首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of chemoresistance is a major impediment to successful treatment of patients suffering from epithelial ovarian carcinoma (EOC). Among various molecular factors, presence of MyD88, a component of TLR-4/MyD88 mediated NF-κB signaling in EOC tumors is reported to cause intrinsic paclitaxel resistance and poor survival. However, 50–60% of EOC patients do not express MyD88 and one-third of these patients finally relapses and dies due to disease burden. The status and role of NF-κB signaling in this chemoresistant MyD88negative population has not been investigated so far. Using isogenic cellular matrices of cisplatin, paclitaxel and platinum-taxol resistant MyD88negative A2780 ovarian cancer cells expressing a NF-κB reporter sensor, we showed that enhanced NF-κB activity was required for cisplatin but not for paclitaxel resistance. Immunofluorescence and gel mobility shift assay demonstrated enhanced nuclear localization of NF-κB and subsequent binding to NF-κB response element in cisplatin resistant cells. The enhanced NF-κB activity was measurable from in vivo tumor xenografts by dual bioluminescence imaging. In contrast, paclitaxel and the platinum-taxol resistant cells showed down regulation in NF-κB activity. Intriguingly, silencing of MyD88 in cisplatin resistant and MyD88positive TOV21G and SKOV3 cells showed enhanced NF-κB activity after cisplatin but not after paclitaxel or platinum-taxol treatments. Our data thus suggest that NF-κB signaling is important for maintenance of cisplatin resistance but not for taxol or platinum-taxol resistance in absence of an active TLR-4/MyD88 receptor mediated cell survival pathway in epithelial ovarian carcinoma.  相似文献   

2.
A major burden in the treatment of ovarian cancer is the high percentage of recurrence and chemoresistance. Cancer stem cells (CSCs) provide a reservoir of cells that can self-renew, can maintain the tumor by generating differentiated cells [non-stem cells (non-CSCs)] which make up the bulk of the tumor and may be the primary source of recurrence. We describe the characterization of human ovarian cancer stem cells (OCSCs). These cells have a distinctive genetic profile that confers them with the capacity to recapitulate the original tumor, proliferate with chemotherapy, and promote recurrence. CSC identified in EOC cells isolated form ascites and solid tumors are characterized by: CD44+, MyD88+, constitutive NFκB activity and cytokine and chemokine production, high capacity for repair, chemoresistance to conventional chemotherapies, resistance to TNFα-mediated apoptosis, capacity to form spheroids in suspension, and the ability to recapitulate in vivo the original tumor.

Chemotherapy eliminates the bulk of the tumor but it leaves a core of cancer cells with high capacity for repair and renewal. The molecular properties identified in these cells may explain some of the unique characteristics of CSCs that control self-renewal and drive metastasis. The identification and cloning of human OCSCs can aid in the development of better therapeutic approaches for ovarian cancer patients.  相似文献   

3.
OBJECTIVE: To examine if the determination of the levels of serological tumor markers at time of relapse had any predictive value for chemoresistance in the second-line treatment of ovarian cancer patients. METHODS: From a registry of consecutive single-institution patients with epithelial ovarian carcinoma pretreated with paclitaxel plus platinum, we selected 82 patients with (a) solid tumor recurrence, and (b) second-line chemotherapy consisting of topotecan (platinum-resistant disease) or paclitaxel plus carboplatin (platinum-sensitive disease). Stored serum samples were analyzed for the biochemical tumor markers tetranectin, YKL-40, CASA (cancer-associated serum antigen), and CA 125. The serum tumor marker levels at time of relapse were correlated with response status at landmark time after 4 cycles of second-line chemotherapy. Univariate and multivariate logistic regression analyses (chemoresistant vs non-chemoresistant disease) were performed. RESULTS: At landmark time, 26% of patients had progression according to the GCIG (Gynecologic Cancer Intergroup) progression criteria. In univariate logistic regression analysis, the tumor markers tetranectin (OR 0.4; 95% CI: 0.2-0.8; p=0.008), YKL-40 (OR 1.8; 95% CI: 1.0-3.3; p=0.045), and CASA (OR 1.8; 95% CI: 1.2-2.7; p=0.007) had predictive value for second-line chemoresistance, whereas serum CA 125 had no predictive value. In a multivariate logistic regression analysis, serum tetranectin and CASA both had independent predictive value for chemoresistance. The combined determination of tetranectin and CASA had a specificity of 90% with 33% sensitivity for the prediction of chemoresistance (area under the receiver operating characteristic curve = 0.78; 95% CI: 0.66-0.91; p=0.001). CONCLUSION: Low serum levels of tetranectin, or high serum levels of CASA or YKL-40, are associated with increased risk of second-line chemoresistance in patients with ovarian cancer.  相似文献   

4.

Background

Despite a typically good response to first-line combination chemotherapy, the prognosis for patients with advanced ovarian cancer remains poor because of acquired chemoresistance. The use of targeted therapies such as trastuzumab may potentially improve outcomes for patients with ovarian cancer. HER2 overexpression/amplification has been reported in ovarian cancer, but the exact percentage of HER2-positive tumors varies widely in the literature. In this study, HER2 gene status was evaluated in a large, multicentric series of 320 patients with advanced ovarian cancer, including 243 patients enrolled in a multicenter prospective clinical trial of paclitaxel/carboplatin-based chemotherapy.

Methodology/Principal Findings

The HER2 status of primary tumors and metastases was evaluated by both immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) analysis of paraffin-embedded tissue on conventional slides. The prognostic impact of HER2 expression was analyzed. HER2 gene was overexpressed and amplified in 6.6% of analyzed tumors. Despite frequent intratumoral heterogeneity, no statistically significant difference was detected between primary tumors and corresponding metastases.

Conclusions/Significance

Our results show that the decision algorithm usually used in breast cancer (IHC as a screening test, with equivocal results confirmed by FISH) is appropriate in ovarian cancer. In contrast to previous series, HER2-positive status did not influence outcome in the present study, possibly due to the fact that patients in our study received paclitaxel/carboplatin-based chemotherapy. This raises the question of whether HER2 status and paclitaxel sensitively are linked.  相似文献   

5.
Paclitaxel is recommended as a first-line chemotherapeutic agent against ovarian cancer, but drug resistance becomes a major limitation of its success clinically. The key molecule or mechanism associated with paclitaxel resistance in ovarian cancer still remains unclear. Here, we showed that TXNDC17 screened from 356 differentially expressed proteins by LC-MS/MS label-free quantitative proteomics was more highly expressed in paclitaxel-resistant ovarian cancer cells and tissues, and the high expression of TXNDC17 was associated with poorer prognostic factors and exhibited shortened survival in 157 ovarian cancer patients. Moreover, paclitaxel exposure induced upregulation of TXNDC17 and BECN1 expression, increase of autophagosome formation, and autophagic flux that conferred cytoprotection for ovarian cancer cells from paclitaxel. TXNDC17 inhibition by siRNA or enforced overexpression by a pcDNA3.1(+)-TXNDC17 plasmid correspondingly decreased or increased the autophagy response and paclitaxel resistance. Additionally, the downregulation of BECN1 by siRNA attenuated the activation of autophagy and cytoprotection from paclitaxel induced by TXNDC17 overexpression in ovarian cancer cells. Thus, our findings suggest that TXNDC17, through participation of BECN1, induces autophagy and consequently results in paclitaxel resistance in ovarian cancer. TXNDC17 may be a potential predictor or target in ovarian cancer therapeutics.  相似文献   

6.

Background

The microenvironment plays a major role in the onset and progression of metastasis. Epithelial ovarian cancer (EOC) tends to metastasize to the peritoneal cavity where interactions within the microenvironment might lead to chemoresistance. Mesothelial cells are important actors of the peritoneal homeostasis; we determined their role in the acquisition of chemoresistance of ovarian tumours.

Methodology/Principal Findings

We isolated an original type of stromal cells, referred to as “Hospicells” from ascitis of patients with ovarian carcinosis using limiting dilution. We studied their ability to confer chemoresistance through heterocellular interactions. These stromal cells displayed a new phenotype with positive immunostaining for CD9, CD10, CD29, CD146, CD166 and Multi drug resistance protein. They preferentially interacted with epithelial ovarian cancer cells. This interaction induced chemoresistance to platin and taxans with the implication of multi-drug resistance proteins. This contact enabled EOC cells to capture patches of the Hospicells membrane through oncologic trogocytosis, therefore acquiring their functional P-gp proteins and thus developing chemoresistance. Presence of Hospicells on ovarian cancer tissue micro-array from patients with neo-adjuvant chemotherapy was also significantly associated to chemoresistance.

Conclusions/Significance

This is the first report of trogocytosis occurring between a cancer cell and an original type of stromal cell. This interaction induced autonomous acquisition of chemoresistance. The presence of stromal cells within patient''s tumour might be predictive of chemoresistance. The specific interaction between cancer cells and stromal cells might be targeted during chemotherapy.  相似文献   

7.

Objectives

Adipose tissue contains a population of multipotent adipose stem cells (ASCs) that form tumor stroma and can promote tumor progression. Given the high rate of ovarian cancer metastasis to the omental adipose, we hypothesized that omental-derived ASC may contribute to ovarian cancer growth and dissemination.

Materials and Methods

We isolated ASCs from the omentum of three patients with ovarian cancer, with (O-ASC4, O-ASC5) and without (O-ASC1) omental metastasis. BM-MSCs, SQ-ASCs, O-ASCs were characterized with gene expression arrays and metabolic analysis. Stromal cells effects on ovarian cancer cells proliferation, chemoresistance and radiation resistance was evaluated using co-culture assays with luciferase-labeled human ovarian cancer cell lines. Transwell migration assays were performed with conditioned media from O-ASCs and control cell lines. SKOV3 cells were intraperitionally injected with or without O-ASC1 to track in-vivo engraftment.

Results

O-ASCs significantly promoted in vitro proliferation, migration chemotherapy and radiation response of ovarian cancer cell lines. O-ASC4 had more marked effects on migration and chemotherapy response on OVCA 429 and OVCA 433 cells than O-ASC1. Analysis of microarray data revealed that O-ASC4 and O-ASC5 have similar gene expression profiles, in contrast to O-ASC1, which was more similar to BM-MSCs and subcutaneous ASCs in hierarchical clustering. Human O-ASCs were detected in the stroma of human ovarian cancer murine xenografts but not uninvolved ovaries.

Conclusions

ASCs derived from the human omentum can promote ovarian cancer proliferation, migration, chemoresistance and radiation resistance in-vitro. Furthermore, clinical O-ASCs isolates demonstrate heterogenous effects on ovarian cancer in-vitro.  相似文献   

8.
9.
该研究是探讨三磷酸腺苷生物荧光肿瘤抗癌药物药敏性分析实验(ATP-TCA)在卵巢癌患者化疗中的应用。研究选取88例卵巢上皮性癌新鲜组织行ATP-TCA体外药敏试验,分析结果、计算各种化疗药物敏感性,并与48例对照组患者进行临床近期有效率的比较。结果显示,在体外药敏试验敏感性最强的单药为紫杉醇(51.9%),敏感性强弱依次为:紫杉醇〉卡铂〉顺铂〉吉西他滨〉拓泊替康〉多西他赛〉依托泊苷〉环磷酰胺〉博来霉素,联合用药方案敏感性较单药增加。药敏组患者临床近期有效率(85.23%)高于对照(68.75%)。ATP-TCA是一种有效的抗癌药物敏感性分析实验,可为卵巢癌患者临床化疗提供个体化的指导方案。  相似文献   

10.
Kinesin family member 14 (KIF14) is a member of kinesin family proteins which have been found to be dysregulated in various cancer types. However, the expression of KIF14 and its potential prognostic significance have not been investigated in cervical cancer. Real-time PCR was performed to assess the expression levels of KIF14 in 47 pairs of cervical cancer tissues and their matched normal tissues from patients who had not been exposed to chemotherapy as well as tissue samples from 57 cervical cancer patients who are sensitive to paclitaxel treatment and 53 patients who are resistant. The association between KIF14 expression levels in tissue and clinicopathological features or chemosensitivity was examined. Kaplan–Meier analysis and Cox proportional hazards model were applied to assess the correlation between KIF14 expression levels and overall survival (OS) of cervical cancer patients. KIF14 expression levels were significantly increased in cervical cancer tissues compared with matched non-cancerous tissues and it was higher in tissues of patients who are chemoresistant compared with those who are chemosensitive. KIF14 expression was positively associated with high tumour stage (P=0.0044), lymph node metastasis (P=0.0034) and chemoresistance (P<0.0001). Kaplan–Meier analysis showed that high KIF14 expression levels predicted poor survival in patients with (P=0.0024) or without (P=0.0028) paclitaxel treatment. Multivariate analysis revealed that KIF14 was an independent prognostic factor for OS. Our study suggests that KIF14 may serve as a predictor of poor survival and a novel prognostic biomarker of chemoresistance to paclitaxel treatment in cervical cancer.  相似文献   

11.
12.
Background: 5-Fluorouracil (5Fu) chemotherapy is the first treatment of choice for advanced gastric cancer (GC), but its effectiveness is limited by drug resistance. Emerging evidence suggests that the existence of cancer stem cells (CSCs) contributes to chemoresistance. The aim of the present study was to determine whether 5Fu chemotherapy generates residual cells with CSC-like properties in GC. Methods: Human GC cell lines, SGC7901 and AGS, were exposed to increasing 5Fu concentrations. The residual cells were assessed for both chemosensitivity and CSC-like properties. B lymphoma Mo-MLV insertion region 1 (BMI1), a putative CSC protein, was analyzed by immunohistochemical staining and subjected to pairwise comparison in GC tissues treated with or without neoadjuvant 5Fu-based chemotherapy. The correlation between BMI1 expression and recurrence-free survival in GC patients who received 5Fu-based neoadjuvant chemotherapy was then examined. Results: The residual cells exhibited 5Fu chemoresistance. These 5Fu-resistant cells displayed some CSC features, such as a high percentage of quiescent cells, increased self-renewal ability and tumorigenicity. The 5Fu-resistant cells were also enriched with cells expressing cluster of differentiation (CD)133+, CD326+ and CD44+CD24-. Moreover, the BMI1 gene was overexpressed in 5Fu-resistant cells, and BMI1 knockdown effectively reversed chemoresistance. The BMI1 protein was highly expressed consistently in the remaining GC tissues after 5Fu-based neoadjuvant chemotherapy, and BMI1 levels were correlated positively with recurrence-free survival in GC patients who received 5Fu-based neoadjuvant chemotherapy. Conclusions: Our data provided molecular evidence illustrating that 5Fu chemotherapy in GC resulted in acquisition of CSC-like properties. Moreover, enhanced BMI1 expression contributed to 5Fu resistance and may serve as a potential therapeutic target to reverse chemoresistance in GC patients.  相似文献   

13.

Background

Multidrug resistance (MDR) is a major factor which contributes to the failure of cancer chemotherapy, and numerous efforts have been attempted to overcome MDR. To date, none of these attempts have yielded a tolerable and effective therapy to reverse MDR; thus, identification of new agents would be useful both clinically and scientifically.

Methodology/Principal Findings

To identify small molecule compounds that can reverse chemoresistance, we developed a 96-well plate high-throughput cell-based screening assay in a paclitaxel resistant ovarian cancer cell line. Coincubating cells with a sublethal concentration of paclitaxel in combination with each of 2,000 small molecule compounds from the National Cancer Institute Diversity Set Library, we identified a previously uncharacterized molecule, NSC23925, that inhibits Pgp1 and reverses MDR1 (Pgp1) but does not inhibit MRP or BCRP-mediated MDR. The cytotoxic activity of NSC23925 was further evaluated using a panel of cancer cell lines expressing Pgp1, MRP, and BCRP. We found that at a concentration of >10 µM NSC23925 moderately inhibits the proliferation of both sensitive and resistant cell lines with almost equal activity, but its inhibitory effect was not altered by co-incubation with the Pgp1 inhibitor, verapamil, suggesting that NSC23925 itself is not a substrate of Pgp1. Additionally, NSC23925 increases the intracellular accumulation of Pgp1 substrates: calcein AM, Rhodamine-123, paclitaxel, mitoxantrone, and doxorubicin. Interestingly, we further observed that, although NSC23925 directly inhibits the function of Pgp1 in a dose-dependent manner without altering the total expression level of Pgp1, NSC23925 actually stimulates ATPase activity of Pgp, a phenomenon seen in other Pgp inhibitors.

Conclusions/Significance

The ability of NSC23925 to restore sensitivity to the cytotoxic effects of chemotherapy or to prevent resistance could significantly benefit cancer patients.  相似文献   

14.
Around 20–30% of ovarian cancer patients exhibit chemoresistance, but there are currently no methods to predict whether a patient will respond to chemotherapy. Here, we discovered that chemoresistant ovarian cancer cells exhibit enhanced survival in a quiescent state upon experiencing the stress of physical confinement. When immobilized in stiff silica gels, most ovarian cancer cells die within days, but surviving cells exhibit hallmarks of single-cell dormancy. Upon extraction from gels, the cells resume proliferation but demonstrate enhanced viability upon reimmobilization, indicating that initial immobilization selects for cells with a higher propensity to enter dormancy. RNA-seq analysis of the extracted cells shows they have signaling responses similar to cells surviving cisplatin treatment, and in comparison to chemoresistant patient cohorts, they share differentially expressed genes that are associated with platinum-resistance pathways. Furthermore, these extracted cells demonstrate greater resistance to cisplatin and paclitaxel, despite being proliferative. In contrast, serum starvation and hypoxia could not effectively select for chemoresistant cells upon removal of the environmental stress. These findings demonstrate that ovarian cancer chemoresistance and the ability to enter dormancy are linked, and immobilization rapidly distinguishes chemoresistant cells. This platform could be suitable for mechanistic studies, drug development, or as a clinical diagnostic tool.  相似文献   

15.

Purpose

Breast cancer remains a major cause of death in women worldwide, and tumor metastasis is the leading cause of death in breast cancer patients after conventional treatment. Chronic inflammation is often related to the occurrence and growth of various malignancies. This study evaluated the prognosis of breast cancer patients based on contributors to the innate immune response: myeloid differentiation primary response 88 (MyD88) and Toll-like receptor 4 (TLR4).

Methods

We analyzed data from 205 breast invasive ductal carcinoma (IDC) patients who were treated at the Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, from 2002 to 2006. Overall survival (OS) and disease-free survival (DFS) were compared.

Results

In total, 152 patients (74.15%) were disease-free without relapse or metastasis, whereas 53 (25.85%) patients developed recurrence or metastasis. A significant positive correlation was observed between MyD88 and TLR4 expression (p<0.001). Patients with high expression were more likely to experience death and recurrence/metastasis events (p<0.05). Patients with low MyD88 or TLR4 expression levels had better DFS and OS than patients with high expression levels (log-rank test: p<0.001). Patients with low MyD88 and TLR4 expression levels had better DFS and OS than patients with high expression levels of either (log-rank test: p<0.001). In a multivariate analysis, high MyD88 expression was an independent predictive factor for decreased DFS (adjusted HR, 3.324; 95% CI, 1.663–6.641; p = 0.001) and OS (adjusted HR, 4.500; 95% CI, 1.546–13.098; p = 0.006).

Conclusions

TLR4-MyD88 signaling pathway activation or MyD88 activation alone may be a risk factor for poor prognosis in breast cancer. Therefore, TLR4-MyD88 signaling pathway activation in tumor biology provides a novel potential target for breast cancer therapy.  相似文献   

16.
Taxanes remain first line chemotherapy in management of metastatic breast cancer and have a key role in epithelial ovarian cancer, with increasingly common use of weekly paclitaxel dosing regimens. However, their clinical utility is limited by the development of chemoresistance. To address this, we modelled in vitro paclitaxel resistance in MCF-7 cells. We show that at clinically relevant drug doses, emerging paclitaxel resistance is associated with profound changes in cell death responses and a switch from apoptosis to autophagy as the principal mechanism of drug-induced cytotoxicity. This was characterised by a complete absence of caspase-mediated apoptotic cell death (using the pan-caspase-inhibitor Z-VAD) in paclitaxel-resistant MCF-7TaxR cells, compared with parent MCF-7 or MDA-MB-231 cell lines on paclitaxel challenge, downregulation of caspase-7, caspase-9 and BCl2-interacting mediator of cell death (BIM) expression. Silencing with small interfering RNA to BIM in MCF-7 parental cells was sufficient to confer paclitaxel resistance, inferring the significance in downregulation of this protein in contributing to the resistant phenotype of the MCF-7TaxR cell line. Conversely, there was an increased autophagic response in the MCF-7TaxR cell line with reduced phospho-mTOR and relative resistance to the mTOR inhibitors rapamycin and RAD001. In conclusion, we show for the first time that paclitaxel resistance is associated with profound changes in cell death response with deletion of multiple apoptotic factors balanced by upregulation of the autophagic pathway and collateral sensitivity to platinum.  相似文献   

17.
Epithelial mesenchymal transition (EMT) and cancer stem cells (CSC) have been associated with resistance to chemotherapy. Eighty percent of ovarian cancer patients initially respond to platinum-based combination therapy but most return with recurrence and ultimate demise. To better understand such chemoresistance we have assessed the potential role of EMT in tumor cells collected from advanced-stage ovarian cancer patients and the ovarian cancer cell line OVCA 433 in response to cisplatin in vitro. We demonstrate that cisplatin-induced transition from epithelial to mesenchymal morphology in residual cancer cells correlated with reduced E-cadherin, and increased N-cadherin and vimentin expression. The mRNA expression of Snail, Slug, Twist, and MMP-2 were significantly enhanced in response to cisplatin and correlated with increased migration. This coincided with increased cell surface expression of CSC-like markers such as CD44, α2 integrin subunit, CD117, CD133, EpCAM, and the expression of stem cell factors Nanog and Oct-4. EMT and CSC-like changes in response to cisplatin correlated with enhanced activation of extracellular signal-regulated kinase (ERK)1/2. The selective MEK inhibitor U0126 inhibited ERK2 activation and partially suppressed cisplatin-induced EMT and CSC markers. In vivo xenotransplantation of cisplatin-treated OVCA 433 cells in zebrafish embryos demonstrated significantly enhanced migration of cells compared to control untreated cells. U0126 inhibited cisplatin-induced migration of cells in vivo, suggesting that ERK2 signaling is critical to cisplatin-induced EMT and CSC phenotypes, and that targeting ERK2 in the presence of cisplatin may reduce the burden of residual tumor, the ultimate cause of recurrence in ovarian cancer patients.  相似文献   

18.
19.
K Lv  L Liu  L Wang  J Yu  X Liu  Y Cheng  M Dong  R Teng  L Wu  P Fu  W Deng  W Hu  L Teng 《PloS one》2012,7(7):e40008
Resistance to chemotherapy is a major obstacle for the effective treatment of cancers. Lin28 has been shown to contribute to tumor relapse after chemotherapy; however, the relationship between Lin28 and chemoresistance remained unknown. In this study, we investigated the association of Lin28 with paclitaxel resistance and identified the underlying mechanisms of action of Lin28 in human breast cancer cell lines and tumor tissues. We found that the expression level of Lin28 was closely associated with the resistance to paclitaxel treatment. The T47D cancer cell line, which highly expresses Lin28, is more resistant to paclitaxel than the MCF7, Bcap-37 or SK-BR-3 cancer cell lines, which had low-level expression of Lin28. Knocking down of Lin28 in Lin28 high expression T47D cells increased the sensitivity to paclitaxel treatment, while stable expression of Lin28 in breast cancer cells effectively attenuated the sensitivity to paclitaxel treatment, resulting in a significant increase of IC50 values of paclitaxel. Transfection with Lin28 also significantly inhibited paclitaxel-induced apoptosis. We also found that Lin28 expression was dramatically increased in tumor tissues after neoadjuvant chemotherapy or in local relapse or metastatic breast cancer tissues. Moreover, further studies showed that p21, Rb and Let-7 miRNA were the molecular targets of Lin28. Overexpression of Lin28 in breast cancer cells considerably induced p21 and Rb expression and inhibited Let-7 miRNA levels. Our results indicate that Lin28 expression might be one mechanism underlying paclitaxel resistance in breast cancer, and Lin28 could be a potential target for overcoming paclitaxel resistance in breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号