首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Several chemical mutagens were found to induce sister chromatid exchanges in Chinese hamster chromosomes. Among them, effects of 4NQO and MMC were very similar to those of UV light in that the exchange frequency increased with increasing dose of chemicals and that it was markedly lowered in the presence of 1 mM caffeine during a post-treatment period. The frequency of proflavin-induced sister chromatid exchanges was also found to be dose dependent, but it was insensitive to the caffeine post-treatment. On the other hand, no appreciable increase was detected in the incidence of sister chromatid exchanges in MNNG-treated cells over a 100-fold range of variation in chemical dose. Caffeine by itself raised the exchange frequency only slightly over a control level. It was found that 4NQO and MMC exerted remarkable delayed effects on the exchange induction, whereas proflavin did not. This seems to suggest that the lesions caused by the former mutagens would be long-lived and repeatedly provoke sister chromatid exchanges. These data imply that there are several possible ways in which the initial DNA lesions ultimately lead to the formation of sister chromatid exchanges, and that at least UV-, 4NQO- and MMC-induced sister chromatid exchanges would have evolved through a caffeine sensitive repair process, probably related to a post-replication repair of DNA damage.  相似文献   

2.
Mutagenic character of formaldehyde in vivo was estimated by determining the level of chromosomal aberrations, sister chromatid exchanges and unscheduled DNA synthesis in human lymphocytes. It was found that in case of occupational exposure to formaldehyde the unscheduled DNA synthesis after thiophosphamide treatment in vitro was inhibited and spontaneous level of chromosomal aberrations increased. A negative correlation observed between the unscheduled DNA synthesis and sister chromatid exchanges indirectly confirmed a connection of these exchanges with the DNA repair. The comparison of the results obtained from evaluation of chromosomal aberrations, sister chromatid exchanges and unscheduled DNA synthesis permits suggesting that these methods estimate different sides of the mutagen interaction with a cell and should be considered as mutually complementary methods but not as interchangeable ones.  相似文献   

3.
Johnson RD  Jasin M 《The EMBO journal》2000,19(13):3398-3407
In mammalian cells, repair of DNA double-strand breaks (DSBs) occurs by both homologous and non-homologous mechanisms. By definition, homologous recombination requires a template with sufficient sequence identity to the damaged molecule in order to direct repair. We now show that the sister chromatid acts as a repair template in a substantial proportion of DSB repair events. The outcome of sister chromatid repair is primarily gene conversion unassociated with reciprocal exchange. This contrasts with expectations from the classical DSB repair model originally proposed for yeast meiotic recombination, but is consistent with models in which recombination is coupled intimately with replication. These results may explain why cytologically observable sister chromatid exchanges are induced only weakly by DNA-damaging agents that cause strand breaks, since most homologous repair events would not be observed. A preference for non-crossover events between sister chromatids suggests that crossovers, although genetically silent, may be disfavored for other reasons. Possibly, a general bias against crossing over in mitotic cells exists to reduce the potential for genome alterations when other homologous repair templates are utilized.  相似文献   

4.
Poly(ADP-ribose) polymerase is a chromatin enzyme which adds long chains of ADP-ribose to various acceptor proteins in response to DNA strand breaks. Its primary function is unknown; however, a role in DNA repair and radiation resistance has been postulated based largely on experiments with enzyme inhibitors. Recent reports of mutant cell lines, deficient in poly(ADP-ribose) polymerase activity, have supported previous studies with inhibitors, which suggests the involvement of poly(ADP-ribose) polymerase in maintaining baseline levels of sister chromatid exchanges. Mutant cells with even slightly depressed enzyme levels show large elevation of baseline sister chromatid exchanges. Since intracellular poly(ADP-ribose) polymerase levels can vary greatly between different nonmutant cell lines, we surveyed levels of baseline sister chromatid exchange in normal and tumor human cell lines and compared them with endogenous levels of poly(ADP-ribose) polymerase. Despite 10-fold differences in poly(ADP-ribose) polymerase, the baseline level of sister chromatid exchanges remained relatively constant in the different cell lines (0.13 +/- 0.03 SCE/chromosome), with no indication of a protective effect for cells with high levels of the enzyme.  相似文献   

5.
Repair disorders of DNA damage induced by gamma-radiation and 4-nitroquinoline-1-oxide treatment in cultivated lymphocytes of patients with schizophrenia. 13 criteria were used for estimation of repair activity (reactivation of viral host cells) repair synthesis, reparation of DNA breaks, formation of spontaneous and induced sister chromatid exchanges.  相似文献   

6.
L. C. Kadyk  L. H. Hartwell 《Genetics》1992,132(2):387-402
A diploid Saccharomyces cerevisiae strain was constructed in which the products of both homolog recombination and unequal sister chromatid recombination events could be selected. This strain was synchronized in G1 or in G2, irradiated with X-rays to induce DNA damage, and monitored for levels of recombination. Cells irradiated in G1 were found to repair recombinogenic damage primarily by homolog recombination, whereas those irradiated in G2 repaired such damage preferentially by sister chromatid recombination. We found, as have others, that G1 diploids were much more sensitive to the lethal effects of X-ray damage than were G2 diploids, especially at higher doses of irradiation. The following possible explanations for this observation were tested: G2 cells have more potential templates for repair than G1 cells; G2 cells are protected by the RAD9-mediated delay in G2 following DNA damage; sister chromatids may share more homology than homologous chromosomes. All these possibilities were ruled out by appropriate tests. We propose that, due to a special relationship they share, sister chromatids are not only preferred over homologous chromatids as substrates for recombinational repair, but have the capacity to repair more DNA damage than do homologs.  相似文献   

7.
A modified fluorescence-plus-Giemsa technique is described that allows differential staining of sister chromatids in root tip cells from cuttings of Tradescantia paludosa. With this staining technique, chromatids with both DNA strands unsubstituted are differentiated from chromatids containing 5-bromouracil in place of thymine in one of the strands of the DNA duplex. The baseline level of sister chromatid exchanges was shown to be dependent on the concentration of 5-bromodeoxyuridine in the treatment solution, the mean frequency being 43.5 sister chromatid exchanges per cell for the experimental protocol suggested.  相似文献   

8.
Mitotic homologous recombination is utilised to repair DNA breaks using either sister chromatids or homologous chromosomes as templates. Because sister chromatids are identical, exchanges between sister chromatids have no consequences for the maintenance of genomic integrity unless they involve repetitive DNA sequences. Conversely, homologous chromosomes might differ in genetic content, and exchanges between homologues might lead to loss of heterozygosity and subsequent inactivation of functional genes. Genomic instability, caused by unscheduled recombination events between homologous chromosomes, is enhanced in the absence of RecQ DNA helicases, as observed in Bloom's cancer-prone syndrome. Here, we used two-dimensional gel electrophoresis to analyse budding yeast diploid cells that were modified to distinguish replication intermediates originating from each homologous chromosome. Therefore, these cells were suitable for analysing the formation of inter-homologue junctions. We found that Rad51-dependent DNA structures resembling inter-homologue junctions accumulate together with sister chromatid junctions at damaged DNA replication forks in recQ mutants, but not in the absence of Srs2 or Mph1 DNA recombination helicases. Inter-homologue joint molecules in recQ mutants are less abundant than sister chromatid junctions, but they accumulate with similar kinetics after origin firing under conditions of DNA damage. We propose that unscheduled accumulation of inter-homologue junctions during DNA replication might account for allelic recombination defects in recQ mutants.  相似文献   

9.
In cultured mammalian cells, sister chromatid exchanges are easily induced by agents that perturb the scheduled timing of DNA replication. In this work a blockage of DNA synthesis induced by 1-beta-D-arabinofuranosylcytosine was applied to non-tumorigenic and tumorigenic CHEF18 Chinese hamster cells, and their responsiveness was compared. The data show that both the induction of sister chromatid exchanges and the reduction of the colony-forming ability were less extensive in non-tumorigenic than in tumorigenic CHEF18 cells. The results suggest that a tight control of the scheduled timing of DNA replication is present in non-tumorigenic CHEF18 cells and perhaps this feature avoids the generation of those chromosomal structures that are responsible for the abnormal induction of sister chromatid exchanges and for the elevated cytotoxicity seen in tumorigenic cells.  相似文献   

10.
A modified fluorescence-plus-Giemsa technique is described that allows differential staining of sister chromatids in root tip cells from cuttings of Tradescantia patudesa. With this staining technique, chromatids with both DNA strands unsubstituted are differentiated from chromatids containing 5-bromouracil in place of thymine in one of the strands of the DNA duplex. The baseline level of sister chromatid exchanges was shown to be dependent on the concentration of 5-bromodeoxyuridine in the treatment solution, the mean frequency being 43.5 sister chromatid exchanges per cell for the experimental protocol suggested.  相似文献   

11.
Sister chromatid exchanges in Chinese hamster chromosomes were studied after pulse-labeling cells with 3H-thymidine at various concentrations. Whereas the frequency of chromatid aberrations varied widely, depending upon tritium dose, there was no significant change in the sister chromatid exchange frequency, even with a 40-fold range of variation in the tritium concentration in the medium. When cells were exposed immediately after labeling to UV light at 40 erg/mm2 and examined at the second mitosis, the frequency of sister chromatid exchanges was found to be 4 times higher than that of the unirradiated controls. A synchronization treatment utilizing 2 mM thymidine also caused a two-fold rise in the exchange frequency above the control level. Furthermore, when synchronized cells were irradiated with UV light at a dose of 40 erg/mm2, the exchange frequency exceeded 5 times that of the untreated controls. However, this effect was detectable only when cells were irradiated at the earlier part of the S phase, while no change was detected when irradiated at the late S or G2 phase. A post-treatment of irradiated cells with caffeine caused a remarkable decrease in the frequency of sister chromatid exchanges. On the other hand, the frequency of chromatid aberrations of the deletion type increased strikingly after the same treatment. The results appear to suggest a certain correlation between the mechanism involved in the induction of sister chromatid exchanges and a post-replication repair of DNA damage.  相似文献   

12.
DNA interstrand crosslinks (ICLs) are highly toxic lesions that stall the replication fork to initiate the repair process during the S phase of vertebrates. Proteins involved in Fanconi anemia (FA), nucleotide excision repair (NER), and translesion synthesis (TS) collaboratively lead to homologous recombination (HR) repair. However, it is not understood how ICL-induced HR repair is carried out and completed. Here, we showed that the replicative helicase-related Mcm family of proteins, Mcm8 and Mcm9, forms?a complex required for HR repair induced by ICLs. Chicken DT40 cells lacking MCM8 or MCM9 are viable but highly sensitive to ICL-inducing agents, and exhibit more chromosome aberrations in the presence of mitomycin C compared with wild-type cells. During ICL repair, Mcm8 and Mcm9 form nuclear foci that partly colocalize with Rad51. Mcm8-9 works downstream of the FA and BRCA2/Rad51 pathways, and is required for HR that promotes sister chromatid exchanges, probably as a hexameric ATPase/helicase.  相似文献   

13.
A study was made of the processes of repair, virus reactivation, and formation of sister chromatid exchanges (SCE) in blood cells of patients with schizophrenia after the effect of gamma-radiation and 4-nitroquinoline-1-oxide. These processes were estimated by 12 criteria. The mutagen-induced disturbances in the processes of repair and SCE formation were found in cells of patients with schizophrenia and were absent in the control cells of healthy donors.  相似文献   

14.
Cohesin is an essential multiprotein complex that mediates sister chromatid cohesion critical for proper segregation of chromosomes during cell division. Cohesin is also involved in DNA double-strand break (DSB) repair. In mammalian cells, cohesin is involved in both DSB repair and the damage checkpoint response, although the relationship between these two functions is unclear. Two cohesins differing by one subunit (SA1 or SA2) are present in somatic cells, but their functional specificities with regard to DNA repair remain enigmatic. We found that cohesin-SA2 is the main complex corecruited with the cohesin-loading factor NIPBL to DNA damage sites in an S/G2-phase-specific manner. Replacing the diverged C-terminal region of SA1 with the corresponding region of SA2 confers this activity on SA1. Depletion of SA2 but not SA1 decreased sister chromatid homologous recombination repair and affected repair pathway choice, indicating that DNA repair activity is specifically associated with cohesin recruited to damage sites. In contrast, both cohesin complexes function in the intra-S checkpoint, indicating that cell cycle-specific damage site accumulation is not a prerequisite for cohesin''s intra-S checkpoint function. Our findings reveal the unique ways in which cohesin-SA1 and cohesin-SA2 participate in the DNA damage response, coordinately protecting genome integrity in human cells.  相似文献   

15.
The genotoxic activity of benzidine was studied in two cell lines derived from rat (H4) and human (HepG2) hepatomas which have been shown to be capable of activating certain promutagens. The responses were compared to results in two lung-derived fibroblast lines (IMR-90 and V79) which appear to have little or no metabolizing capability. Benzidine was found to induce sister chromatid exchanges in the two liver-derived cell lines in a dose-dependent fashion but failed to induce sister chromatid exchanges in the fibroblast lines. Since one proposed pathway for benzidine activation involves prostaglandin-mediated metabolism, we tested the effect of pretreatment with indomethacin, an inhibitor of this metabolic pathway. Indomethacin was highly effective in inhibiting benzidine-induced sister chromatid exchanges in both H4 and HepG2 cells. These results suggest that some DNA damage may occur in the livers of fast acetylating species such as the rat without prior N-acetylation and that some amount of DNA damage may occur in the livers of slow acetylating species, even when the liver is not the target organ for carcinogenesis.Abbreviations RI replication index - SCE sister chromatid exchanges  相似文献   

16.
The chromosome arrangement in interphase nuclei is of growing interest, e.g., the spatial vicinity of homologous sequences is decisive for efficient repair of DNA damage by homologous recombination, and close alignment of sister chromatids is considered as a prerequisite for their bipolar orientation and subsequent segregation during nuclear division. To study the degree of homologous pairing and of sister chromatid alignment in plants, we applied fluorescent in situ hybridisation with specific bacterial artificial chromosome inserts to interphase nuclei. Previously we found in Arabidopsis thaliana and in A. lyrata positional homologous pairing at random, and, except for centromere regions, sister chromatids were frequently not aligned. To test whether these features are typical for higher plants or depend on genome size, chromosome organisation and/or phylogenetic affiliation, we investigated distinct individual loci in other species. The positional pairing of these loci was mainly random. The highest frequency of sister alignment (in >93% of homologues) was found for centromeres, some rDNA and a few other high copy loci. Apparently, somatic homologous pairing is not a typical feature of angiosperms, and sister chromatid aligment is not obligatory along chromosome arms. Thus, the high frequency of chromatid exchanges at homologous positions after mutagen treatment needs another explanation than regular somatic pairing of homologues (possibly an active search of damaged sites for homology). For sister chromatid exchanges a continuous sister chromatid alignment is not required. For correct segregation, permanent alignment of sister centromeres is sufficient.  相似文献   

17.
The structural maintenance of chromosomes (Smc) family members Smc5 and Smc6 are both essential in budding and fission yeasts. Yeast smc5/6 mutants are hypersensitive to DNA damage, and Smc5/6 is recruited to HO-induced double-strand breaks (DSBs), facilitating intersister chromatid recombinational repair. To determine the role of the vertebrate Smc5/6 complex during the normal cell cycle, we generated an Smc5-deficient chicken DT40 cell line using gene targeting. Surprisingly, Smc5(-) cells were viable, although they proliferated more slowly than controls and showed mitotic abnormalities. Smc5-deficient cells were sensitive to methyl methanesulfonate and ionizing radiation (IR) and showed increased chromosome aberration levels upon irradiation. Formation and resolution of Rad51 and gamma-H2AX foci after irradiation were altered in Smc5 mutants, suggesting defects in homologous recombinational (HR) repair of DNA damage. Ku70(-/-) Smc5(-) cells were more sensitive to IR than either single mutant, with Rad54(-/-) Smc5(-) cells being no more sensitive than Rad54(-/-) cells, consistent with an HR function for the vertebrate Smc5/6 complex. Although gene targeting occurred at wild-type levels, recombinational repair of induced double-strand breaks was reduced in Smc5(-) cells. Smc5 loss increased sister chromatid exchanges and sister chromatid separation distances in mitotic chromosomes. We conclude that Smc5/6 regulates recombinational repair by ensuring appropriate sister chromatid cohesion.  相似文献   

18.
Chromosome stability depends on accurate chromosome segregation and efficient DNA double-strand break (DSB) repair. Sister chromatid cohesion, established during S phase by the protein complex cohesin, is central to both processes. In the absence of cohesion, chromosomes missegregate and G2-phase DSB repair fails. Here, we demonstrate that G2-phase repair also requires the presence of cohesin at the damage site. Cohesin components are shown to be recruited to extended chromosome regions surrounding DNA breaks induced during G2. We find that in the absence of functional cohesin-loading proteins (Scc2/Scc4), the accumulation of cohesin at DSBs is abolished and repair is defective, even though sister chromatids are connected by S phase generated cohesion. Evidence is also provided that DSB induction elicits establishment of sister chromatid cohesion in G2, implicating that damage-recruited cohesin facilitates DNA repair by tethering chromatids.  相似文献   

19.
《Translational oncology》2020,13(9):100796
Degree of genomic instability closely correlates with poor prognosis, drug resistance as well as poor survival across human cancer of different origins. This study assessed the relationship between DNA damage response (DDR) and chromosome instability in hepatocellular carcinoma (HCC). We investigated DDR signaling in HCC cells by analyzing DNA damage-dependent redistribution of major DDR proteins to damaged chromatin using immunofluorescence microscopy and Western blotting experimentations. We also performed gene conversion and metaphase analyses to address whether dysregulated DDR may bear any biological significance during hepatocarcinogenesis. Accordingly, we found that HCC cell lines suffered from elevated spontaneous DNA double-strand breaks (DSBs). In addition, analyses of HCC metaphases revealed marked aneuploidy and frequent sister chromatid exchanges when compared to immortalized hepatocytes, the latter of which were further induced following camptothecin-induced DSBs. We propose that genomic instability in HCC may be caused by erroneous DNA repair in a desperate attempt to mend DSBs for cell survival and that such preemptive measures inadvertently foster chromosome instability and thus complex genomic rearrangements.  相似文献   

20.
Lymphocytes of patients with gouty nephropathy were investigated using the criteria of sister chromatid exchanges (SCE) formation, rapidity of generation, virus reactivation, detection of the level of virus mutagenesis and DNA repair and replication synthesis in the experiments with some mutagens. Disorders, according to these criteria, were observed in the cells of all the patients. Cells of patients with gouty nephropathy may be used as a model to study DNA repair and replication mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号