首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the age structure and net accretion rates determined for an open water turbid zone reef, known as Offshore Paluma Shoals, located on the inner central Great Barrier Reef. Twenty-eight radiocarbon dates from 5 cores through the reef structure indicate that this reef began growing ~1,700 years ago and that net vertical accretion through the main phase of reef development was rapid (averaging 7.8 mm yr?1), this despite the reef growing in highly turbid waters. The most rapid growth phases coincided with the accumulation of mud-rich terrigenoclastic sediments within the reef fabric. The study emphasises the capacity of turbid zone reefs to vertically accrete at rates matching or exceeding many clear water reefs despite seemingly detrimental water quality conditions.  相似文献   

2.
Long-term (millennial timescale) records of coral community structure can be developed from the analysis of corals preserved in radiometrically dated reef cores. Here, we present such a record (based on six cores) from Lugger Shoal, a turbid zone, nearshore reef on the inner-shelf of the central Great Barrier Reef. Lugger Shoal initiated growth ~800 cal yBP. It is constructed of large in situ Porites bommies, between which a framework of coral rubble (dominated by Acropora pulchra, Montipora mollis, Galaxea fascicularis and Cyphastrea serailia) has accumulated. Reef accretion occurred under conditions of net long-term fine-grained, terrigenous sediment accumulation, and with a coral community dominated throughout by a consistent, but low diversity, suite of coral taxa. This dataset supports recent suggestions that nearshore coral communities that establish themselves under conditions that are already close to the thresholds for coral survival may be resilient to water quality deteriorations associated with human activities.  相似文献   

3.
Phytoplankton biomass and primary production rates within semi-enclosed reef lagoons of the central Great Barrier Reef were compared with adjacent shelf waters. Chlorophyll concentrations and surface primary production rates were usually higher in lagoons although seasonal differences were only significant during the summer. Nitrate concentrations were higher in lagoons than in shelf waters year-round. Nano- (<20 m size fraction) or pico-phytoplankton (<2 m size fraction) dominated phytoplankton biomass and production within reef lagoons throughout the year. Net phytoplankton (>10–20 m size fraction), however, were relatively more important in both reef lagoons and open shelf waters during the summer. Biomass-specific production within lagoons (range 41–90 mg C mg chl–1 day–1) was high, regardless of season. Lagoonal phytoplankton production (range 0.2–1.6 g C m–2 day–1) was directly correlated with standing crop and inversely related to lagoon flushing rates. Phytoplankton blooms develop within GBR reef lagoons during intermittent calm periods when water residence times exceed phytoplankton generation times.  相似文献   

4.
5.
The geomorphology and chronostratigraphy of the reef flat (including microatoll ages and elevations) were investigated to better understand the long-term development of the reef at Middle Island, inshore central Great Barrier Reef. Eleven cores across the fringing reef captured reef initiation, framework accretion and matrix sediments, allowing a comprehensive appreciation of reef development. Precise uranium–thorium ages obtained from coral skeletons revealed that the reef initiated ~7873 ± 17 years before present (yBP), and most of the reef was emplaced in the following 1000 yr. Average rates of vertical reef accretion ranged between 3.5 and 7.6 mm yr?1. Reef framework was dominated by branching corals (Acropora and Montipora). An age hiatus of ~5000 yr between 6439 ± 19 and 1617 ± 10 yBP was observed in the core data and attributed to stripping of the reef structure by intense cyclones during the mid- to late-Holocene. Large shingle ridges deposited onshore and basset edges preserved on the reef flat document the influence of cyclones at Middle Island and represent potential sinks for much of the stripped material. Stripping of the upper reef structure around the outer margin of the reef flat by cyclones created accommodation space for a thin (<1.2 m) veneer of reef growth after 1617 ± 10 yBP that grew over the eroded mid-Holocene reef structure. Although limited fetch and open-water exposure might suggest the reef flat at Middle Island is quite protected, our results show that high-energy waves presumably generated by cyclones have significantly influenced both Holocene reef growth and contemporary reef flat geomorphology.  相似文献   

6.
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m–2), and productive (up to 110 mg O2 m–2 h–1) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92–995 mg chl a m–2) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.Communicated by Environmental Editor, B.C. Hatcher  相似文献   

7.
Reef corals occur across a wide range of habitats, from offshore clear waters to nearshore sediment-laden environments. This study tests the hypothesis that corals from turbid nearshore areas have greater capacity to utilise suspended sediment as a food source than conspecifics from less turbid and midshelf areas. The hypothesis was tested on two common and widespread coral species on the Great Barrier Reef (Pocillopora damicornis and Acropora millepora). The particle clearance rates of samples from more turbid reefs were two-fourfold those of conspecifics from less turbid and midshelf reefs. Rates of sediment ingestion were generally a linear function of sediment load indicating no significant saturation within the concentration range of 1–30 mg dry weight l−1. Estimated assimilation efficiency of particulate 14C varied between 50 and 80%, and was maximised for midshelf A. millepora at the lowest sediment concentration, suggesting that heterotrophy is more efficient in oligotrophic habitats. Based on feeding-response curves, assimilation efficiencies, and published records of ambient particle concentrations, representatives of these species on turbid inshore reefs are 10–20 times more heterotrophic on suspended sediment than their conspecifics on less turbid and midshelf reefs. Accepted: 7 September 1999  相似文献   

8.
A five-year period (2002–2006) of below-median rainfall followed by a six-year period (2007–2012) of above-median rainfall and seasonal flooding allowed a natural experiment into the effects of runoff on the water quality and subsequent coral community responses in the Whitsunday Islands, Great Barrier Reef (Australia). Satellite-derived water quality estimates of total suspended solids (TSS) and chlorophyll-a (Chl) concentration showed marked seasonal variability that was exaggerated during years with high river discharge. During above-median rainfall years, Chl was aseasonally high for a period of 3 months during the wet season (February–April), while TSS was elevated for four months, extending into the dry season (March–June). Coinciding with these extremes in water quality was a reduction in the abundance and shift in the community composition, of juvenile corals. The incidence of coral disease was at a maximum during the transition from years of below-median to years of above-median river discharge. In contrast to juvenile corals, the cover of larger corals remained stable, although the composition of communities varied along environmental gradients. In combination, these results suggest opportunistic recruitment of corals during periods of relatively low environmental stress with selection for more tolerant species occurring during periods of environmental extremes.  相似文献   

9.
Currents, sea levels and weather were measured for a 60 d period at a number of sites in and near Britomart reef, Great Barrier Reef. The tidal currents were primarily semi-diurnal in character. The lowfrequency currents were due to a simple balance, in the longshore direction, between the wind stress and the bottom frictional stress, and, in the cross-shelf direction, between the bottom frictional stress and the pressure gradient generated by the passage of wind-driven continental shelf waves. The bottom friction coefficient, for the nonlinear drag law, is estimated to be of the order of 0.02. By contrast, the currents over the surrounding continental shelf are primarily controlled by continental shelf wave dynamics and are not dominated by friction. It thus appears that the water bodies in, respectively, the reef matrix and the Lagoon of the Great Barrier Reef are relatively uncoupled. Tidal and low-frequency currents contributed roughly equally to the flushing of Britomart reef lagoon with an estimated flushing time of the order of 4 d.  相似文献   

10.
Despite their ecological importance, very little is known about the taxonomy and ecology of benthic diatoms in coral-reef ecosystems. Diatom densities and community compositions were investigated in three distinct regions of the Great Barrier Reef (GBR): (a) Wet Tropics (WT), (b) Princess Charlotte Bay (PCB), and (c) the Outer Shelf (OS). About 209 taxa were observed in the GBR sediments studied, with an average abundance of 2.55 × 106 cells ml−1 in the upper 1 cm of sediment. Total diatom abundances were about twice as high in inshore reefs of PCB and WT compared with OS reefs. A redundancy analysis (RDA) of diatom composition clearly grouped the three regions separately but showed little influence of grain size, nitrogen and organic carbon content of the sediments. The only distinct correlates were inorganic carbon and the distance to the mainland associated with OS communities. Analysis of similarity (ANOSIM) of diatom community composition revealed significant differences between all three regions. Indicator values showed that most highly abundant taxa occurred in all regions. However, several taxa were clearly identified as characteristic of particular regions. It is hypothesised that variations in nutrient and light availability are the most likely explanation for the observed differences in community composition.  相似文献   

11.
This study describes the natural turbidity regimes at two inshore turbid reefs on the central Great Barrier Reef where wind-driven waves are the main agent of sediment resuspension. Many corals on inshore turbid reefs have adapted to high and fluctuating turbidity, however, anthropogenic activities such as dredging are speculated to produce larger and more prolonged turbidity events that may exceed the environmental tolerance and adaptive capacity of corals on these reefs. Natural turbidity regimes must be described and understood to determine whether and when coral communities on inshore turbid reefs are at risk from anthropogenically elevated turbidity, but at present few baseline studies exist. Here, we present turbidity data from (a) Middle Reef, a semi-protected reef located between Magnetic Island and Townsville and (b) Paluma Shoals, a reef exposed to higher energy wind and waves located in Halifax Bay. Instruments were deployed on both reefs for 16 days to measure spatial and temporal variations in turbidity and its driving forces (waves, currents, tides). Locally driven wind waves were the key driver of turbidity, but the strength of the relationship was dependent on wave exposure. Turbidity regimes thus vary markedly over individual reefs and this is reflected in community assemblage distributions, with a high abundance of heterotrophic corals (e.g. Goniopora) in reef habitats subjected to large fluctuations in turbidity (>100 NTU). A turbidity model developed using local wind speed data explained up to 75 % and up to 46 % of the variance in turbidity at Paluma Shoals and Middle Reef, respectively. Although the model was based on a brief two-week observational period, it reliably predicted variations in 24-h averaged turbidity and identified periods when turbidity rose above ambient baseline levels, offering reef managers insights into turbidity responses to modified climate and coastal sediment delivery regimes.  相似文献   

12.
The Great Barrier Reef holds the richest array of marine life found anywhere in Australia, including a diverse and fascinating parasite fauna. Members of one group, the trematodes, occur as sexually mature adult worms in almost all Great Barrier Reef bony fish species. Although the first reports of these parasites were made 100 years ago, the fauna has been studied systematically for only the last 25 years. When the fauna was last reviewed in 1994 there were 94 species known from the Great Barrier Reef and it was predicted that there might be 2,270 in total. There are now 326 species reported for the region, suggesting that we are in a much improved position to make an accurate prediction of true trematode richness. Here we review the current state of knowledge of the fauna and the ways in which our understanding of this fascinating group is changing. Our best estimate of the true richness is now a range, 1,100–1,800 species. However there remains considerable scope for even these figures to be incorrect given that fewer than one-third of the fish species of the region have been examined for trematodes. Our goal is a comprehensive characterisation of this fauna, and we outline what work needs to be done to achieve this and discuss whether this goal is practically achievable or philosophically justifiable.  相似文献   

13.
Mesophotic coral reefs in the Indo-West Pacific, the most diverse coral reef region on earth, are among the least documented. This study provides the first detailed investigation of the diversity of Scleractinia and Octocorallia of the mesophotic Great Barrier Reef (GBR). Specimens were collected by 100-m rock dredge tows at 47–163 m depth on 23 sites in four regions (15.3°–19.7° latitude South). Twenty-nine hard coral species from 19 families were recorded, with the greatest diversity found at <60 m depth, and no specimen was found >102 m. Many of these species are also commonly observed at shallower depths, particularly in inshore areas. Twenty-seven octocoral genera were collected, 25 of which represented azooxanthellate genera. Generic richness of octocorals was highest at depths >60 m. Sixteen of the 25 azooxanthellate genera were either absent or very rare at <18 m, and only five azooxanthellate genera were common on both shallow and mesophotic reefs. Species-area models indicated that the total diversity of hard corals on the deep mesophotic reefs sampled during this study was ~84 species while octocorals were represented by ~37 genera; however, the wide 95% confidence limits indicates that more intensive sampling effort is required to improve the accuracy of these estimates. Nonetheless, these results show that the taxonomic richness, particularly of hard corals, on mesophotic reefs may be much higher than previously thought, a finding that has implications for the comprehensive and adequate protection of the full range of biodiversity of the GBR.  相似文献   

14.
We describe zooplankton community structure and copepod eggproduction in the vicinity of the coastal boundary zone of theGreat Barrier Reef lagoon, Australia. The abundance and eggproduction rate of constituents of the zooplankton assemblagecharacteristic of the coastal zone rapidly increase subsequentto events such as flooding and upwelling. Our sampling spannedtwo summer monsoonal seasons, the first of which (1990-91) wasvery wet. The second monsoonal season (1991-92) was very dryand was characterized by intrusive upwelling events from theCoral Sea. Chlorophyll a concentrations did not rise in thewet year, probably because of light limitation, but did riseas a result of upwelling. Terrestrial run-off in the wet yearhad a greater apparent effect on zooplankton abundance patternsthan did upwelling in the dry year, except where coastal trappingallowed sufficient time for increases in zooplankton abundanceto occur. Egg production rates by the copepods Acrocalanus gibberand Acrocalanus gracilis showed haphazard spatial differences.Nitrogen-specific egg production ranged between 0.03 and 0.21day–1 for A.gibber, and between 0.13 and 0.41 day–1for A.gracilis. The egg production rate by A.gibber was foodlimited for most of the year and showed a poor correlation withtemperature. 3Present address: Department of Biological Sciences, FloridaTech, 150 W University Boulevard, Melbourne, FL 32901, USA  相似文献   

15.
The extent to which fish communities are structured by spatial variability in coral reef habitats versus stochastic processes (such as larval supply) is very important in predicting responses to sustained and ongoing habitat degradation. In this study, butterflyfish and benthic communities were surveyed annually over 15 years on 47 reefs (spanning 12° of latitude) of the Great Barrier Reef (GBR). Spatial autocorrelation in the structure of butterflyfish communities versus key differences in reef habitats was investigated to assess the extent to which the structure of these fish communities is influenced by habitat conditions. Benthic communities on each of the 47 reefs were broadly categorised as either: 1. Poritidae/Alcyoniidae, 2. mixed taxa, 3. soft coral or 4. Acropora-dominated habitats. These habitat types most reflected increases in water clarity and wave exposure, moving across the GBR shelf from coastal to outer-shelf environments. In turn, each habitat type also supported very distinct butterflyfish communities. Hard coral feeders were always the dominant butterflyfish species in each community type. However, the numerically dominant species changed according to habitat type, representing spatial replacement of species across the shelf. This study reveals clear and consistent differences in the structure of fish communities among reefs associated with marked differences in habitat structure.  相似文献   

16.
Herbivores are widely acknowledged as key elements maintaining the health and resilience of terrestrial and aquatic ecosystems. Understanding and quantifying the impact of herbivores in ecosystems are fundamental to our ability to manage these systems. The traditional method of quantifying the impact of herbivorous fishes on coral reefs has been to use transplanted pieces of seagrass or algae as “bioassays”. However, these experiments leave a key question unanswered, namely: Which species are responsible for the impact being quantified? This study revisits the use of bioassays and tested the assumption that the visual abundance of species reflects their role in the removal of assay material. Using remote video cameras to film removal of assay material on an inner-shelf reef of the Great Barrier Reef, the species responsible for assay-based herbivory were identified. The video footage revealed that Siganus canaliculatus, a species not previously recorded at the study site, was primarily responsible for removal of macroalgal biomass. The average percentage decrease in thallus length of whole plants of Sargassum at the reef crest was 54 ± 8.9% (mean ± SE), and 50.4 ± 9.8% for individually presented Sargassum strands (for a 4.5-h deployment). Of the 14,656 bites taken from Sargassum plants and strands across all reef zones, nearly half (6,784 bites or 46%) were taken by S. canaliculatus, with the majority of the remainder attributable to Siganus doliatus. However, multiple regression analysis demonstrated that only the bites of S. canaliculatus were removing macroalgal biomass. The results indicate that, even with detailed observations, the species of herbivore that may be responsible for maintaining benthic community structure can go unnoticed. Some of our fundamental ideas of the relative importance of individual species in ecosystem processes may be in need of re-evaluation.  相似文献   

17.
18.
Analysis of available wind data for the years 1962–80 from Heron Island which is located within the southern Great Barrier Reef indicates that the annual wind energy vector has oscillated within a 45 degree arc from the SSE in the early 1960's to ESE in the late 1970's. Such changes in wind direction influence the direction of propagation of the waves which mould the shape of coral sand cays in this region. Documentation is provided which shows that the variability of the shoreline positions on Erskine Island, an uninhabited vegetated sand cay reflects this change. The implication is that contemporary shoreline erosion on Heron Island is not caused by the development associated with the tourist resort there. It is a symptom of the change in the propagation direction of the wind-induced waves which is related to long-term climatic change.  相似文献   

19.
The crinoid community of Davies Reef, a midshelf reef in the central Great Barrier Reef, was systematically sampled in all major crinoid habitats. A total of 294 individuals of 27 species-level taxa was found in 25 sites across the reef. Of these 27 taxa, 20 were confidently assigned to known species. The 25 sitesx27 taxa matrix was subjected to an array of pattern extraction and diagnostic techniques — numerical classification, ordination and minimum spanning trees — to elucidate the structure of the community. These analyses revealed a consistent structure characterized by a species-rich ensemble around the periphery of the reef which was attenuated towards the inside of the reef. This structure contrasts strongly with the patterns seen in other major reef communities, such as hard and soft corals, fish or sponges. In these communities, different parts of the reef are characterized by distinctive sets of species, a depthbased zonation of the communities is evident, and the fore-reef slope typically supports a different ensemble from the back-reef slope. We conclude that the crinoid community offers a significant opportunity to observe the coral reef ecosystem from a different perspective.  相似文献   

20.
The dynamics of benthic microbial communities were examined within different functional zones (reef crest, reef flat, lagoon) of Davies Reef, central Great Barrier Reef, in winter. Bacterial numbers did not change significantly across the reef with a mean abundance of 1.3 (±0.6) x 109 cells g-1 DW of sediment. Bacterial production, measured as thymidine incorporation into DNA, ranged from 1.2 (±0.2) to 11.6 (±1.5) mg C m-2h-1 across the reef and was significantly lower in a reef crest basin than in the other zones. Bacterial growth rates () across the reef (0.05 to 0.33 g-1) correlated only with sediment organic carbon and nitrogen. Protozoan and meiofaunal densities varied by an order of magnitude across the reef and correlated with one or more sediment variables but not with bacterial numbers or growth rates. Nutrient flux rates were similar to those found at other reefs in the central and southern Great Barrier Reef and are significantly lower than rates measured in temperate sand communities. In the front lagoon, bioturbation and feeding acitivity by thalassinid shrimps (Callianassa spp.) negatively influenced microbial and meiofaunal communities with a net import of organic matter necessary to support the estimated rates of bacterial productivity. In lagoonal areas not colonized by shrimps, primary productivity (400–1100 mg C m-2d-1) from algal mats was sufficient to support bacterial growth. It is suggested that deposit-feeding macrobenthos such as thalassinid crustaceans play a major role in the tructuring and functioning of lower trophic groups (bacteria, microalgae, protozoa, meiofauna) in coral reef sedments, particularly in laggons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号