首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of prostacyclin (PGI2) and its breakdown product 6-oxo-PGF1alpha on various aspects of gastric function were investigated in the rat. PGI2 increased mucosal blood flow when infused intravenously. PGI2 was a more potent inhibitor of gastric acid secretion in vivo than PGE2. Like PGE2, PGI2 inhibited acid secretion from the rat stomach in vitro. PGI2 had comparable activity to PGE2 in inhibiting indomethacin-induced gastric erosions. Thus prostacyclin shares several of the activities of PGE2, and may be involved in the regulation of gastric mucosal function.  相似文献   

2.
The aim of the present study was to apply spin trapping/EPR spectroscopy to investigate the existence and biological role of the L-arginine/nitric oxide pathway in human platelet aggregation. Three different spin traps were used: two nitroso, 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS) and 2-methyl-2-nitrosopropane (MNP), and a nitrone, 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The effect of spin-trap concentration on the collagen-induced human platelet aggregation was compared to the anti-aggregatory effect caused by L-arginine. The results show that the nitroso spin traps (DBNBS and MNP) are more effective than L-arginine in preventing platelet aggregation. DMPO has virtually no effect on the collagen-induced aggregation except at a high concentration (300 mM). Furthermore, activation of platelets with a low concentration of collagen (17 micrograms/ml) and in the presence of DBNBS or MNP yields several EPR-detectable spin adducts. Some of the observed spin adducts do not correspond to those originating from the interaction of a free radical, nitric oxide (NO.) gas, with the spin traps [Arroyo, C.M. & Kohno, M. (1991) Free Radical Res. Commun. 14, 145-155]. Only one adduct of DBNBS, with a relative intensity of 0.1, observed in the washed-platelet experiment and in the presence of superoxide dismutase, is similar to the EPR spectrum obtained following a reaction of pure NO. gas with DBNBS. This suggests that the EPR spectrum of the DBNBS adduct consisting of a triplet may originate from the production of NO. by these cells. Additional DBNBS and MNP spin adducts were generated during platelet activation in the presence of Ca2+ and of a cytosol-depleted L-arginine preparation from washed platelets to which L-arginine was subsequently added. The formation of these DBNBS and MNP spin adducts were inhibited by N omega-methyl-L-arginine (MeArg, 100 microM), suggesting that these originated from a product of NO synthase. Furthermore, the formation of DBNBS and MNP spin adducts in platelet suspensions was enhanced by the presence of superoxide dismutase; however, their formation was prevented by the endothelial-derived relaxing factor (EDRF) inhibitors methylene blue and hemoglobin. The results from the MeArg and EDRF inhibitor experiments support the existence of the L-arginine/NO pathway in platelets. In addition, the prevention of spin-adduct formation by EDRF inhibitors, suggests that the mechanisms of EDRF formation and the L-arginine/NO pathway in endothelial cells and platelets are similar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
It has been postulated that endogenous gastric prostaglandin activity contributes to the maintenance of non-stimulated gastric mucosal blood flow. Prostacyclin and PGE2 increase mucosal blood flow in the non-stimulated canine stomach. Inhibition of prostaglandin synthesis by aspirin or indomethacin causes a reduction of 30% to 50% in non-stimulated gastric mucosal blood flow in dog and rat. These observations are consistent with the hypothesis that endogenous prostaglandin activity within the gastric mucosa contributes to the maintenance of its blood flow.Also it has been postulated that endogenous prostaglandins may, in part, mediate the vasodilation associated with stimulated gastric acid secretion. Exogenous prostacyclin and PGE2 inhibit stimulated acid secretion while increasing mucosal blood flow. Indomethacin and aspirin-inhibited endogenous prostaglandin synthesis has been reported to increase stimulated acid secretion and reduce mucosal blood flow in anesthetized rat and dog. In gastric secretory fluid, prostaglandins have been detected during gastrin stimulation by some investigators and a dose response relationship between rate of secretion and fluid prostaglandin output has been observed. These observations are consistent with the hypothesis that endogenous prostaglandins may, in part, contribute to the regulation of mucosal blood flow during stimulated acid secretion. Further studies, directly measuring specific endogenous prostaglandins and their metabolic products within the gastric mucosa during stimulated and inhibited acid secretion will be necessary to prove or disprove this hypothesis.  相似文献   

4.
Prostacyclin, generated by the vascular wall, is a potent vasodilator, reducing systemic blood pressure, increasing coronary blood flow and relaxing isolated vascular strips. Its vasoactive properties are little changed by passage through the lung. Prostacyclin, which is also formed by the gastric mucosa, increases gastric mucosal blood flow and inhibits gastric acid secretion and indomethacin-induced erosions. It is the most potent inhibitor of platelet aggregation in all species tested. It is suggested that prostacyclin and PGE1 act on similar sites on platelets distinct from those for PGD2.  相似文献   

5.
BACKGROUND: Nitric oxide (NO), a small effector molecule produced enzymatically from L-arginine by nitric oxide synthase (NOS), is a mediator not only of important homeostatic mechanisms (e.g., blood vessel tone and tissue perfusion), but also of key aspects of local and systemic inflammatory responses. Previous efforts to develop inhibitors of NOS to protect against NO-mediated tissue damage in endotoxin shock have been unsuccessful, largely because such competitive NOS antagonists interfere with critical vasoregulatory NO production in blood vessels and decrease survival in endotoxemic animals. Accordingly, we sought to develop a pharmaceutical approach to selectively inhibit NO production in macrophages while sparing NO responses in blood vessels. MATERIALS AND METHODS: The process of cytokine-inducible L-arginine transport and NO production were studied in the murine macrophage-like cell line (RAW 264.7). A series of multivalent guanylhydrazones were synthesized to inhibit cytokine-inducible L-arginine transport. One such compound (CNI-1493) was studied further in animal models of endothelial-derived relaxing factor (EDRF) activity, carrageenan inflammation, and lethal lipopolysaccharide (LPS) challenge. RESULTS: Upon activation with cytokines, macrophages increase transport of L-arginine to support the production of NO by NOS. Since endothelial cells do not require this additional arginine transport to produce NO, we reasoned that a competitive inhibitor of cytokine-inducible L-arginine transport would not inhibit EDRF activity in blood vessels, and thus might be effectively employed against endotoxic shock. CNI-1493, a tetravalent guanylhydrazone, proved to be a selective inhibitor of cytokine-inducible arginine transport and NO production, but did not inhibit EDRF activity. In mice, CNI-1493 prevented the development of carrageenan-induced footpad inflammation, and conferred protection against lethal LPS challenge. CONCLUSIONS: A selective inhibitor of cytokine-inducible L-arginine transport that does not inhibit vascular EDRF responses is effective against endotoxin lethality and significantly reduces inflammatory responses.  相似文献   

6.
白细胞介素—8扩血管效应与内皮舒张因子的关系   总被引:7,自引:0,他引:7  
为探讨内皮舒张因子在白细胞介素-8(IL-8)扩血管效应中的作用,本实验在大鼠离体主动脉条上,观察IL-8对血管反应性及血管组织cGMP含量的影响。实验发现,IL-8显著地扩张离体血管,其作用在去内皮后明显减弱。IL-8还能显著地提高离体血管组织cGMP含量,一氧化氮合成抑制剂L-NNA可阻断这一作用,一氧化氮前体L-精氨酸可逆转L-NNA的效应。结果表明IL-8可以通过促进血管内皮细胞释放一氧化氮而扩张血管。  相似文献   

7.
In vitro studies have shown that acetylcholine-induced vasorelaxation is mediated by endothelium-derived relaxing factor/nitric oxide (EDRF/NO). EDRF/NO is synthesized from L-arginine by an enzymatic pathway that is inhibited by L-NG-methylarginine. To assess whether EDRF/NO also mediates the vasodilating action of acetylcholine in vivo, we have investigated the effect of L-arginine and L-NG-methylarginine on the hypotensive response to acetylcholine in the anesthetized guinea pig. L-arginine prolonged the duration of the depressor response to acetylcholine and L-NG-methylarginine decreased it. However, neither L-arginine nor L-NG-methylarginine modified the magnitude of acetylcholine's hypotensive effect unless the blood pressure was previously elevated by infusion with norepinephrine. Thus, de novo synthesis of nitric oxide from L-arginine contributes importantly, but not exclusively, to acetylcholine's hypotensive effect in the guinea pig. Furthermore, the concentration of circulating L-arginine may influence the duration and magnitude of acetylcholine-induced depressor responses under normotensive and hypertensive conditions.  相似文献   

8.
In gastric mucosal injury, nitric oxide (NO) plays both cytoprotective and cytotoxic roles, and the NO level is one determinant of these dual roles. We employed electron paramagnetic resonance (EPR)-spectrometry combined with an NO-trapping technique to directly evaluate NO production in ethanol-induced gastric injury in rats. The rat stomach, mounted on an ex vivo chamber, was perfused with ethanol (12.5 and 43%), and NO levels in mucosal tissues were measured during perfusion. Luminal nitrite/nitrate (NOx) content, mucosal blood flow, area of mucosal injury, transmucosal potential difference (PD), and luminal pH were simultaneously monitored with/without preadministration of the NO synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME). NO levels in the gastric tissue increased during ethanol perfusion, and luminal NOx levels increased after the perfusion, accompanying an increase in the area of mucosal injury and changes in physiological parameters. Preadministration of L-NAME aggravated the gastric mucosal damage and suppressed increases in mucosal blood flow in a dose-dependent manner. These results demonstrate that endogenous NO produced in ethanol-induced gastric injury contributes to maintenance of mucosal integrity via regulation of mucosal blood flow.  相似文献   

9.
Endothelium-derived nitric oxide: actions and properties   总被引:25,自引:0,他引:25  
Vascular smooth muscle relaxation in response to chemically diverse naturally occurring neurotransmitters and autacoids has been attributed to the formation and/or release of one or more vascular endothelium-derived relaxing factors (EDRFs) distinct from prostacyclin. The chemical, biochemical, and pharmacological properties of one such EDRF resemble closely the properties of nitric oxide (NO). Thus, both arterial and venous EDRFs as well as authentic NO cause heme-dependent activation of soluble guanylate cyclase, endothelium-independent vascular and nonvascular smooth muscle relaxation accompanied by tissue cyclic GMP formation, and inhibition of platelet aggregation and adhesion to endothelial cell surfaces. EDRF from artery, vein, and freshly harvested and cultured aortic endothelial cells was recently identified as NO or a labile nitroso species as assessed by chemical assay and bioassay. Endothelium-derived NO (EDNO) has an ultrashort half-life of 3-5 s due to spontaneous oxidation to nitrite and nitrate, both of which have only weak biological activity. EDNO can be synthesized from L-arginine and possibly other basic amino acids and polypeptides, perhaps by oxidative metabolic pathways that could involve polyunsaturated fatty acid-derived oxygen radicals. Inorganic nitrite could serve as both a stored precursor and an inactivation product of EDNO. EDNO and related EDRFs may serve physiological and/or pathophysiological roles in the regulation of local blood flow and platelet function.  相似文献   

10.
The vascular actions of several prostanoids and arachidonate lipoxygenase products were investigated on the gastric circulation of rat and rabbit in vitro perfused with Krebs' solution. Under resting conditions, prostacyclin and PGE2 produced small decreases in perfusion pressure with prostacyclin being the more potent. During vasoconstriction induced by infusion of noradrenaline, vasopressin or angiotensin II, prostacyclin was 20-40 times as active as PGE2 as a gastric vasodilator in rat or rabbit stomach. PGF2 alpha was a less potent vasoconstrictor than noradrenaline, while the epoxy-methano endoperoxide analogue produced a long-lasting vasoconstriction. The putative metabolite, 6-oxo-PGE1 was less active than prostacyclin as a vasodilator, having comparable activity to PGE1, whereas 6-oxo-PGF1 alpha had very little activity. The endoperoxide, PGH2 reduced perfusion pressure, this effect being inhibited by concurrent infusion of 15-HPETE. The vasodilation induced by arachidonic acid was likewise reduced by 15-HPETE, and abolished by indomethacin infusion. The arachidonate lipoxygenase hydroperoxides were vasodilator in the gastric circulation, the rank order of potency being 12-HPETE greater than 11-HPETE greater than 5-HPETE greater than 15-HPETE in both rat and rabbit stomach. It is possible that such vasoactive lipoxygenase products, may play modulator roles in the gastric mucosa.  相似文献   

11.
In the rat stomach, evidence has been provided that capsaicin-sensitive sensory nerves (CSSN) are involved in a local defense mechanism against gastric ulcer. In the present study capsaicin or resiniferatoxin (RTX), a more potent capsaicin analogue, was used to elucidate the role of these sensory nerves in gastric mucosal protection, mucosal permeability, gastric acid secretion and gastrointestinal blood flow in the rat. In the rat stomach and jejunum, intravenous RTX or topical capsaicin or RTX effected a pronounced and long-lasting enhancement of the microcirculation at these sites, measured by laser Doppler flowmetry technique. Introduction of capsaicin into the rat stomach in very low concentrations of ng-microg x mL(-1) range protected the gastric mucosa against damage produced by topical acidified aspirin, indomethacin, ethanol or 0.6 N HCl. Resiniferatoxin exhibited acute gastroprotective effect similar to that of capsaicin and exerted marked protective action on the exogenous HCl, or the secretagogue-induced enhancement of the indomethacin injury. The ulcer preventive effect of both agents was not prevented by atropine or cimetidine treatment. Capsaicin given into the stomach in higher desensitizing concentrations of 6.5 mM markedly enhanced the susceptibility of the gastric mucosa and invariably aggravated gastric mucosal damage evoked by later noxious challenge. Such high desensitizing concentrations of capsaicin, however, did not reduce the cytoprotective effect of prostacyclin (PGI2) or beta-carotene. Capsaicin or RTX had an additive protective effect to that of atropine or cimetidine. In rats pretreated with cysteamine to deplete tissue somatostatin, capsaicin protected against the indomethacin-induced mucosal injury. Gastric acid secretion of the pylorus-ligated rats was inhibited with capsaicin or RTX given in low non-desensitizing concentrations, with the inhibition being most marked in the first hour following pylorus-ligation. Low intragastric concentrations of RTX reduced gastric hydrogen ion back-diffusion evoked by topical acidified salicylates. It is concluded that the gastropotective effect of capsaicin-type agents involves primarily an enhancement of the microcirculation effected through local release of mediator peptides from the sensory nerve terminals. A reduction in gastric acidity may contribute to some degree in the gastric protective action of capsaicin-type agents. The vasodilator and gastroprotective effects of capsaicin-type agents do not depend on vagal efferents or sympathetic neurons, involve prostanoids, histaminergic or cholinergic pathways.  相似文献   

12.
Dietary nitrate inhibits stress-induced gastric mucosal injury in the rat   总被引:5,自引:0,他引:5  
Dietary nitrate is reduced to nitrite by some oral bacteria and the resulting nitrite is converted to nitric oxide (NO) in acidic gastric juice. The aim of this study is to elucidate the pathophysiological role of dietary nitrate in the stomach. Intragastric administration of nitrate rapidly increased nitrate and NO in plasma and the gastric headspace, respectively. Water-immersion-restraint stress (WIRS) increased myeloperoxidase (MPO) activity in gastric mucosa and induced hemorrhagic erosions by a nitrate-inhibitable mechanism. In animals that had received either cardiac ligation or oral treatment with povidone-iodine, a potent bactericidal agent, administration of nitrate failed to increase gastric levels of NO and to inhibit WIRS-induced mucosal injury. WIRS decreased gastric mucosal blood flow by a mechanism which was inhibited by administration of nitrate. These data suggested that the enterosalivary cycle of nitrate and related metabolites consisted of gastrointestinal absorption and salivary secretion of nitrate, its conversion to nitrite by oral bacteria and then to NO in the stomach might play important roles in the protection of gastric mucosa from hazardous stress.  相似文献   

13.
Rat serosal mast cells were tested for their ability to generate a nitric oxide-like factor by two bioassay systems: inhibition of platelet aggregation and stimulation of mast cell guanylate cyclase. Incubation of rat serosal mast cells with human washed platelets resulted in an inhibition of thrombin-induced platelet aggregation proportional to the number of cells. The inhibition was potentiated by superoxide dismutase (SOD) and reversed by oxyhaemoglobin (oxyHb). The inhibitory activity of mast cells was also prevented by NG-monomethyl-L-arginine (MeArg), an effect reversed by co-incubation with L-Arg but not D-Arg. When mast cells alone were stirred at 1,000 rpm, a time-dependent increase in the levels of their cGMP but not cAMP was observed. This increase was reduced by pretreatment with MeArg. The inhibitory effect of MeArg was reversed by L-Arg but not D-Arg. These results demonstrate that rat mast cells release a factor with the same pharmacological profile as NO, and that this NO-like factor is derived from L-arginine.  相似文献   

14.
The effects of prostacyclin (PGI2) and its breakdown product 6-oxo-PGF on various aspects of gastric function were investigated in the rat. PGI2 increased mucosal blood flow when infused intravenously. PGI2 was a more potent inhibitor of gastric acid secretion in vivo than PGE2. Like PGE2, PGI2 inhibited acid secretion from the rat stomach in vitro. PGI2 had comparable activity to PGE2 in inhibiting indomethacin-induced gastric erosions. Thus prostacyclin shares several of the activities of PGE2, and may be involved in the regulation of gastric mucosal function.  相似文献   

15.
We examined the roles of endogenous prostaglandins (PGs) and nitric oxide (NO) in the gastroduodenal ulcerogenic responses to hypothermic stress (28 approximately 30 degrees C) in anesthetized rats. Lowering body temperature provoked damage in the gastroduodenal mucosa, with an increase of gastric acid secretion and motility. These responses were completely abolished by bilateral vagotomy or atropine, while 16,16-dimethyl PGE2 decreased the mucosal ulcerogenic response with no effect on acid secretion. The non-selective COX inhibitors, indomethacin or aspirin, worsened these lesions with enhancement of gastric motility and no effect on acid secretion, while the selective COX-2 inhibitor NS-398 did not affect any of these responses. On the other hand, the non-selective NOS inhibitor L-NAME but not aminoguanidine (a relatively selective inhibitor of iNOS), significantly potentiated the acid secretory and mucosal ulcerogenic responses in the stomach but reduced the duodenal damage in response to hypothermia, the effects being antagonized by co-administration of L-arginine. Hypothermia itself decreased duodenal HCO3- secretion under both basal and mucosal acidification-stimulated conditions. Both indomethacin and aspirin further decreased the HCO3- response to the mucosal acidification, while L-NAME significantly increased the HCO3- secretion even under hypothermic conditions, similar to 16,16-dimethyl PGE2. These results suggest that 1) hypothermic stress caused an increase of acid secretion and motility as well as a decrease of duodenal HCO3-secretion, resulting in damage in both the stomach and duodenum, 2) the COX-1 but not COX-2 inhibition worsened these lesions by enhancing gastric motility and further decreasing duodenal HCO3- response, 3) the cNOS but not iNOS inhibition worsened gastric lesions by increasing acid secretion but decreased duodenal damage by increasing HCO3- secretion. Thus, it is assumed that the gastroduodenal ulcerogenic and functional responses to hypothermic stress are modified by cNOS/NO as well as COX-1/PGs.  相似文献   

16.
Stimulation of soluble guanylyl cyclase and increase in cyclic GMP in rat fetal lung fibroblasts (RFL-6 cells) was used as a bioassay to detect EDRF/NO formation. The cytosolic fraction of whole rat brain synthesized an EDRF/NO-like material in a process dependent on L-arginine and NADPH. The enzymatic activity was destroyed by boiling and inhibited by N omega-nitro-L-arginine. Hemoglobin and methylene blue blocked the effect of EDRF/NO. When different brain regions were analyzed in the presence of L-arginine and NADPH, the cytosolic fraction from cerebellum showed the highest EDRF/NO-forming activity (2-3 times higher than whole brain). Activity similar to whole brain was found in hypothalamus and midbrain. Enzymatic activities in striatum, hippocampus and cerebral cortex were about two thirds of whole brain. The lowest activity (less than half of whole brain) was found in the medulla oblongata.  相似文献   

17.
When the barrier to acid back-diffusion is disrupted, there is a protective increase in gastric mucosal blood flow to help remove the back-diffusing acid. Only recently has the mechanism for calling forth this protective hyperemia been determined. The gastric mucosa and submucosa are innervated by many capsaicin-sensitive sensory nerve fibers containing vasodilator peptides. The gastric mucosal sensory neurons monitor for acid back-diffusion, and, when this process occurs, signal for a protective increase in blood flow via release of calcitonin gene-related peptide from the submucosal periarteriolar fibers. The endothelium-derived vasodilator, nitric oxide, plays an important role both in the maintenance of basal gastric mucosal blood flow and in the increase in blood flow that accompanies pentagastrin-stimulated gastric acid secretion. It also interacts with the capsaicin-sensitive sensory nerves in the modulation of the microcirculation to maintain mucosal integrity. Finally, it has been shown that neutrophils play an important role in various forms of mucosal injury. The leukocytes adhere to the vascular endothelium and contribute to injury by reducing blood flow via occlusion of microvessels, as well as by releasing mediators of tissue damage.  相似文献   

18.
Boc-Trp-Met-Asp-NH2 was described as the smallest peptidic fragment which presented gastric antisecretory activity. Some pharmacological aspects of a peptide analogue, Boc-Trp-Leu-Asp-NH2 (Boc-WLD-NH2), were studied on the main biological functions of gastrin. This compound was found to inhibit the binding of gastrin to isolated gastric fundic mucosal cells (IC50 50 microM). On pentagastrin-induced gastric acid secretion in the rat, a dose-dependent inhibition was observed with an ID50 of 55 mumol/kg when pentagastrin (1 microgram/kg per h) was continuously infused and with an ID50 of 7.8 mumol/kg when pentagastrin (1 microgram/kg) was bolus i.v. injected. Similar inhibition was observed on acid secretion induced by pentagastrin in the isolated rat gastric mucosa (IC50 100 microM), whereas the tripeptide had no effect when acid output was triggered by histamine. A dose-dependent inhibition with the tripeptide was shown on pentagastrin induced guinea-pig ileum contractions (IC50 31 microM). The compound had no activity on histamine-stimulated guinea-pig atria (histamine H2-receptor). These results suggest some evidence for a selective antigastrin activity.  相似文献   

19.
The increase of mucosal blood flow in response to food entrance into stomach or different irritant action is the component of gastric mucosal defence barrier. Sufficient blood flow ensures normal acid-bicarbonate balance in gastric mucosa, supports the healing process and prevents superficial damages from developing into deep ones. Capsaicin-sensitive afferent nerve fibers play the large role in the blood flow regulation. The influence of these nerve fibers on the gastric blood flow is mediated by the calcitonin-gene related peptide. This peptide released from peripheral afferent terminals improves microcirculation in stomach walls. Moreover nerve impulses from afferent neurons modulate parasympathetic activity that in turn induces the increase of gastric mucosal blood flow through both choilinergic and noncholinergic mechanisms. The gastric mucosal blood flow may be also regulated by humoral and paracrine metabolites. Nitric oxide and prostaglandines are the most important low molecular weight compounds. They play the main role in the maintenance of the basal gastric mucosal blood flow and in the development of hyperemic responses to harmful agents.  相似文献   

20.
Endothelium-derived relaxing and contracting factors   总被引:11,自引:0,他引:11  
Key discoveries in the past decade revealed that the endothelium can modulate the tone of underlying vascular smooth muscle by the synthesis/release of potent vasorelaxant (endothelium-derived relaxing factors; EDRF) and vasoconstrictor substances (endothelium-derived contracting factors; EDCF). It has become evident that the synthesis and release of these substances contribute to the multitude of physiological functions the vascular endothelium performs. Accumulating evidence suggests that at least one of the EDRFs is identical with nitric oxide (NO) or a labile nitroso compound, which is produced from L-arginine by an NADPH- and Ca(2+)-dependent enzyme, arginine oxidase. The existence of more than one chemically distinct EDRF has been proposed, including an endothelium-derived hyperpolarizing factor (EDHF). The target of EDRF (NO) is soluble guanylate cyclase (increase in cyclic GMP) while EDHF appears to activate a K(+)-channel in vascular smooth muscle. Recent data suggest that muscarinic receptor subtypes selectively mediate the release of EDRF(NO) (M2) and EDHF (M1). EDRF(NO) affects not only the underlying vascular smooth muscle, but also platelets, inhibiting their aggregation and adhesion to the endothelium. The antiaggregatory effect of EDRF is synergistic with prostacyclin, so their combined release may represent a physiological mechanism aimed at preventing thrombus formation. An additional proposed biological function of EDRF(NO) is cytoprotection by virtue of scavenging superoxide radicals. The endothelium can also mediate vasoconstriction by the release of a variety of endothelium-derived contracting factors (EDCF). Other than the unique peptide endothelin, the nature of EDCFs has not yet been firmly established. Autoregulation of cerebral and renal blood flow and hypoxic pulmonary vasoconstriction may represent the physiological role of endothelium-dependent vasoconstriction. Growing evidence indicates that the endothelium can serve as a unique mechanoreceptor, sensing and transducing physical stimuli (e.g., shear forces, pressure) into changes in vascular tone by the release of EDRFs or EDCFs. In physiological states, a delicate balance exists between endothelium-derived vasodilators and vasoconstrictors. Alterations in this balance can result in local (vasospasm) and generalized (hypertension) increase in vascular tone and also in facilitated thrombus formation. Endothelial dysfunction may also contribute to the pathophysiology of angiopathies associated with hypercholesterolemia and atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号