首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hee-Jin Ahn 《FEBS letters》2009,583(17):2922-386
FGF2 has been shown to enhance proliferation and maintain differentiation potential in hMSCs during in vitro propagation. In this study, we investigated the role of mitogen-activated protein kinase in the functions of FGF2 in hMSCs. We demonstrated that FGF2 induces the transient activation of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated protein kinase or p38 protein kinase. SP600125 and a dominant negative JNK1 significantly reduced the FGF2-enhanced proliferation of hMSCs. Treatment with SP600125 also diminished the activity of FGF2 in the maintenance of adipogenic and osteogenic differentiation potential. These results suggest that JNK signaling is involved in the FGF2-induced stimulation of the proliferation and the maintenance of differentiation potential in hMSCs.  相似文献   

2.
We investigated the effects of SP600125 (formerly called c-Jun N-terminal kinase (JNK) inhibitor II) on translation using cultured mouse cells. SP600125 (50 μM) treatment rapidly repressed overall protein synthesis, accompanied by a reduction in the mRNAs for housekeeping genes such as glyceraldehyde-3-phosphate dehydrogenase in the polysomal fraction. SP600125 decreased polysomes with a concomitant increase in free ribosomal subunits in the cytoplasm, suggesting that global translation was inhibited at the initiation step. A reporter analysis using exogenous mRNAs showed that SP600125 inhibited cap-dependent but not internal ribosome entry site-dependent translation. SP600125 significantly attenuated phosphorylation of components in the mTOR pathway, which is responsible for cap-dependent translation. In contrast to SP600125, short hairpin RNAs for JNK1 and JNK2 failed to affect overall protein synthesis. Collectively, SP600125 inhibits cap-dependent translation, independent of the JNK pathway.  相似文献   

3.
The c‐Jun N‐terminal kinase (JNK) is well known to play an important role in cell death signaling of the p75 neurotrophin receptor. However, little has been studied about a role of JNK in the signaling pathways of the tropomyosin‐related kinase A (TrkA) neurotrophin receptor. In this study, we investigated JNK inhibitor SP600125‐controlled TrkA‐dependent targets by proteomic analysis to better understand an involvement of JNK in TrkA‐mediated signaling pathways. PDQuest image analysis and protein identification results showed that hnRNP C1/C2, α‐tubulin, β‐tubulin homolog, actin homolog, and eIF‐5A‐1 protein spots were upregulated by ectopic expression of TrkA, whereas α‐enolase, peroxiredoxin‐6, PROS‐27, HSP70, PP1‐gamma, and PDH E1‐alpha were downregulated by TrkA, and these TrkA‐dependent upregulation and downregulation were significantly suppressed by SP600125. Notably, TrkA largely affected certain PTM(s) but not total protein amounts of the SP600125‐controlled TrkA‐dependent targets. Moreover, SP600125 strongly suppressed TrkA‐mediated tyrosine phosphorylation signaling pathways as well as JNK signaling, indicating that SP600125 could function as a TrkA inhibitor. Taken together, our results suggest that TrkA could play an important role in the cytoskeleton, cell death, cellular processing, and glucose metabolism through activation or inactivation of the SP600125‐controlled TrkA‐dependent targets.  相似文献   

4.
5.
6.
7.
Endothelin (ET), which is known as a vasoconstrictive peptide, is associated with a lot of biological functions. Although endothelin receptors are expressed in the central nervous system (CNS), little is known about the effects of endothelin on neuronal function. In this study, we reported that endothelins elongate cortical neurites via the endothelin A receptor. All the endothelin isoforms tested, endothelin-1, endothelin-2, and endothelin-3, promoted neurite elongation. ET-1-induced neurite elongation was specifically inhibited by treatment with BQ123, an antagonist for the endothelin A receptor. In addition, inhibition of ET-1-induced c-Jun N-terminal kinase (JNK) activation by treatment with SP600125, a JNK inhibitor, also prevented the ET-1-mediated promotion of neurite elongation. Thus, endothelin induces cortical neurite elongation through the endothelin A receptor by a mechanism dependent on JNK.  相似文献   

8.
9.
While analyzing the role of c‐Jun NH2‐terminal kinase (JNK) in neurogenesis in P19 embryonal carcinoma cells, we noticed that treatment with SP600125, a JNK inhibitor, increased the cell size markedly. SP600125‐induced enlargement of P19 cells was time‐ and dose‐dependent. The increased cell size in response to SP600125 was also detected in B6mt‐1 embryonic stem cells. SP600125 treatment inhibited cell growth and increased DNA contents, indicating the inhibition of cell proliferation resulting from endoreduplication. Concurrently, the gene expression of p21, a regulator of G2/M arrest as well as G1 arrest, was increased in cells treated with SP600125. The increased cell size in response to SP600125 was detected even in P19 cells treated with colcemide, an inhibitor of cell cycle progression at the metaphase. The present study suggests that treatment with SP600125 progresses the cell cycle, skipping cytokinesis in P19 cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Fulminant hepatic failure (FHF) is a dramatic clinical syndrome characterized by massive hepatocyte apoptosis and very high mortality. The c-Jun-N-terminal kinase (JNK) pathway is an important stress-responsive kinase activated by several forms of liver injury. The aim of this study is to assess the role of JNK during D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced liver injury, an experimental model of FHF, using SP600125, a small molecule JNK-specific inhibitor. Mice were given an intraperitoneal dose of GalN (800 microg/g body weight)/LPS (100 ng/g body weight) with and without subcutaneous SP600125 (50 mg/kg body weight) treatment (at 6 and 2 h before and 2 h after GalN/LPS administration). GalN/LPS treatment induced sustained JNK activation. Administration of SP600125 diminished JNK activity, suppressed lethality and the elevation of both serum alanine aminotransferase and aspartate aminotransferase, but had no effect on serum tumor necrosis factor-alpha, and reduced hepatocyte apoptosis after GalN/LPS administration. In support of the role of JNK in promoting the mitochondria-mediated apoptosis pathway, SP600125 prevented cytochrome c release, caspase-9 and caspase-3 activity. Moreover, SP600125 downregulated the mRNA and protein expression of Bad in the early periods following GalN/LPS injection and prevented Bid cleavage in the late periods. These results confirm the role of JNK as a critical apoptotic mediator in GalN/LPS-induced FHF. SP600125 has the potential to protect FHF by downregulating Bad and inhibiting Bid cleavage.  相似文献   

11.
Wang Y  Ji HX  Xing SH  Pei DS  Guan QH 《Life sciences》2007,80(22):2067-2075
Accumulating evidence suggests that c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in renal ischemia/reperfusion injury. However, the downstream mechanism that accounts for the proapoptotic actions of JNK during renal ischemia/reperfusion has not been elucidated. We report that SP600125, a potent, cell-permeable, selective, and reversible inhibitor of c-Jun N-terminal kinase (JNK), potently decreased renal epithelial tubular cell apoptosis induced by renal ischemia/reperfusion via suppression of the extrinsic pathway. This corresponds to the decrease in JNK phosphorylation at 20 min and c-Jun phosphorylation (Ser63/73) at 3 h after renal ischemia. Additionally, SP600125 attenuated the increased expression of FasL induced by ischemia/reperfusion at 3 h. The administration of SP600125 prior to ischemia was also protective. Thus, our findings imply that SP600125 can inhibit the activation of the JNK-c-Jun-FasL pathway and protect renal tubular epithelial cells against ischemia/reperfusion-induced apoptosis. Taken together, these results indicate that targeting the JNK pathway provides a promising therapeutic approach for renal ischemia/reperfusion injury.  相似文献   

12.
The c-Jun NH(2)-terminal kinase (JNK) subgroup of mitogen-activated protein kinases has been implicated largely in stress responses, but an increasing body of evidence has suggested that JNK also plays a role in cell proliferation and survival. We examined the effect of JNK inhibition, using either SP600125 or specific antisense oligonucleotides, on cell proliferation and cell cycle progression. SP600125 was selective for JNK in vitro and in vivo versus other kinases tested including ERK, p38, cyclin-dependent protein kinase 1 (CDK1), and CDK2. SP600125 inhibited JNK activity and KB-3 cell proliferation with the same dose dependence, suggesting that inhibition of proliferation was a direct consequence of JNK inhibition. Inhibition of proliferation by SP600125 was associated with an increase in the G(2)-M and apoptotic fractions of cells but was not associated with p53 or p21 induction. Antisense oligonucleotides to JNK2 but not JNK1 caused highly significant inhibition of cell proliferation. Wild-type mouse fibroblasts responded similarly with proliferation inhibition and apoptosis induction, whereas c-jun(-/-) fibroblasts were refractory to the effects of SP600125, suggesting that JNK signaling to c-Jun is required for cell proliferation. Studies in synchronized KB-3 cells indicated that SP600125 delayed transit time through S and G(2)-M phases. Correspondingly, JNK activity increased in late S phase and peaked in late G(2) phase. During synchronous mitotic progression, cyclin B levels increased concomitant with phosphorylation of c-Jun, H1 histone, and Bcl-2. In the presence of SP600125, mitotic progression was prolonged, and c-Jun phosphorylation was inhibited, but neither H1 nor Bcl-2 phosphorylation was inhibited. However, the CDK inhibitor roscovitine inhibited mitotic Bcl-2 phosphorylation. These results indicate that JNK, and more specifically the JNK2 isoform, plays a key role in cell proliferation and cell cycle progression. In addition, conclusive evidence is presented that a kinase other than JNK, most likely CDK1 or a CDK1-regulated kinase, is responsible for mitotic Bcl-2 phosphorylation.  相似文献   

13.
14.
Mitogen-activated protein kinases (MAPKs) are important regulators of aryl hydrocarbon receptor (AhR). An immense progress in MAPKs' biochemistry was attained with the discovery of their specific pharmacological inhibitors. Unfortunately, the inhibitors of JNK and ERK MAPKs, i.e. SP600125 and U0126, respectively, affect AhR-CYP1A signaling pathway because they are partial agonists of AhR and induce CYP1A genes. This implies that SP600125 and U0126 are inappropriate tools for studies of the role of MAPKs in AhR regulation. The results from studies using SP600125 or U126, past or future, should be interpreted with prudence regarding their stimulatory effects on AhR-CYP1A pathway.  相似文献   

15.
The effect of the pan c-Jun N-terminal kinase (JNK) inhibitor SP600125 on the proliferation of human lung carcinoma A549 cells has been evaluated. We have shown that SP600125 completely inhibited the proliferation of A549 cells, the cycle arrest being in G2/M phase. When cells were treated with SP600125 for >12h, a cell population with DNA content of 4n to 8n was detected. Moreover, the effect of SP600125 on the expression of cell cycle related proteins was an upregulation of p53 protein accompanied by an increase in its molecular mass. Prolonged SP600125 treatment downregulated p21, Bax and Mdm2 expression, but increased the level of the cellular p53-Mdm2 complex. Taken together, we show that SP600125 could induce G2/M cell cycle arrest and endoreduplication in a p21 independent manner, and that SP600125 could also post-translationally modify p53 to modify its function. Our data show that basic JNK activity plays an important role in the progression of the cell cycle at G2/M cell phase.  相似文献   

16.
Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells   总被引:2,自引:0,他引:2  
Huang Z  Chen D  Zhang K  Yu B  Chen X  Meng J 《Cellular signalling》2007,19(11):2286-2295
Myostatin, a member of the transforming growth factor beta (TGF-beta) superfamily, is a negative regulator of skeletal muscle growth. We found that myostatin could activate c-Jun N-terminal kinase (JNK) signaling pathway in both proliferating and differentiating C2C12 cells. Using small interfering RNA (siRNA) mediated activin receptor type IIB (ActRIIB) knockdown, the myostatin-induced JNK activation was significantly reduced, indicating that ActRIIB was required for JNK activation by myostatin. Transfection of C2C12 cells with TAK1-specific siRNA reduced myostatin-induced JNK activation. In addition, JNK could not be activated by myostatin when the expression of MKK4 was suppressed with MKK4-specific siRNA, suggesting that TAK1-MKK4 cascade was involved in myostatin-induced JNK activation. We also found that blocking JNK signaling pathway by pretreatment with JNK specific inhibitor SP600125, attenuated myostatin-induced upregulation of p21 and downregulation of the differentiation marker gene expression. Furthermore, it was also observed that the presence of SP600125 almost annulled the growth inhibitory role of myostatin. Our findings provide the first evidence to reveal the involvement of JNK signaling pathway in myostatin's function as a negative regulator of muscle growth.  相似文献   

17.
SP600125, an anthrapyrazolone inhibitor of c-jun N-terminal kinase (JNK), has been used to characterize the role of JNK in apoptotic pathways. In this study, we have demonstrated an additional novel anti-apoptotic action of this inhibitor in MIN6 cells, a mouse beta cell line. SP600125 induced CREB-dependent promoter activation by 2.8-fold at 20 microM, the concentration at which it inhibited c-jun-dependent promoter activation by 51%. There was a significant (P<0.01) increase in CREB phosphorylation (serine 133) at 5 min, which persisted for a period of 2h. Examination of signaling pathways upstream of CREB showed a 2.5-fold increase in the active phospho form of p38 MAPK. This finding was further confirmed by an in vitro kinase assay using ATF-2 as substrate. SB203580, an inhibitor of p38 MAPK, partially blocked SP600125-mediated activation of CREB. These observations suggest that SP600125 could be used as a small molecular weight activator of CREB.  相似文献   

18.
目的:探讨SP600125-c-Jun氨基末端激酶(JNK)特异性抑制剂对大鼠肺缺血/再灌注损伤的保护作用及机制。方法:复制在体大鼠原位单肺缺血/再灌注模型,随机分3组(n=10):假手术对照组(Control组)、缺血再灌注组(I/R组)与缺血再灌注+SP600125干预组(SP600125组)。实验结束时取肺组织测湿/干重比(W/D)、肺泡损伤率(IAR);采用蛋白印迹法检测肺组织磷酸化JNK(p-JNK)、JNK蛋白的表达;免疫组化法检测肺组织Bcl-2、Bax、Caspase-3蛋白的表达;原位末端标记法检测肺组织细胞凋亡指数(AI);电镜观察肺组织超微结构的改变。结果:SP600125组肺组织p-JNK、Bax、caspase-3的蛋白表达显著低于I/R组(均P<0.01),Bcl-2的蛋白表达及Bcl-2/Bax的比值显著高于I/R组(均P<0.01),AI、W/D及IAR显著低于I/R组(均P<0.01),肺组织超微结构损伤不同程度减轻。结论:SP600125可能通过抑制JNK信号通路,上调Bcl-2/Bax的比值减少caspase-3依赖性的肺细胞凋亡,从而减轻肺缺血/再灌注损伤。  相似文献   

19.
20.
A JNK inhibitor SP600125 inhibited cAMP-dependent proteolysis of GATA-6 by proteasomes around its IC50. We further examined the effects of SP600125 on the degradation of GATA-6 in detail, since an activator of JNK (anisomycin) is available. Interestingly, anisomycin immediately stimulated the export of nuclear GATA-6 into the cytoplasm, and then the cytoplasmic content of GATA-6 decreased slowly through degradation by proteasomes. Such an effect of anisomycin was inhibited by SP600125, indicating that the observed phenomenon might be linked to the JNK signaling pathway. The inhibitory effect of SP600125 could not be ascribed to the inhibition of PKA, since phosphorylation of CREB occurred in the presence of dbcAMP and SP600125. The nuclear export of GATA-6 was inhibited by leptomycin B, suggesting that CRM1-mediated export could be activated by anisomycin. Furthermore, it seems likely that the JNK activated by anisomycin may stimulate not only the nuclear export of GATA-6 through CRM1 but also the degradation of GATA-6 by cytoplasmic proteasomes. In contrast, A-kinase might activate only the latter process through JNK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号