首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Biotrophic filamentous plant pathogens frequently establish intimate contact with host cells through intracellular feeding structures called haustoria. To form and maintain these structures, pathogens must avoid or suppress defence responses and reprogramme the host cell. We used Arabidopsis whole-genome microarrays to characterize genetic programmes that are deregulated during infection by the biotrophic' oomycete downy mildew pathogen, Hyaloperonospora arabidopsidis. Marked differences were observed between early and late stages of infection, but a gene encoding a putative leucine-rich repeat receptor-like kinase (LRR-RLK) was constantly up-regulated. We investigated the evolutionary history of this gene and noticed it being one of the first to have emerged from a common ancestral gene that gave rise to a cluster of 11 genes through duplications. The encoded LRR-RLKs harbour an extracellular malectin-like (ML) domain in addition to a short stretch of leucine-rich repeats, and are thus similar to proteins from the symbiosis receptor-like kinase family. Detailed expression analysis showed that the pathogen-responsive gene was locally expressed in cells surrounding the oomycete. A knockout mutant showed reduced downy mildew infection, but susceptibility was fully restored through complementation of the mutation, suggesting that the (ML-)LRR-RLK contributes to disease. According to the mutant phenotype, we denominated it Impaired Oomycete Susceptibility 1 (IOS1).  相似文献   

3.
BRI1-like receptor kinase (BRL1) was identified as an extragenic suppressor of a weak bri1 allele, bri1-5, in an activation-tagging genetic screen for novel brassinosteroid (BR) signal transduction regulators. BRL1 encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). Sequence alignment revealed that BRL1 is closely related to BRI1, which is involved in BR perception. Overexpression of a BRL1 cDNA, driven by a constitutive CaMV 35S promoter, recapitulates the bri1-5 suppression phenotypes, and partially complements the phenotypes of a null bri1 allele, bri1-4. Analysis of a BR-specific feedback response gene, CPD, indicates that BRL1 functions in BR signaling. BRL1 expression pattern overlaps with, but is distinct from, that of BRI1. In addition, both the expression level and in vitro kinase autophosphorylation activity of BRL1 are significantly lower than those of BRI1. bri1-5 brl1-1 double mutant plants have enhanced developmental defects relative to bri1-5 mutant plants, revealing that BRL1 plays a partially redundant role with BRI1 in controlling Arabidopsis growth and development. These findings enhance our understanding of functional redundancy and add an additional layer of complexity to RLK-mediated BR signaling transduction in Arabidopsis.  相似文献   

4.
Receptor-like kinases (RLKs) constitute a large family of signal perception molecules. We characterized two highly homologous RLK genes, RLK902 and RKL1, in Arabidopsis. RLK902 and RKL1 showed a 75% amino acid sequence identity over their entire regions. In the RLK902 pro::GUS transgenic lines, GUS activity was strong in the root tips, lateral root primordia, stipules, and floral organ abscission zones, while the RKL1 promoter activity was dominant in the stomata cells, hydathodes and trichomes of young rosette leaves, and floral organ abscission zones. Neither the rlk902 mutant line, rkl1 mutant line nor rlk902/rkl1 double-knockout mutant line showed any significant phenotypes under normal growth conditions. These results suggest that RLK902 and RKL1 might mediate the signal transduction pathway in which at least one other complementary signaling pathway to these two RLKs might exist.  相似文献   

5.
In higher plants, an outer layer of meristematic cells, the protoderm, forms early in embryogenesis and this layer gives rise to the epidermis in differentiating tissues. We proposed previously that an Arabidopsis thaliana homolog of crinkly4 (ACR4), a gene for a receptor-like protein kinase, would be involved in differentiation and/or maintenance of epidermis-related tissues. In the present study, we isolated loss-of-function acr4 mutants by a reverse genetic approach. Our extensive analyses using the transmission electron microscopy and the toluidine blue test -- a method that has recently been developed for the rapid visualization of defects in the leaf cuticle -- showed that the acr4 mutations significantly affected the differentiation of leaf epidermal cells, suggesting similar roles for ACR4 and CR4 in the differentiation of leaf epidermis. Our acr4 mutants also had various abnormalities related to epidermal differentiation, which included disorganized cell layers in the integument and endothelium of ovules. In addition, the green fluorescent protein fused to ACR4 was localized preferentially on the lateral and basal plasma membranes in the epidermis of the leaf primordia, suggesting a role for ACR4 in epidermal differentiation at cell surfaces that make contact with adjacent cells. Furthermore, the loss-of-function mutations in the ACR4 and ABNORMAL LEAF SHAPE1 (ALE1) genes, which encode a putative subtilisin-like serine protease, synergistically affected the function of the epidermis such that most leaves fused. Thus, ACR4 seems to play an essential role in the differentiation of proper epidermal cells in both vegetative and reproductive tissues.  相似文献   

6.
7.
Lectin receptor-like kinases (Lectin RLKs) are a large family of receptor-like kinases with an extracellular legume lectin-like domain. There are approximately 45 such receptor kinases in Arabidopsis thaliana. Surprisingly, although receptor-like kinases in general are well investigated in Arabidopsis, relatively little is known about the functions of members of the Lectin RLK family. A number of studies implicated members of this family in various functions, such as disease resistance, stress responses, hormone signaling, and legume-rhizobium symbiosis. Our current work demonstrated that mutation in one Lectin RLK gene led to male sterility in Arabidopsis. The sterility was due to defects in pollen development. Pollen development proceeded normally in the mutant until anther stage 8. After that, all pollen grains deformed and collapsed. Mature pollen grains were much smaller than wild-type pollen grains, glued together, and totally collapsed. Therefore, the mutant was named sgc, standing for small, glued-together, and collapsed pollen mutant. The mutant phenotype appeared to be caused by an unidentified sporophytic defect due to the mutation. As revealed by analysis of the promoter-GUS transgenic plants and the gene expression analysis using RT-PCR, the gene showed an interesting temporal and spatial expression pattern: it had no or a low expression in young flowers (roughly before anther stage 6), reached a maximum level around stages 6-7, and then declined gradually to a very low level in young siliques. No expression was detected in microspores or pollen. Together, our data demonstrated that SGC Lectin RLK plays a critical role in pollen development.  相似文献   

8.
9.
10.
Development in higher plants depends on the activity of meristems, formative regions that continuously initiate new organs at their flanks. Meristems must maintain a balance between stem cell renewal and organ initiation. In fasciated mutants, organ initiation fails to keep pace with meristem proliferation. The thick tassel dwarf1 (td1) mutation of maize affects both male and female inflorescence development. The female inflorescence, which results in the ear, is fasciated, with extra rows of kernels. The male inflorescence, or tassel, shows an increase in spikelet density. Floral meristems are also affected in td1 mutants; for example, male florets have an increase in stamen number. These results suggest that td1 functions in the inflorescence to limit meristem size. In addition, td1 mutants are slightly shorter than normal siblings, indicating that td1 also plays a role in vegetative development. td1 encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) that is a putative ortholog of the Arabidopsis CLAVATA1 protein. These results complement previous work showing that fasciated ear2 encodes a CLAVATA2-like protein, and suggest that the CLAVATA signaling pathway is conserved in monocots. td1 maps in the vicinity of quantitative trait loci that affect seed row number, spikelet density and plant height. We discuss the possible selection pressures on td1 during maize domestication.  相似文献   

11.
12.
Piriformospora indica, a basidiomycete of the Sebacinaceae family, promotes the growth, development and seed production of a variety of plant species. Arabidopsis plants colonized with the fungus produce 22% more seeds than uncolonized plants. Deactivating the Arabidopsis single-copy gene DMI-1, which encodes an ion carrier required for mycorrihiza formation in legumes, does not affect the beneficial interaction between the two symbiotic partners. We used cellular and molecular responses initiated during the establishment of the interaction between P. indica and Arabidopsis roots to isolate mutants that fail to respond to the fungus. An ethylmethane sulfonate mutant (Piriformospora indica-insensitive-2; pii-2), and a corresponding insertion line, are impaired in a leucine-rich repeat protein (At1g13230). The protein pii-2, which contains a putative endoplasmic reticulum retention signal, is also found in Triton X-100-insoluble plasma membrane microdomains, suggesting that it is present in the endoplasmic reticulum/plasma membrane continuum in Arabidopsis roots. The microdomains also contain an atypical receptor protein (At5g16590) containing leucine-rich repeats, the message of which is transiently upregulated in Arabidopsis roots in response to P. indica. This response is not detectable in At1g13230 mutants, and the protein is not detectable in the At1g13230 mutant microdomains. Partial deactivation of a gene for a sphingosine kinase, which is required for the biosynthesis of sphingolipid found in plasma membrane microdomains, also affects the Arabidopsis/P. indica interaction. Thus, pii-2, and presumably also At5g16590, two proteins present in plasma membrane microdomains, appear to be involved in P. indica-induced growth promotion and enhanced seed production in Arabidopsis thaliana.  相似文献   

13.
The vacuole/lysosome serves an important recycling function during starvation and senescence in eukaryotes via a process called autophagy. Here bulk cytosolic constituents and organelles become sequestered in specialized autophagic vesicles, which then deliver their cargo to the vacuole for degradation. In yeasts, genetic screens have identified two novel post-translational modification pathways remarkably similar to ubiquitination that are required for autophagy. From searches of the Arabidopsis genome, we have identified gene families encoding proteins related to both the APG8 and -12 polypeptide tags and orthologs for all components required for their attachment. A single APG7 gene encodes the ATP-dependent activating enzyme that initiates both conjugation pathways. Phenotypic analysis of an APG7 disruption indicates that it is not essential for normal growth and development in Arabidopsis. However, the apg7-1 mutant is hypersensitive to nutrient limiting conditions and displays premature leaf senescence. mRNAs for both APG7 and APG8 preferentially accumulate as leaves senesce, suggesting that both conjugation pathways are up-regulated during the senescence syndrome. These findings show that the APG8/12 conjugation pathways have been conserved in plants and may have important roles in autophagic recycling, especially during situations that require substantial nitrogen and carbon mobilization.  相似文献   

14.
15.
Ligand-induced activation of the epidermal growth factor receptor (EGFR) initiates trafficking events that relocalize the receptors from the cell surface to intracellular endocytic compartments. We recently reported that leucine-rich repeat kinase 1 (LRRK1) is involved in the trafficking of EGFR from early to late endosomes. In this study, we demonstrate that EGFR regulates the kinase activity of LRRK1 via tyrosine phosphorylation and that this is required for proper endosomal trafficking of EGFR. Phosphorylation of LRRK1 at Tyr-944 results in reduced LRRK1 kinase activity. Mutation of LRRK1 Tyr-944 (Y944F) abolishes EGF-stimulated tyrosine phosphorylation, resulting in hyperactivation of LRRK1 kinase activity and enhanced motility of EGF-containing endosomes toward the perinuclear region. The compartments in which EGFR accumulates are mixed endosomes and are defective in the proper formation of intraluminal vesicles of multivesicular bodies. These results suggest that feedback down-regulation of LRRK1 kinase activity by EGFR plays an important role in the appropriate endosomal trafficking of EGFR.  相似文献   

16.
Transgenic maize (Zea mays L.) plants have been generated by particle gun bombardment that overproduce an Arabidopsis thaliana iron superoxide dismutase (FeSOD). To target this enzyme into chloroplasts, the mature Fesod coding sequence was fused to a chloroplast transit peptide from a pea ribulose-1,5-bisphosphate carboxylase gene. Expression of the chimeric gene was driven by the CaMV 35S promoter. Growth characteristics and in vitro oxidative stress tolerance of transgenic lines grown in control and chilling temperatures were evaluated. The transgenic line with the highest transgenic FeSOD activities had enhanced tolerance toward methyl viologen and had increased growth rates.  相似文献   

17.
We report here the cloning and characterization of a soybean receptor-like kinase (RLK) gene, designated GmSARK (Glycine max senescence-associated receptor-like kinase), which is involved in regulating leaf senescence. The conceptual protein product of GmSARK contains typical domains of LRR receptor-like kinases: a cytoplasmic domain with all the 11 kinase subdomains, a transmembrane domain and an extracelullar domain containing 9 Leucine-Rich Repeat (LRR) units that may act as a receptor. The expression of GmSARK in soybean leaves was up-regulated in all the three tested senescence systems: senescing cotyledons, dark-induced primary leaf senescence and the natural leaf senescence process after florescence. Furthermore, the RNA interference (RNAi)-mediated knocking-down of GmSARK dramatically retarded soybean leaf senescence. A more complex thylakoid membrane system, higher foliar level of chlorophyll content and a very remarkable delay of senescence-induced disintegration of chloroplast structure were observed in GmSARK-RNAi transgenic leaves. A homolog of maize lethal leaf-spot 1 gene, which has been suggested to encode a key enzyme catalyzing chlorophyll breakdown, was isolated and nominated Gmlls1. The expression level of Gmgtr1 gene, which encodes a key enzyme of chlorophyll synthesis, was also analyzed. It was found that Gmlls1 was up-regulated and Gmgtr1 was down-regulated during senescence in wild-type soybean leaves. However, both of the up-regulation of Gmlls1 and down-regulation of Gmgtr1 were retarded during senescence of GmSARK-RNAi transgenic leaves. In addition, over-expression of the GmSARK gene greatly accelerated the senescence progression of CaMV 35S:GmSARK transgenic plants. Taken together, these results strongly suggested the involvement of this LRR-RLK in regulation of soybean leaf senescence, maybe via regulating chloroplast development and chlorophyll accumulation. Multiple functions of GmSARK besides its regulation of leaf senescence were also discussed. Electronic Supplementary Material Supplementary material is available for this article at Rui Gan, Peng-Li Li and Yuan-Yuan Ma contributed equally to this work.  相似文献   

18.
Plant receptor-like kinases (RLKs) are transmembrane proteins with putative N-terminal extracellular ligand-binding domains and C-terminal intracellular protein kinase domains. RLKs have been implicated in multiple physiological programs including plant development and immunity to microbial infection. Arabidopsis thaliana gene expression patterns support an important role of this class of proteins in biotic stress adaptation. Here, we provide a comprehensive survey of plant immunity-related RLK gene expression. We further document the role of the Arabidopsis Brassinosteroid Insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) in seemingly unrelated biological processes, such as plant development and immunity, and propose a role of this protein as an adaptor molecule that is required for proper functionality of numerous RLKs. This view is supported by the identification of an additional RLK, PEPR1, and its closest homolog, PEPR2 as BAK1-interacting RLKs.  相似文献   

19.
The exosome is a conserved protein complex that is responsible for essential 3'→5' RNA degradation in both the nucleus and the cytosol. It is composed of a nine-subunit core complex to which co-factors confer both RNA substrate recognition and ribonucleolytic activities. Very few exosome co-factors have been identified in plants. Here, we have characterized a putative RNA helicase, AtMTR4, that is involved in the degradation of several nucleolar exosome substrates in Arabidopsis thaliana. We show that AtMTR4, rather than its closely related protein HEN2, is required for proper rRNA biogenesis in Arabidopsis. AtMTR4 is mostly localized in the nucleolus, a subcellular compartmentalization that is shared with another exosome co-factor, RRP6L2. AtMTR4 and RRP6L2 cooperate in several steps of rRNA maturation and surveillance, such as processing the 5.8S rRNA and removal of rRNA maturation by-products. Interestingly, degradation of the Arabidopsis 5' external transcribed spacer (5' ETS) requires cooperation of both the 5'→3' and 3'→5' exoribonucleolytic pathways. Accumulating AtMTR4 targets give rise to illegitimate small RNAs; however, these do not affect rRNA metabolism or contribute to the phenotype of mtr4 mutants. Plants lacking AtMTR4 are viable but show several developmental defects, including aberrant vein patterning and pointed first leaves. The mtr4 phenotype resembles that of several ribosomal protein and nucleolin mutants, and may be explained by delayed ribosome biogenesis, as we observed a reduced rate of rRNA accumulation in mtr4 mutants. Taken together, these data link AtMTR4 with rRNA biogenesis and development in Arabidopsis.  相似文献   

20.
The specific functions of the genes encoding arginine biosynthesis enzymes in plants are not well characterized. We report the isolation and characterization of Arabidopsis thaliana N-acetylglutamate kinase(NAGK), which catalyzes the second step of arginine biosynthesis. NAGK is a plastid-localized protein and is expressed during most developmental processes in Arabidopsis. Heterologous expression of the Arabidopsis NAGK gene in a NAGK-deficient Escherichia coli strain fully restores bacterial growth on arginine-deficient medium. nagk mutant pollen tubes grow more slowly than wild type pollen tubes and the phenotype is restored by either specifically through complementation by NAGK in pollen, or exogenous supplementation of arginine. nagk female gametophytes are defective in micropylar pollen tube guidance due to the fact that female gametophyte cell fate specification was specifically affected. Expression of NAGK in synergid cells rescues the defect of nagk female gametophytes. Lossof-function of NAGK results in Arabidopsis embryos not developing beyond the four-celled embryo stage. The embryo-defective phenotype in nagk/NAGK plants cannot be rescued by watering nagk/NAGK plants with arginine or ornithine supplementation. In conclusion,our results reveal a novel role of NAGK and arginine in regulating gametophyte function and embryo development, and provide valuable insights into arginine transport during embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号