首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysosomal enzymes have been shown to be synthesized as microsomal precursors, which are processed to mature enzymes located in lysosomes. We examined the effect of ammonium chloride on the intracellular processing and secretion of two lysosomal enzymes, beta-glucuronidase and beta-galactosidase, in mouse macrophages. This lysosomotropic drug caused extensive secretion of both precursor and mature enzyme forms within a few hours, as documented by pulse radiolabeling and molecular weight analysis. The normal intracellular route for processing and secretion of precursor enzyme was altered in treated cells. A small percentage of each precursor was delivered to the lysosomal organelle slowly. Most precursor forms traversed the Golgi apparatus, underwent further processing of carbohydrate moieties, and were then secreted in a manner similar to secretory proteins. The lag time for secretion of newly synthesized beta-galactosidase precursor was notably longer than that for the beta-glucuronidase precursor. The source of the secreted mature enzyme was the lysosomal organelle. Macrophages from the pale ear mutant were markedly deficient in secretion of mature lysosomal enzyme but secreted precursor forms normally. These results suggest that ammonia-treated macrophages contain two distinct intracellular pathways for secretion of lysosomal enzymes and that a specific block in the release of lysosomal contents occurs in the pale ear mutant.  相似文献   

2.
The cellular specific activity of lysosomal alpha-mannosidase-1 increases dramatically during development in Dictyostelium discoideum. alpha-Mannosidase-1 is composed of two subunits (Mr = 58,000 and 60,000) which are derived from a common precursor polypeptide (Mr = 140,000). Using enzyme-specific monoclonal antibodies we have determined that throughout development (a) the relative rate of precursor biosynthesis closely parallels the rate of accumulation of cellular enzyme activity and (b) the newly synthesized precursor is efficiently processed to mature enzyme (t1/2 less than 10 min). This indicates that the developmental accumulation of alpha-mannosidase-1 activity is primarily controlled by de novo enzyme synthesis. Furthermore, the change in the relative rate of enzyme precursor synthesis can be accounted for by an increase in the cellular level of functional alpha-mannosidase-1 mRNA during development.  相似文献   

3.
Pig small intestinal mucosal explants, labelled with [35S]-methionine, were fractionated into Mg2+-precipitated (intracellular and basolateral) and microvillar membranes, and the orientation of newly synthesized aminopeptidase N (EC 3.4.11.2) in vesicles from the two fractions was studied by its accessibility to proteolytic cleavage. The mature polypeptide of Mr 166 000 from the latter fraction was cleaved by trypsin, proteinase K and papain, consistent with an extracellular location of the enzyme at its site of function. In contrast, both the mature form and the transient form of Mr 140 000 from the Mg2+-precipitated fraction were equally well protected from proteolytic cleavage (in the absence of Triton X-100). This indicates that the basolateral plasma membrane is unlikely to be involved in the post-Golgi transport of newly synthesized aminopeptidase N and suggests instead a direct delivery of the enzyme to the apical plasma membrane. A crude membrane preparation from labelled explants was used in immunoelectrophoretic purification of membranes to determine at what stage during intracellular transport newly synthesized microvillar enzymes are sorted, i.e., accumulated in areas of the membrane from where other proteins are excluded. The transient form of aminopeptidase N was only moderately enriched by immunopurification, using antibodies against different microvillar enzymes, but the mature form was enriched approximately 30-fold from explants, labelled for 30 min. This suggests that for microvillar enzymes, the aspects of sorting studied take place in, or shortly after exit from, the Golgi complex.  相似文献   

4.
We are investigating the molecular mechanisms involved in the localization of lysosomal enzymes in Dictyostelium discoideum, an organism that lacks any detectable mannose-6-phosphate receptors. The lysosomal enzymes alpha-mannosidase and beta-glucosidase are both initially synthesized as precursor polypeptides that are proteolytically processed to mature forms and deposited in lysosomes. Time course experiments revealed that 20 min into the chase period, the pulse-labeled alpha-mannosidase precursor (140 kD) begins to be processed, and 35 min into the chase 50% of the polypeptides are cleaved to mature 60 and 58-kD forms. In contrast, the pulse-labeled beta-glucosidase precursor (105 kD) begins to be processed 10 min into the chase period, and by 30 min of the chase all of the precursor has been converted into mature 100-kD subunits. Between 5 and 10% of both precursors escape processing and are rapidly secreted from cells. Endoglycosidase H treatment of immunopurified radioactively labeled alpha-mannosidase and beta-glucosidase precursor polypeptides demonstrated that the beta-glucosidase precursor becomes resistant to enzyme digestion 10 min sooner than the alpha-mannosidase precursor. Moreover, subcellular fractionation studies have revealed that 70-75% of the pulse-labeled beta-glucosidase molecules move from the rough endoplasmic reticulum (RER) to the Golgi complex less than 10 min into the chase. In contrast, 20 min of chase are required before 50% of the pulse-labeled alpha-mannosidase precursor exits the RER. The beta-glucosidase and alpha-mannosidase precursor polypeptides are both membrane associated along the entire transport pathway. After proteolytic cleavage, the mature forms of both enzymes are released into the lumen of lysosomes. These results suggest that beta-glucosidase is transported from the RER to the Golgi complex and ultimately lysosomes at a distinctly faster rate than the alpha-mannosidase precursor. Thus, our results are consistent with the presence of a receptor that recognizes the beta-glucosidase precursor more readily than the alpha-mannosidase precursor and therefore more quickly directs these polypeptides to the Golgi complex.  相似文献   

5.
Intracellular transport and processing of lysosomal cathepsin B   总被引:2,自引:0,他引:2  
Intracellular transport and processing of lysosomal cathepsin B was investigated in the subcellular fractions of rat liver by pulse-labeling experiments with [35S]methionine in vivo. A newly synthesized procathepsin B with a molecular weight of 39 kDa firstly appeared in the rough microsomal fraction at 10 min postinjection of label. This procathepsin B moved from the microsomal fractions to the Golgi subfractions at 30 min postinjection, and then a processed mature enzyme appeared in the lysosomal fraction at 60 min. These results suggest that the propeptide-processing of procathepsin B takes place in lysosomes in the course of intracellular transport from endoplasmic reticulum through Golgi complex to lysosomes.  相似文献   

6.
The synthesis and secretion of beta-hexosaminidase was studied in wild type and secretion-deficient Tetrahymena thermophila cells by metabolic labelling and immunoprecipitation. beta-Hexosaminidase is synthesized as a Mr 79,000 polypeptide which is within 10 min converted into a Mr 59,000 form. The Mr 59,000 polypeptide is further processed (within 20 min) into at least three major mature forms of Mr 58,000-54,000, which are almost quantitatively secreted into the culture medium within 1-2 h after their synthesis. Both precursor and mature forms contain asparagine-linked oligosaccharide chains which are cleavable by endoglucosaminidase F, but not by endoglucosaminidase H. Neither [32P]orthophosphate nor [35S]sulphate are incorporated into immunoprecipitable precursor and mature beta-hexosaminidases, suggesting the absence of a phosphorylated recognition marker. Biosynthesis and processing of beta-hexosaminidase is apparently unaltered in the secretory mutant MS-1; however the processed polypeptides remain cellular bound in the mutant, indicating that the mutation affects a late event in the secretion pathway of lysosomal enzymes.  相似文献   

7.
Cultured mouse peritoneal macrophages were fractionated by two methods at various times after pulse labeling with [35S]methionine. The lysosomal enzymes beta-glucuronidase and beta-galactosidase were isolated from each fraction by immunoprecipitation and electrophoresis on sodium dodecyl sulfate-acrylamide gels. Two distinct peaks of label were obtained on Percoll density gradients. An early appearing peak of low density, containing the precursor forms of both enzymes, co-sedimented with markers for the endoplasmic reticulum, the Golgi apparatus, and the plasma membrane. With time, immunoprecipitable label cosedimented with the bulk of the lysosomal enzyme activity at high density and corresponded to the mature forms of the lysosomal enzymes. By differential centrifugation, newly synthesized enzymes were found predominantly in small particle fractions, unlike the bulk of the lysosomal enzymic activity which was found in larger particle fractions. With increasing time, newly synthesized enzymes were transferred to assume a distribution similar to that of lysosomal enzymic activity. The results suggest that transport of newly synthesized enzymes to lysosomes and conversion to mature forms are closely linked events. Conversion of lysosomal precursors to mature forms occurs either in a prelysosomal vesicle or shortly after reaching the lysosome. The two enzymes follow similar subcellular pathways at similar rates. Also, the macrophage system appears suitable for direct analysis of newly synthesized lysosomal enzymes during subcellular transport.  相似文献   

8.
The biosynthesis and subcellular distribution of a major lysosomal membrane glycoprotein of mouse embryo 3T3 cells, LAMP-1, have been examined by [35S]methionine pulse-labeling, sucrose density gradient fractionation, and oligosaccharide analysis. Mature LAMP-1, immunoprecipitated after labeling for 4 h, had a molecular mass of about 110,000 Da. It comigrated during sucrose density fractionation with lysosomal markers, consistent with previous electron microscopic evidence for its localization in lysosomal membranes. Precursor molecules, pulse-labeled for 5 min and extracted during the first 15 min of post-translational processing, were concentrated in the rough endoplasmic reticulum fraction as a species of 92,000 Da. Within 30 min after synthesis, LAMP-1 was found in fractions enriched in Golgi and lysosomal marker enzyme activities as the mature 110,000-Da glycoprotein. Oligosaccharide processing was complete by 1 h after synthesis, and the mature glycoprotein remained in a fraction bearing lysosomal markers. Treatment of the 92,000-Da precursor with endo-beta-N-acetyl-glucosaminidase H produced a core polypeptide of 43,000 Da. Pulse-labeling in the presence of tunicamycin yielded a 42,000-Da form of LAMP-1, which was converted within 30 min to a 43,000-Da molecule. Bio-Gel column chromatography and hexosamine/hexosaminitol analyses indicated that the mature 110,000-Da molecule contained both complex-type and high-mannose N-linked oligosaccharides.  相似文献   

9.
The endoplasmic reticulum-localized enzyme alpha-glucosidase II is responsible for removing the two alpha-1,3-linked glucose residues from N-linked oligosaccharides of glycoproteins. This activity is missing in the modA mutant strain, M31, of Dictyostelium discoideum. Results from both radiolabeled pulse-chase and subcellular fractionation experiments indicate that this deficiency did not prevent intracellular transport and proteolytic processing of the lysosomal enzymes, alpha-mannosidase and beta-glucosidase. However, the rate at which the glucosylated precursors left the rough endoplasmic reticulum was several-fold slower than the rate at which the wild-type precursors left this compartment. Retention of glucose residues did not disrupt the binding of the precursor forms of the enzymes with intracellular membranes, indicating that the delay in movement of proteins from the ER did not result from lack of association with membranes. However, the mutant alpha-mannosidase precursor contained more trypsin-sensitive sites than did the wild-type precursor, suggesting that improper folding of precursor molecules might account for the slow rate of transport to the Golgi complex. Percoll density gradient fractionation of extracts prepared from M31 cells indicated that the proteolytically processed mature forms of alpha-mannosidase and beta-glucosidase were localized to lysosomes. Finally, the mutation in M31 may have other, more dramatic, effects on the lysosomal system since two enzymes, N-acetylglucosaminidase and acid phosphatase, were secreted much less efficiently from lysosomal compartments by the mutant strain.  相似文献   

10.
HeLa cell membranes were studied for the distribution and orientation of the Golgi marker enzyme uridine diphosphate-galactose:beta-D-N-acetylglucosamine beta, 1-4 transferase (GT). Short pulse labeling in the presence of [35S]methionine resulted in two precursor species (Mr = 44,000 and 47,000), present in a microsomal fraction with a density of 1.18 g/ml in sucrose, presumably derived from the rough endoplasmic reticulum. Processing of the N-linked oligosaccharide(s) occurred only after the precursor molecules migrated to lighter density fractions, presumably derived from the Golgi complex. The mature GT molecules (Mr = 54,000) contain O-linked oligosaccharides as shown by beta-elimination of metabolically incorporated [3H]galactose. The O-glycosylation occurred mainly in the light density fractions. The topology of GT was studied on membrane fractions after labeling with [35S]methionine as well as immunocytochemically on ultrathin cryosections at the electron microscope level. Our results indicate that both the antigenic determinants of GT as well as polypeptide chain are present intramembraneously and at the luminal side of the membranes of the Golgi complex and rough endoplasmic reticulum.  相似文献   

11.
Proteolytic processing of precursor proteins is a phylogenetically ancient and widely used mechanism for producing biologically active peptides. Proteolytic cleavage of proproteins begins only after transport to the Golgi apparatus has been completed and in most systems may continue for many hours within newly formed secretory vesicles as these are stored in the cytosol or transported along axons to more peripheral sites of release. Paired basic residues are required for efficient proteolysis in most precursors, suggesting that a small number of specialized tryptic proteases exist that have great site selectivity but can process many sites within the same precursor or in different precursors within the same cell, or in different cells or tissues. Cleavage-site choice may be strongly influenced by other factors, such as secondary and tertiary structure, but definitive structural information on precursor proteins is lacking. Modifications such as glycosylation, phosphorylation, and sulfation also are Golgi associated but are not known to influence proteolytic processing patterns. Golgi/granule processing also rarely occurs at sites other than pairs of basic amino acids, including single basic residues ( trypsinlike ), Leu-Ala, Leu-Ser, or Tyr-Ala bonds ( chymotrysinlike ) as well as other specialized nontryptic cleavages, suggesting that mixtures of proteases coexist in the Golgi/granule system. Cathepsin B-like thiol proteases, or their precursors, have been implicated as the major processing endopeptidases in several systems. Carboxypeptidase B-like enzymes also have been identified in secretion granules in several tissues and appear to be metalloenzymes similar in mechanism to the pancreatic carboxypeptidases, but with a lower pH optimum. The role of the Golgi apparatus in sorting newly formed secreted products from lysosomal hydrolases may have permitted the development in evolution of an intimate relationship between certain of the lysosomal degradative enzymes, such as cathepsin B or its precursors, and the Golgi/granule processing systems. The sequestration of the proteolytic products of precursors within secretion granules leads to the coordinate discharge of highly complex mixtures of peptides having related or overlapping biological activities. The cosecretion of nonfunctional peptide " leftovers ," such as the proinsulin C-peptide, can serve as useful markers of secretion or cellular localization, as well as of evolutionary relation ships. Errors in cleavage due to point mutations in precursors have been identified in several systems, leading to the accumulation of incorrectly processed materials in the circulation. These and/or defects (ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Radiolabel pulse-chase and subcellular fractionation procedures were used to analyze the transport, proteolytic processing, and sorting of two lysosomal enzymes in Dictyostelium discoideum cells treated with the weak bases ammonium chloride and chloroquine. Dictyostelium lacks detectable cation-independent mannose-6-phosphate receptors and represents an excellent system to investigate alternative mechanisms for lysosomal enzyme targeting. Exposure of growing cells to ammonium chloride, which increased the pH in intracellular vacuoles from 5.4 to 5.8-6.1, slowed but did not prevent the proteolytic processing and correct localization of pulse-radiolabeled precursors to the lysosomal enzymes alpha-mannosidase and beta-glucosidase. Additionally, ammonium chloride did not affect transport of the enzymes to the Golgi complex, as they acquired resistance to the enzyme endoglycosidase H at the same rate as in control cells. When the pH of lysosomal and endosomal organelles was raised to 6.4 with higher concentrations of ammonium chloride, the percentage of secreted (apparently mis-sorted) precursor polypeptides increased slightly, but proteolytic processing of intermediate forms of lysosomal enzymes to mature forms was greatly reduced. The intermediate and mature forms of alpha-mannosidase and beta-glucosidase did, however, accumulate intracellularly in vesicles similar in density to lysosomes. In contrast, in cells exposed to low concentrations of chloroquine the intravacuolar pH increased only slightly (to 5.7); however, enzymes were inefficiently processed and, instead, rapidly secreted as precursor molecules. Experiments involving the addition of chloroquine at various times during the chase of pulse-radiolabeled cells demonstrated that this weak base acted on a distal Golgi or prelysosomal compartment to prevent the normal sorting of lysosomal enzymes. These results suggest that although acidic endosomal/lysosomal compartments may be important for the complete proteolytic processing of lysosomal enzymes in Dictyostelium, low pH is not essential for the proper targeting of precursor polypeptides. Furthermore, certain amines may induce mis-sorting of these enzymes by pH-independent mechanisms.  相似文献   

13.
During transit through the epididymis, spermatozoa acquire fertilizing the cell surface exhibits an altered glycoprotein pattern. Epididymal cells and their secretions contribute to these sperm-surface changes. To examine this process, epithelial cells from rat caput and cauda epididymidis were cultured and examined for the synthesis, processing and secretion of two glycoprotein-modifying enzymes, beta-galactosidase and beta-glucuronidase. Cells were cultured four days, incubated with D-2-[3H] mannose and L-[35S] methionine, and placed in isotope-free media. Levels of both cellular and secreted beta-galactosidase and beta-glucuronidase were determined by immunoprecipitation of cell homogenates or medium, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and scintillation counting of bands. During a 1-h pulse, both caput and cauda cells synthesize two precursor forms of beta-galactosidase (Mr = 84,000 and 87,000), which are processed to the mature (Mr = 63,000) enzyme during a 24-h chase. Caput cells release a high molecular weight (HMW) form (Mr = 90-100,000) and mature beta-galactosidase into the media, but not the Mr = 84-87,000 precursor. On the other hand, cauda cells release mostly mature beta-galactosidase. Ratios of radiolabeled mannose/methionine demonstrate a 7-fold greater mannose content in the cellular precursor of beta-galactosidase than in total protein. Another glycosidase, beta-glucuronidase, is synthesized as a Mr = 78,000-precursor which is processed to the mature Mr = 72,000 form. Medium in which caput and cauda cells were cultured contains both mature enzyme and a Mr = 94,000 form, but no 78,000-precursor form. Ratios of radiolabeled mannose/methionine in the cellular precursor of beta-glucuronidase are 2-fold greater than ratios in the total glycoprotein. Secretion is the major pathway of turnover for several epididymal glycosidases, since more than 50% of the total is secreted/day. These results indicate that cultured epithelial cells from the epididymis synthesize glycosidases and that processing and release differ, depending on the enzyme and the epididymal segment from which the epithelial cells were isolated.  相似文献   

14.
In Dictyostelium discoideum the lysosomal enzyme alpha-mannosidase is initially synthesized in vivo as a 140,000 Mr protein which is subsequently processed into two mature acidic glycoproteins of 60,000 and 58,000 Mr. To investigate the initial events involved in the synthesis of this protein, mRNA isolated from growing cells was translated in vitro and the resulting protein products were immunoprecipitated with antibodies prepared against the purified enzyme. Messenger RNA prepared from membrane-bound but not free polysomes directed the synthesis of an immunoprecipitable 120K protein that was identified as the alpha-mannosidase primary translation product by a variety of criteria. Translation in vitro in the presence of dog pancreas microsomes resulted in the conversion of the 120K primary translation product to a 140K form. This 140K species was not accessible to added trypsin under conditions preserving membrane integrity, suggesting it is sequestered in the lumen of the endoplasmic reticulum following synthesis. Treatment of either the in vitro modified or cellular 140K alpha-mannosidase precursors with endoglycosidase H resulted in the appearance of proteins 2K larger than the primary translation product. The pulse-labeled cellular precursor and the in vitro processed form have similar isoelectric points as revealed by two-dimensional gel electrophoresis. These results imply that the precursor is N-glycosylated in the endoplasmic reticulum possibly without removal of the signal sequence and that the majority of acidic modifications are added late in the post-translational pathway.  相似文献   

15.
In cultured human fibroblasts we observed that monensin, a Na+/H+-exchanging ionophore, (i) inhibits mannose 6-phosphate-sensitive endocytosis of a lysosomal enzyme, (ii) enhances secretion of the precursor of cathepsin D, while inhibiting secretion of the precursors of beta-hexosaminidase, (iii) induces secretion of mature beta-hexosaminidase and mature cathepsin D, and (iv) inhibits carbohydrate processing in and proteolytic maturation of the precursors remaining within the cells; this last effect appears to be secondary to an inhibition of the transport of the precursors. If the treated cells are transferred to a monensin-free medium, about half of the accumulated precursors are secreted, and the intracellular enzyme is converted into the mature form. Monensin blocks formation of complex oligosaccharides in lysosomal enzymes. In the presence of monensin, total phosphorylation of glycoproteins is partially inhibited, whereas the secreted glycoproteins are enriched in the phosphorylated species. The suggested inhibition by monensin of the transport within the Golgi apparatus [Tartakoff (1980) Int. Rev. Exp. Pathol. 22, 227-250] may be the cause of some of the effects observed in the present study (iv). Other effects (i, ii) are rather explained by interference by monensin with the acidification in the lysosomal and prelysosomal compartments, which appears to be necessary for the transport of endocytosed and of newly synthesized lysosomal enzymes.  相似文献   

16.
The synthesis and processing of the human lysosomal enzyme alpha-galactosidase A was examined in normal and Fabry fibroblasts. In normal cells, alpha-galactosidase A was synthesized as an Mr = 50,500 precursor, which contained phosphate groups in oligosaccharide chains cleavable by endoglucosaminidase H. The precursor was processed via ill-defined intermediates to a mature Mr 46,000 form. Processing was complete within 3-7 days after synthesis. In the presence of NH4Cl and in I-cell fibroblasts, the majority of newly synthesized alpha-galactosidase A was secreted as an Mr = 52,000 form. For comparison, the processing and stability of alpha-galactosidase A were examined in fibroblasts from five unrelated patients with Fabry disease, which is caused by deficient alpha-galactosidase A activity. In one cell line, synthesis of immunologically cross-reacting polypeptides was not detectable. In another, the synthesis, processing, and stability of alpha-galactosidase A was indistinguishable from that in normal fibroblasts. In a third Fabry cell line, the mutation retarded the maturation of alpha-galactosidase A. Finally, in two cell lines, alpha-galactosidase A polypeptides were synthesized that were rapidly degraded following delivery to lysosomes. These results clearly indicate that Fabry disease comprises a heterogeneous group of mutations affecting synthesis, processing, and stability of alpha-galactosidase A.  相似文献   

17.
The biosynthesis and turnover of lipoprotein lipase (LPL) have been investigated in adipose 3T3-F442A cells labeled with [35S]methionine. Pulse-chase experiments, endo-beta-N-acetylglucosaminidase H treatment, and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis have indicated that LPL is synthesized in the endoplasmic reticulum as a glycoprotein of Mr = 55,500 bearing two N-oligosaccharide side chains of the high mannose-type. This precursor form of LPL is transported within 10 min to the Golgi apparatus, and this event is accompanied by the formation of a mature species of Mr = 58,000. Treatment of the Mr = 58,000 species with glycopeptidase F yielded a Mr = 51,000 protein similar to that observed after treatment of the Mr = 55,500 precursor form or after inhibition of N-glycosylation in tunicamycin-treated cells. The precursor form of LPL of Mr = 55,500 does not accumulate in the cells since, after a labeling period of 2 h, only the Mr = 58,000 species is detected. It is shown that only 20% of the newly synthesized molecules of Mr = 58,000 are constitutively secreted, whereas 80% are degraded, most likely in lysosomes, as indicated by the inhibitory effect of leupeptin upon the degradation process. Under heparin stimulation, quantitative secretion of the mature form of LPL takes place whereas the intracellular degradation is arrested. Heparin is able to mobilize intracellular LPL without changing the rate of LPL export from the endoplasmic reticulum to the cell surface. Sucrose gradient centrifugation of the material from intracellular cisternae shows that the Mr = 55,500 precursor form is present as a monomer (s = 4.1 S), whereas the Mr = 58,000 mature form is present as a homodimer (s = 6.8 S) to which LPL activity is associated. The results are interpreted as LPL being transiently stored under a dimeric form before its degradation. A sorting process of LPL in the Golgi apparatus, followed by its entry either mainly in a regulated pathway or in a constitutive pathway, is proposed.  相似文献   

18.
An enzyme hydrolyzing flavin-adenine dinucleotide (FAD) to flavin mononucleotide and AMP was identified and purified from rat liver lysosomal (Tritosomal) membranes. The purified enzyme showed a single band on silver-stained denaturing gels with an apparent Mr 70,000. Periodate-Schiff staining after denaturing gel electrophoresis of whole membrane preparations revealed that this enzyme is one of the major glycoproteins in lysosomal membranes. FAD appeared to be the preferred substrate for the purified enzyme; equivalent concentrations of NAD or CoA were hydrolyzed at about one-half of the FAD rate. Negligible activity (less than or equal to 16%) was noted with ATP, TTP, ADP, AMP, FMN, pyrophosphate, or p-nitrophenylphosphate. The enzyme was inhibited by EDTA or dithiothreitol. It was stimulated by Zn, and was not affected by Ca or Mg ions, nor by p-chloromercuribenzoate. The pH optimum for FAD hydrolysis was 8.5-9 with an apparent Km of 0.125 mM. Antibodies prepared against the purified enzyme partially (50%) inhibited FAD phosphohydrolase activity in lysosomal membrane preparations but had no effect on the soluble lysosomal acid pyrophosphatase known to hydrolyze FAD. This enzyme could not be detected immunochemically in preparations of microsomes, Golgi, plasma membranes, mitochondrial membranes, or the soluble lysosomal fraction, suggesting that the enzyme is different from either soluble lysosomal acid pyrophosphatase or other FAD hydrolyzing activities in the liver cell.  相似文献   

19.
1. Rat Gal beta 1-4GlcNAc alpha 2-6sialyltransferase (E.C. 2.4.99.1) is released from Golgi membranes by cleavage of a portion of the enzyme containing the active site from a membrane anchor; this effect was most dramatic during the acute phase response. The enzyme that cleaved sialyltransferase had the properties of cathepsin D was most active at pH 5.6 and was likely of lysosomal origin (Lammers and Jamieson, 1988). 2. The acute phase response of sialyltransferase in mouse and guinea pig was previously found to differ from that in the rat. Release of sialyltransferase from mouse and guinea pig Golgi membranes has now been studied in order to make a comparison with the rat system. 3. Maximum release of sialyltransferase from mouse and guinea pig Golgi occurred at pH 4.6 and 5.2, respectively; like the rat a cathepsin D-like proteinase was responsible for release of both enzymes. 4. Immunoblot analysis showed that membrane-bound rat and mouse sialyltransferase had Mr 49,000, whereas the guinea pig enzyme had Mr 42,000. The released form of the rat enzyme had Mr 42,000, but released forms of mouse and guinea pig enzymes had Mr 38,000 suggesting a different cleavage site for these two enzymes compared to the rat enzyme.  相似文献   

20.
Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts   总被引:2,自引:0,他引:2  
Biosynthesis and processing of cathepsin B in cultured human skin fibroblasts were investigated using immunological procedures. Upon metabolic labeling with [35S]methionine for 10 min, a precursor form with Mr 44,500 was identified. During an 80-min chase, about 50% of it was converted to an Mr 46,000 form. Further processing yielded mature forms with Mr 33,000 and 27,000, in a final quantitative ratio of about 3:1. Processing of cathepsin B was inhibited by leupeptin, which led to an accumulation of the Mr 33,000 polypeptide. The Mr 33,000 form appeared to be the most active form and showed a half-time of about 12 h. About 5% of newly synthesized enzyme was secreted as precursor, being detectable extracellularly already after 40 min. NH4Cl enhanced the secretion of the precursor about 20-fold. The precursor and the 33-kDa form contained phosphorylated N-linked oligosaccharides. Cleavage by peptide N-glycosidase F or biosynthesis in the presence of tunicamycin yielded a precursor with Mr 39,000. Evidence of a mannose 6-phosphate-dependent transport of cathepsin B in fibroblasts was obtained on the basis of the following results: (i) cathepsin B precursor from NH4Cl-stimulated secretions was internalized in a mannose 6-phosphate inhibitable manner, and (ii) I-cell fibroblasts secreted more than 95% of newly synthesized cathepsin B precursor. In conclusion, cathepsin B from human skin fibroblasts shows an analogous biosynthetic behavior as other lysosomal enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号