through cargo-loaded vesicles. A concluding step during vesicular transport is the fusion of a transport vesicle with a target membrane. SNARE proteins are essential for all vesicular fusion steps, thus they possibly comprise a conserved membrane fusion machinery. According to the "zipper" model, they assemble into stable membrane-bridging complexes that gradually bring membranes in juxtaposition. Hence, complex formation may provide the necessary energy for overcoming the repulsive forces between two membranes. During the last years, detailed structural and functional studies have extended the evidence that SNAREs are mostly in accord with the zipper model. Nevertheless, it remains unclear whether SNARE assembly between membranes directly leads to the merger of lipid bilayers.  相似文献   

10.
Homeostatic cell physiology is preserved through the fidelity of the cell membranes restitution. The task is accomplished through the assembly of the precisely duplicated segments of the cell membranes, and transport to the site of their function. Here we examined the mechanism that initiates and directs the restitution of the intra- and extracellular membranes of gastric mucosal cell. The homeostatic restitution of gastrointestinal epithelial cell membrane components was investigated by studying the lipidomic processes in endoplasmic reticulum (ER) and Golgi. The biomembrane lipid synthesis during the formation of transport vesicles in the systems containing isolated organelle and the cell-specific cytosol (Cyt) from rat gastric mucosal epithelial cells was assessed. The results revealed that lipids of ER transport vesicle and the transmembrane and intravesicular cargo are delivered en bloc to the point of destination. En bloc delivery of proteins, incorporated into predetermined in ER lipid environment, ensures fidelity of the membrane modification in Golgi and the restitution of the lipid and protein elements that are consistent with the organelle and the cell function. The mechanism that maintains apical membrane restitution is mediated through the synthesis of membrane segments containing ceramide (Cer). The Cer-containing membranes and protein cargo are further specialized in Golgi. The portion of the vesicles destined for apical membrane renewal contains glycosphingolipids and phosphatidylinositol 3-phosphate. The vesicles containing phosphatidylinositol 4-phosphate are directed to endosomes. Our findings revealed that the preservation of the physiological equilibrium in cell structure and function is attributed to (1) a complete membrane segment synthesis in ER, (2) its transport in the form of ER-transport vesicle to Golgi, (3) the membrane components-defined maturation of lipids and proteins in Golgi, and (4) en bloc transfer of the new segment of the membrane to the cell apical membrane or intracellular organelle.  相似文献   

11.
In mammals, coat complex II (COPII)-coated transport vesicles deliver secretory cargo to vesicular tubular clusters (VTCs) that facilitate cargo sorting and transport to the Golgi. We documented in vitro tethering and SNARE-dependent homotypic fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers characteristic of VTCs ( Xu, D., and Hay, J. C. (2004) J. Cell Biol. 167, 997-1003). COPII vesicles thus appear to contain all necessary components for homotypic tethering and fusion, providing a pathway for de novo VTC biogenesis. Here we demonstrate that antibodies against the endoplasmic reticulum/Golgi SNARE Syntaxin 5 inhibit COPII vesicle homotypic tethering as well as fusion, implying an unanticipated role for SNAREs upstream of fusion. Inhibition of SNARE complex access and/or disassembly with dominant-negative alpha-soluble NSF attachment protein (SNAP) also inhibited tethering, implicating SNARE status as a critical determinant in COPII vesicle tethering. The tethering-defective vesicles generated in the presence of dominant-negative alpha-SNAP specifically lacked the Rab1 effectors p115 and GM130 but not other peripheral membrane proteins. Furthermore, Rab effectors, including p115, were shown to be required for homotypic COPII vesicle tethering. Thus, our results demonstrate a requirement for SNARE-dependent tether recruitment and function in COPII vesicle fusion. We anticipate that recruitment of tether molecules by an upstream SNARE signal ensures that tethering events are initiated only at focal sites containing appropriately poised fusion machinery.  相似文献   

12.
The compartmentalization of eukaryotic cells is reliant on the fidelity of vesicle-mediated intracellular transport. Vesicles deliver their cargo via membrane fusion, a process requiring membrane tethers, Sec1/Munc18 (SM) proteins, and SNAREs. These components function in concert to ensure that membrane fusion is efficient and accurate, but the mechanisms underlying their cooperative action are still in many respects mysterious. In this brief review, we highlight recent progress toward a more integrative understanding of the vesicle fusion machinery. We focus particular attention on cryo-electron microscopy structures of intact multisubunit tethers in complex with SNAREs or SM proteins, as well as a structure of an SM protein bound to multiple SNAREs. The insights gained from this work emphasize the advantages of studying the fusion machinery intact and in context.  相似文献   

13.
Specificity of vesicular transport is determined by pair-wise interaction between receptors (SNAP receptors or SNAREs) associated with a transport vesicle and its target membrane. Two additional factors, N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment protein (SNAP) are ubiquitous components of vesicular transport pathways. However, the precise role they play is not known. On the basis that NSF and SNAP can be recruited to preformed SNARE complexes, it has been proposed that NSF- and SNAP-containing complexes are formed after SNARE-dependent docking of transport vesicles. This would enable ATPase-dependent complex disassembly to be coupled directly to membrane fusion. Alternatively, binding and release of NSF/SNAP may occur before vesicle docking, and perhaps be involved in the activation of SNAREs. To gain more information about the point at which so-called 20S complexes form during the transport vesicle cycle, we have examined NSF/SNAP/SNARE complex turnover on clathrin-coated vesicle–derived membranes in situ. This has been achieved under conditions in which the extent of membrane docking can be precisely monitored. We demonstrate by UV-dependent cross-linking experiments, coupled to laser light-scattering analysis of membranes, that complexes containing NSF, SNAP, and SNAREs will form and dissociate on the surface of undocked transport vesicles.  相似文献   

14.
Syntaxins are cytoplasmically oriented integral membrane soluble NEM-sensitive factor receptors (SNAREs; soluble NEM-sensitive factor attachment protein receptors) thought to serve as targets for the assembly of protein complexes important in regulating membrane fusion. The SNARE hypothesis predicts that the fidelity of vesicle traffic is controlled in part by the correct recognition of vesicle SNAREs with their cognate target SNARE partner. Here, we show that in the exocrine acinar cell of the pancreas, multiple syntaxin isoforms are expressed and that they appear to reside in distinct membrane compartments. Syntaxin 2 is restricted to the apical plasma membrane whereas syntaxin 4 is found most abundantly on the basolateral membranes. Surprisingly, syntaxin 3 was found to be localized to a vesicular compartment, the zymogen granule membrane. In addition, we show that these proteins are capable of specific interaction with vesicle SNARE proteins. Their nonoverlapping locations support the general principle of the SNARE hypothesis and provide new insights into the mechanisms of polarized secretion in epithelial cells.  相似文献   

15.
BACKGROUND: In neurons, release of neurotransmitter occurs through the fusion of synaptic vesicles with the plasma membrane. Many proteins required for this process have been identified, with the SNAREs syntaxin 1, SNAP-25, and synaptobrevin thought to constitute the core fusion machinery. However, there is still a large gap between our understanding of individual protein-protein interactions and the functions of these proteins revealed by perturbations in intact synaptic preparations. To bridge this gap, we have used purified synaptic vesicles, together with artificial membranes containing core-constituted SNAREs as reaction partners, in fusion assays. RESULTS: By using complementary experimental approaches, we show that synaptic vesicles fuse constitutively, and with high efficiency, with proteoliposomes containing the plasma membrane proteins syntaxin 1 and SNAP-25. Fusion is inhibited by clostridial neurotoxins and involves the formation of SNARE complexes. Despite the presence of endogenous synaptotagmin, Ca(2+) does not enhance fusion, even if phosphatidylinositol 4,5-bisphosphate is present in the liposome membrane. Rather, fusion kinetics are dominated by the availability of free syntaxin 1/SNAP-25 acceptor sites for synaptobrevin. CONCLUSIONS: Synaptic vesicles are constitutively active fusion machines, needing only synaptobrevin for activity. Apparently, the final step in fusion does not involve the regulatory activities of other vesicle constituents, although these may be involved in regulating earlier processes. This is particularly relevant for the calcium-dependent regulation of exocytosis, which, in addition to synaptotagmin, requires other factors not present in the vesicle membrane. The in vitro system described here provides an ideal starting point for unraveling of the molecular details of such regulatory events.  相似文献   

16.
Mammalian cells play a dominant role in the industrial production of biopharmaceutical proteins. However, the productivity of producer cells is often hindered by a bottleneck in the saturated secretory pathway, where a sophisticated mechanism of vesicle trafficking is mediated by numerous proteins and their complexes, among which are the cross‐kingdom conserved SNAREs [soluble NSF (N‐ethylmaleimide‐sensitive factor) receptor]. The SNAREs assemble into complexes by means of four interactive α‐helices and, thus, trigger the fusion of transport vesicles with the respective target membranes. We report that the transgenic expression of exocytic SNAREs, which control the fusion of secretory vesicles to the plasma membrane, differentially impacts the secretory capacity of HEK‐293, HeLa, and CHO‐K1 cells. While other exocytic SNAREs have no effect or a negative effect, SNAP‐23 [synaptosome‐associated protein of 23 kDa] and VAMP8 [vesicle‐associated membrane protein 8] specifically increase the production of recombinant proteins when they are ectopically and stably expressed in mammalian cells. The targeted and effective intervention in the secretory capacity of SNARE proteins is a novel engineering strategy, which could lead to the development of new therapies by increasing the production of biopharmaceutical proteins or by boosting the secretion of cell implants in cell therapy initiatives. Biotechnol. Bioeng. 2011; 108:611–620. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Selective protein export from the endoplasmic reticulum is mediated by COPII vesicles. Here, we investigated the dynamics of fluorescently labelled cargo and non‐cargo proteins during COPII vesicle formation using single‐molecule microscopy combined with an artificial planar lipid bilayer. Single‐molecule analysis showed that the Sar1p–Sec23/24p‐cargo complex, but not the Sar1p–Sec23/24p complex, undergoes partial dimerization before Sec13/31p recruitment. On addition of a complete COPII mixture, cargo molecules start to assemble into fluorescent spots and clusters followed by vesicle release from the planar membrane. We show that continuous GTPase cycles of Sar1p facilitate cargo concentration into COPII vesicle buds, and at the same time, non‐cargo proteins are excluded from cargo clusters. We propose that the minimal set of COPII components is required not only to concentrate cargo molecules, but also to mediate exclusion of non‐cargo proteins from the COPII vesicles.  相似文献   

18.
Synaptic vesicles fuse with the plasma membrane in response to Ca2+ influx, thereby releasing neurotransmitters into the synaptic cleft. The protein machinery that mediates this process, consisting of soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs) and regulatory proteins, is well known, but the mechanisms by which these proteins prime synaptic membranes for fusion are debated. In this study, we applied large‐scale, automated cryo‐electron tomography to image an in vitro system that reconstitutes synaptic fusion. Our findings suggest that upon docking and priming of vesicles for fast Ca2+‐triggered fusion, SNARE proteins act in concert with regulatory proteins to induce a local protrusion in the plasma membrane, directed towards the primed vesicle. The SNAREs and regulatory proteins thereby stabilize the membrane in a high‐energy state from which the activation energy for fusion is profoundly reduced, allowing synchronous and instantaneous fusion upon release of the complexin clamp.  相似文献   

19.
Vesicle traffic underpins cell homeostasis, growth and development in plants. Traffic is facilitated by a superfamily of proteins known as SNAREs ( soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) that interact to draw vesicle and target membrane surfaces together for fusion of the bilayers. Several recent findings now indicate that plant SNAREs might not be limited to the conventional 'housekeeping' activities commonly attributed to vesicle trafficking. In the past five years, six different SNAREs have been implicated in stomatal movements, gravisensing and pathogen resistance. These proteins almost certainly do contribute to specific membrane fusion events but they are also essential for signal transduction and response. Some SNAREs can modulate the activity of non-SNARE proteins, notably ion channels. Other examples might reflect SNARE interactions with different scaffolding and structural components of the cell.  相似文献   

20.
Synaptic vesicles are key organelles in neurotransmission. Their functions are governed by a unique set of integral and peripherally associated proteins. To obtain a complete protein inventory, we immunoisolated synaptic vesicles from rat brain to high purity and performed a gel-based analysis of the synaptic vesicle proteome. Since the high hydrophobicity of integral membrane proteins hampers their resolution by gel electrophoretic techniques, we applied in parallel three different gel electrophoretic methods for protein separation prior to MS. Synaptic vesicle proteins were subjected to either 1-D SDS-PAGE along with nano-LC ESI-MS/MS or to the 2-D gel electrophoretic techniques benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE, and double SDS (dSDS)-PAGE in combination with MALDI-TOF-MS. We demonstrate that the combination of all three methods provides a comprehensive survey of the proteinaceous inventory of the synaptic vesicle membrane compartment. The identified synaptic vesicle proteins include transporters, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), synapsins, rab and rab-interacting proteins, additional guanine nucleotide triphosphate (GTP) binding proteins, cytoskeletal proteins, and proteins modulating synaptic vesicle exo- and endocytosis. In addition, we identified novel proteins of unknown function. Our results demonstrate that the parallel application of three different gel-based approaches in combination with mass spectrometry permits a comprehensive analysis of the synaptic vesicle proteome that is considerably more complex than previously anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号