首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

One method of identifying cis regulatory differences is to analyze allele-specific expression (ASE) and identify cases of allelic imbalance (AI). RNA-seq is the most common way to measure ASE and a binomial test is often applied to determine statistical significance of AI. This implicitly assumes that there is no bias in estimation of AI. However, bias has been found to result from multiple factors including: genome ambiguity, reference quality, the mapping algorithm, and biases in the sequencing process. Two alternative approaches have been developed to handle bias: adjusting for bias using a statistical model and filtering regions of the genome suspected of harboring bias. Existing statistical models which account for bias rely on information from DNA controls, which can be cost prohibitive for large intraspecific studies. In contrast, data filtering is inexpensive and straightforward, but necessarily involves sacrificing a portion of the data.

Results

Here we propose a flexible Bayesian model for analysis of AI, which accounts for bias and can be implemented without DNA controls. In lieu of DNA controls, this Poisson-Gamma (PG) model uses an estimate of bias from simulations. The proposed model always has a lower type I error rate compared to the binomial test. Consistent with prior studies, bias dramatically affects the type I error rate. All of the tested models are sensitive to misspecification of bias. The closer the estimate of bias is to the true underlying bias, the lower the type I error rate. Correct estimates of bias result in a level alpha test.

Conclusions

To improve the assessment of AI, some forms of systematic error (e.g., map bias) can be identified using simulation. The resulting estimates of bias can be used to correct for bias in the PG model, without data filtering. Other sources of bias (e.g., unidentified variant calls) can be easily captured by DNA controls, but are missed by common filtering approaches. Consequently, as variant identification improves, the need for DNA controls will be reduced. Filtering does not significantly improve performance and is not recommended, as information is sacrificed without a measurable gain. The PG model developed here performs well when bias is known, or slightly misspecified. The model is flexible and can accommodate differences in experimental design and bias estimation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-920) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background  

Time-course microarray experiments are widely used to study the temporal profiles of gene expression. Storey et al. (2005) developed a method for analyzing time-course microarray studies that can be applied to discovering genes whose expression trajectories change over time within a single biological group, or those that follow different time trajectories among multiple groups. They estimated the expression trajectories of each gene using natural cubic splines under the null (no time-course) and alternative (time-course) hypotheses, and used a goodness of fit test statistic to quantify the discrepancy. The null distribution of the statistic was approximated through a bootstrap method. Gene expression levels in microarray data are often complicatedly correlated. An accurate type I error control adjusting for multiple testing requires the joint null distribution of test statistics for a large number of genes. For this purpose, permutation methods have been widely used because of computational ease and their intuitive interpretation.  相似文献   

3.

Background  

An important goal of whole-genome studies concerned with single nucleotide polymorphisms (SNPs) is the identification of SNPs associated with a covariate of interest such as the case-control status or the type of cancer. Since these studies often comprise the genotypes of hundreds of thousands of SNPs, methods are required that can cope with the corresponding multiple testing problem. For the analysis of gene expression data, approaches such as the empirical Bayes analysis of microarrays have been developed particularly for the detection of genes associated with the response. However, the empirical Bayes analysis of microarrays has only been suggested for binary responses when considering expression values, i.e. continuous predictors.  相似文献   

4.

Background  

Genomics and proteomics analyses regularly involve the simultaneous test of hundreds of hypotheses, either on numerical or categorical data. To correct for the occurrence of false positives, validation tests based on multiple testing correction, such as Bonferroni and Benjamini and Hochberg, and re-sampling, such as permutation tests, are frequently used. Despite the known power of permutation-based tests, most available tools offer such tests for either t-test or ANOVA only. Less attention has been given to tests for categorical data, such as the Chi-square. This project takes a first step by developing an open-source software tool, Ptest, that addresses the need to offer public software tools incorporating these and other statistical tests with options for correcting for multiple hypotheses.  相似文献   

5.
6.
7.

Background  

Many procedures for finding differentially expressed genes in microarray data are based on classical or modified t-statistics. Due to multiple testing considerations, the false discovery rate (FDR) is the key tool for assessing the significance of these test statistics. Two recent papers have generalized two aspects: Storey et al. (2005) have introduced a likelihood ratio test statistic for two-sample situations that has desirable theoretical properties (optimal discovery procedure, ODP), but uses standard FDR assessment; Ploner et al. (2006) have introduced a multivariate local FDR that allows incorporation of standard error information, but uses the standard t-statistic (fdr2d). The relationship and relative performance of these methods in two-sample comparisons is currently unknown.  相似文献   

8.

Background  

Association testing is a powerful tool for identifying disease susceptibility genes underlying complex diseases. Technological advances have yielded a dramatic increase in the density of available genetic markers, necessitating an increase in the number of association tests required for the analysis of disease susceptibility genes. As such, multiple-tests corrections have become a critical issue. However the conventional statistical corrections on locus-specific multiple tests usually result in lower power as the number of markers increases. Alternatively, we propose here the application of the longest significant run (LSR) method to estimate a region-specific p-value to provide an index for the most likely candidate region.  相似文献   

9.

Background  

Periodic phenomena are widespread in biology. The problem of finding periodicity in biological time series can be viewed as a multiple hypothesis testing of the spectral content of a given time series. The exact noise characteristics are unknown in many bioinformatics applications. Furthermore, the observed time series can exhibit other non-idealities, such as outliers, short length and distortion from the original wave form. Hence, the computational methods should preferably be robust against such anomalies in the data.  相似文献   

10.

Background  

With microarray technology, variability in experimental environments such as RNA sources, microarray production, or the use of different platforms, can cause bias. Such systematic differences present a substantial obstacle to the analysis of microarray data, resulting in inconsistent and unreliable information. Therefore, one of the most pressing challenges in the field of microarray technology is how to integrate results from different microarray experiments or combine data sets prior to the specific analysis.  相似文献   

11.

Background  

In proteomic analysis, MS/MS spectra acquired by mass spectrometer are assigned to peptides by database searching algorithms such as SEQUEST. The assignations of peptides to MS/MS spectra by SEQUEST searching algorithm are defined by several scores including Xcorr, ΔCn, Sp, Rsp, matched ion count and so on. Filtering criterion using several above scores is used to isolate correct identifications from random assignments. However, the filtering criterion was not favorably optimized up to now.  相似文献   

12.

Background  

The development of software tools that analyze microarray data in the context of genetic knowledgebases is being pursued by multiple research groups using different methods. A common problem for many of these tools is how to correct for multiple statistical testing since simple corrections are overly conservative and more sophisticated corrections are currently impractical. A careful study of the nature of the distribution one would expect by chance, such as by a simulation study, may be able to guide the development of an appropriate correction that is not overly time consuming computationally.  相似文献   

13.

Background

Deviations in the amount of genomic content that arise during tumorigenesis, called copy number alterations, are structural rearrangements that can critically affect gene expression patterns. Additionally, copy number alteration profiles allow insight into cancer discrimination, progression and complexity. On data obtained from high-throughput sequencing, improving quality through GC bias correction and keeping false positives to a minimum help build reliable copy number alteration profiles.

Results

We introduce seqCNA, a parallelized R package for an integral copy number analysis of high-throughput sequencing cancer data. The package includes novel methodology on (i) filtering, reducing false positives, and (ii) GC content correction, improving copy number profile quality, especially under great read coverage and high correlation between GC content and copy number. Adequate analysis steps are automatically chosen based on availability of paired-end mapping, matched normal samples and genome annotation.

Conclusions

seqCNA, available through Bioconductor, provides accurate copy number predictions in tumoural data, thanks to the extensive filtering and better GC bias correction, while providing an integrated and parallelized workflow.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-178) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background  

Wise et al. introduced a rank-based statistical technique for meta-analysis of genome scans, the Genome Scan Meta-Analysis (GSMA) method. Levinson et al. recently described two generalizations of the GSMA statistic: (i) a weighted version of the GSMA statistic, so that different studies could be ascribed different weights for analysis; and (ii) an order statistic approach, reflecting the fact that a GSMA statistic can be computed for each chromosomal region or bin width across the various genome scan studies.  相似文献   

15.

Background  

Recently, microarray data analyses using functional pathway information, e.g., gene set enrichment analysis (GSEA) and significance analysis of function and expression (SAFE), have gained recognition as a way to identify biological pathways/processes associated with a phenotypic endpoint. In these analyses, a local statistic is used to assess the association between the expression level of a gene and the value of a phenotypic endpoint. Then these gene-specific local statistics are combined to evaluate association for pre-selected sets of genes. Commonly used local statistics include t-statistics for binary phenotypes and correlation coefficients that assume a linear or monotone relationship between a continuous phenotype and gene expression level. Methods applicable to continuous non-monotone relationships are needed. Furthermore, for multiple experimental categories, methods that combine multiple GSEA/SAFE analyses are needed.  相似文献   

16.

Background  

The quality of multiple sequence alignments plays an important role in the accuracy of phylogenetic inference. It has been shown that removing ambiguously aligned regions, but also other sources of bias such as highly variable (saturated) characters, can improve the overall performance of many phylogenetic reconstruction methods. A current scientific trend is to build phylogenetic trees from a large number of sequence datasets (semi-)automatically extracted from numerous complete genomes. Because these approaches do not allow a precise manual curation of each dataset, there exists a real need for efficient bioinformatic tools dedicated to this alignment character trimming step.  相似文献   

17.

Background  

Large-scale statistical analyses have become hallmarks of post-genomic era biological research due to advances in high-throughput assays and the integration of large biological databases. One accompanying issue is the simultaneous estimation of p-values for a large number of hypothesis tests. In many applications, a parametric assumption in the null distribution such as normality may be unreasonable, and resampling-based p-values are the preferred procedure for establishing statistical significance. Using resampling-based procedures for multiple testing is computationally intensive and typically requires large numbers of resamples.  相似文献   

18.

Background

Garlic may be protective against Helicobacter pylori infection and gastric cancer development. We conducted this study to quantitatively update evidence on garlic intake and gastric cancer with the inclusion of most recent cohort studies and qualitatively summarize epidemiological studies of garlic consumption and Helicobacter pylori infection.

Materials and Methods

PubMed, Embase, MEDLINE, and Cochrane Library were searched on April 2018. We conducted a meta‐analysis to determine whether garlic intake reduced gastric cancer risk using random‐effect models and a systematic review to summarize evidence on the association between garlic consumption and Helicobacter pylori infection. Risk of bias was assessed using tools of Cochrane risk of bias and Robins‐I for randomized and nonrandomized studies, respectively.

Results

Meta‐analysis of 18 studies (142 921 subjects) demonstrated high garlic consumption (as comparing the highest category to the lowest) was associated with a reduced gastric cancer risk (OR = 0.51, 95% CI = 0.44‐0.57). This association became nonsignificant if only derived from the prospective studies (OR = 0.95, 95% CI = 0.66‐1.24). Thirteen studies (4889 participants) were included in the systematic review for garlic consumption and Helicobacter pylori infection; ten of which found no significant results. The majority of these studies were poor in quality given the small sample size and high risk of bias.

Conclusions

Pooled evidence, mainly from case‐control studies, suggested a significant inverse association of garlic intake with gastric cancer risk. Given the limitations of included studies, current epidemiological evidence is not sufficient to reach any definite conclusion regarding the association of garlic with Helicobacter pylori infection.  相似文献   

19.

Background

To identify differentially expressed genes, it is standard practice to test a two-sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are essentially univariate and disregard the multidimensional structure of microarray data. A more general two-sample hypothesis is formulated in terms of the joint distribution of any sub-vector of expression signals.

Results

By building on an earlier proposed multivariate test statistic, we propose a new algorithm for identifying differentially expressed gene combinations. The algorithm includes an improved random search procedure designed to generate candidate gene combinations of a given size. Cross-validation is used to provide replication stability of the search procedure. A permutation two-sample test is used for significance testing. We design a multiple testing procedure to control the family-wise error rate (FWER) when selecting significant combinations of genes that result from a successive selection procedure. A target set of genes is composed of all significant combinations selected via random search.

Conclusions

A new algorithm has been developed to identify differentially expressed gene combinations. The performance of the proposed search-and-testing procedure has been evaluated by computer simulations and analysis of replicated Affymetrix gene array data on age-related changes in gene expression in the inner ear of CBA mice.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号