首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Myelin basic protein (MBP) is present between the cytoplasmic leaflets of the compact myelin membrane in both the peripheral and central nervous systems, and characterized to be intrinsically disordered in solution. One of the best-characterized protein ligands for MBP is calmodulin (CaM), a highly acidic calcium sensor. We pulled down MBP from human brain white matter as the major calcium-dependent CaM-binding protein. We then used full-length brain MBP, and a peptide from rodent MBP, to structurally characterize the MBP–CaM complex in solution by small-angle X-ray scattering, NMR spectroscopy, synchrotron radiation circular dichroism spectroscopy, and size exclusion chromatography. We determined 3D structures for the full-length protein–protein complex at different stoichiometries and detect ligand-induced folding of MBP. We also obtained thermodynamic data for the two CaM-binding sites of MBP, indicating that CaM does not collapse upon binding to MBP, and show that CaM and MBP colocalize in myelin sheaths. In addition, we analyzed the post-translational modifications of rat brain MBP, identifying a novel MBP modification, glucosylation. Our results provide a detailed picture of the MBP–CaM interaction, including a 3D model of the complex between full-length proteins.  相似文献   

2.
The interactions of the 18.5-kDa isoform of myelin basic protein (MBP) with calmodulin (CaM) in vitro have been investigated using fluorescence microscopy and spectroscopy. Two forms of MBP were used: the natural bovine C1 charge isomer (bMBP/C1) and a hexahistidine-tagged recombinant murine product (rmMBP), with only minor differences in behaviour being observed. Fragments of each protein generated by digestion with cathepsin D (EC 3.4.23.5) were also evaluated. Using fluorescence microscopy, it was shown that MBP and CaM interacted in the presence of Ca2+ under a variety of conditions, including high urea and salt concentrations, indicating that the interaction was specific and not merely electrostatic in nature. Using cathepsin D digestion fragments of MBP, it was further shown that the carboxyl-terminal domain of MBP interacted with Ca(2+)-CaM, consistent with our theoretical prediction. Spectroscopy of the intrinsic fluorescence of the sole Trp residue of MBP showed that binding was cooperative in nature. The dissociation constants for formation of a 1:1 MBP-Ca(2+)-CaM complex were determined to be 2.1 +/- 0.1 and 2.0 +/- 0.2 microM for bMBP/C1 and rmMBP, respectively. Fluorescence spectroscopy using cathepsin D digestion fragments indicated also that the carboxyl-terminal region of each protein interacted with Ca(2+)-CaM, with dissociation constants of 1.8 +/- 0.2 and 2.8 +/- 0.9 microM for the bMBP/C1 and rmMBP fragments, respectively. These values show a roughly 1000-fold lower affinity of MBP for CaM than other CaM-binding peptides, such as myristoylated alanine-rich C-kinase substrate, that are involved in signal transduction.  相似文献   

3.
The classic 18.5 kDa isoform of murine myelin basic protein (mMBP) has been shown to bind calmodulin (CaM) strongly and specifically in vitro. Here, we have used site-directed spin labelling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy to map more precisely the sites of interaction of recombinant mMBP (rmMBP) with CaM. On the basis of these and previous experimental data, and the predictions of CaM-binding motifs using the Calmodulin Target Database (), three main segments of MBP were suggested for the interaction. The first site is located at the C-terminus; the second one lies in the central portion of the protein and forms an amphipathic alpha-helix in reconstituted myelin-mimetic systems; the third is quite close to the N-terminus. The murine Golli-MBP isoform J37 has also been shown to bind CaM in vitro, and an interaction site was predicted in the N-terminal Golli-specific portion of the protein. From these four segments, we selected peptide fragments of 12-14 residues in length, chosen on the bases of their amphipathicity and CaM-target characteristics. We modelled each of these peptides as alpha-helices, and performed docking simulations to investigate their interactions with the CaM peptide-binding tunnel. Different yet almost equally favourable CaM-binding modes were found for each of them. The experimental SDSL/EPR and theoretical modelling results were in good agreement, and supported the conjecture that there are several plausible CaM-binding sites in MBP, that could be induced into an alpha-helical conformation by their interaction with CaM and account for strong immobilisation of spin-labeled residues in all three segments. Phosphorylation and deimination were also emulated and simulated for known sites of MBP post-translational modification. The results obtained confirmed the appropriate utilisation of simple residue substitutions to mimic the natural modifications, and demonstrated molecular mechanisms by which MBP-CaM interactions could be modulated in vivo.  相似文献   

4.
The interactions of the 18.5 kDa isoform of myelin basic protein (MBP) with calmodulin (CaM) in vitro have been investigated using glutaraldehyde or dithiobis[succinimidylpropionate] (DSP) cross-linking, and SDS-polyacrylamide gel electrophoresis. The following forms of MBP were used: the natural bovine C1 charge isomer (bMBP/C1) and a recombinant murine product (rmMBP), and their fragments generated by digestion with cathepsin D (EC 3.4.23.5). In physiological buffers (10 mM HEPES-NaOH, pH 7.4, 5 mM CaCl2, 0.0035% glutaraldehyde; or 50 mM HEPES-NaOH, pH 7.4, 100 mM NaCl, 1 mM CaCl2, 0.0035% DSP), MBP and CaM interacted primarily in a 1:1 molar ratio, consistent with previous studies that used 6 M urea, i.e. denaturing conditions. Moreover, the appearance of higher-order bands (not previously observed) suggested that the mechanism of interaction of the two proteins involved a series of relatively complex equilibria, resulting in 2:1 ratios of MBP to CaM. This observation would explain the cooperativity of association inferred from fluorescence studies [13]. Our results demonstrated further that the interaction involved the C-terminal domain of MBP, again in a primarily 1:1 molar ratio with CaM, consistent with our identification of a CaM-binding motif at the C-terminus.  相似文献   

5.
Myelin basic protein (MBP) is an essential structural protein required for tight compaction of the myelin sheath of the central nervous system, and belongs to the family of intrinsically disordered proteins. It contains a high proportion of polar and charged amino acids, and has an adaptive conformation depending on its environment and binding surfaces (membranes) or partners (other proteins or small ligands including divalent cations). Zinc is an important stabilizing component of myelin and its concentration is substantially higher than that of any other trace element in the brain. In this study, we investigate the effect of zinc on different variants of 18.5 kDa MBP, including new recombinant forms lacking hexahistidine tags which would interfere with the binding of the cation. Isothermal titration calorimetry showed the dissociation constant to be in the micromolar range for all variants. Circular dichroism spectroscopy showed that there was minimal effect of zinc on the secondary structure on MBP in aqueous solution. When MBP was reconstituted with myelin-mimetic membranes, attenuated total reflectance-Fourier transform infrared spectroscopy revealed that there was a rearrangement of secondary structure components upon addition of zinc that was subtly different for each variant, indicative of a synergistic protein–membrane–cation interaction.  相似文献   

6.
The intrinsically disordered 18.5 kDa classic isoform of MBP (myelin basic protein) interacts with Fyn kinase during oligodendrocyte development and myelination. It does so primarily via a central proline-rich SH3 (Src homology 3) ligand (T92–R104, murine 18.5 kDa MBP sequence numbering) that is part of a molecular switch due to its high degree of conservation and modification by MAP (mitogen-activated protein) and other kinases, especially at residues T92 and T95. Here, we show using co-transfection experiments of an early developmental oligodendroglial cell line (N19) that an MBP segment upstream of the primary ligand is involved in MBP–Fyn–SH3 association in cellula. Using solution NMR spectroscopy in vitro, we define this segment to comprise MBP residues (T62–L68), and demonstrate further that residues (V83–P93) are the predominant SH3-target, assessed by the degree of chemical shift change upon titration. We show by chemical shift index analysis that there is no formation of local poly-proline type II structure in the proline-rich segment upon binding, and by NOE (nuclear Overhauser effect) and relaxation measurements that MBP remains dynamic even while complexed with Fyn–SH3. The association is a new example first of a non-canonical SH3-domain interaction and second of a fuzzy MBP complex.  相似文献   

7.
The effects of deimination (conversion of arginyl to citrullinyl residues) of myelin basic protein (MBP) on its binding to calmodulin (CaM) have been examined. Four species of MBP were investigated: unmodified recombinant murine MBP (rmMBP-Cit(0)), an engineered protein with six quasi-citrullinyl (i.e., glutaminyl) residues per molecule (rmMBP-qCit(6)), human component C1 (hMBP-Cit(0)), and human component C8 (hMBP-Cit(6)), both obtained from a patient with multiple sclerosis (MS). Both rmMBP-Cit(0) and hMBP-Cit(0) bound CaM in a Ca(2+)-dependent manner and primarily in a 1:1 stoichiometry, which was verified by dynamic light scattering. Circular dichroic spectroscopy was unable to detect any changes in secondary structure in MBP upon CaM-binding. Inherent Trp fluorescence spectroscopy and a single-site binding model were used to determine the dissociation constants: K(d) = 144 +/- 76 nM for rmMBP-Cit(0), and K(d) = 42 +/- 15 nM for hMBP-Cit(0). For rmMBP-qCit(6) and hMBP-Cit(6), the changes in fluorescence were suggestive of a two-site interaction, although the dissociation constants could not be accurately determined. These results can be explained by a local conformational change induced in MBP by deimination, exposing a second binding site with a weaker association with CaM, or by the existence of several conformers of deiminated MBP. Titration with the collisional quencher acrylamide, and steady-state and lifetime measurements of the fluorescence at 340 nm, showed both dynamic and static components to the quenching, and differences between the unmodified and deiminated proteins that were also consistent with a local conformational change due to deimination.  相似文献   

8.
Purified myelin basic protein (MBP) from various species contains several post-translationally modified forms termed charge components or charge isomers. Chicken MBP contains four charge components denoted as C1, C2, C3 and C8. (The C8 isomer is a complex mixture and was not investigated in this study.) These findings are in contrast to those found for human, bovine and other mammalian MBP’s. Mammalian MBP’s, each of which contain seven or eight charge components depending on the analysis of the CM-52 chromatographic curves and the PAGE gels obtained under basic pH conditions. Chicken MBP components C1, C2 and C3 were treated with trypsin and endoproteinase Glu-C. The resulting digests were analyzed by capillary liquid chromatography combined with either an ion trap tandem mass spectrometer or with a Fourier transform ion cyclotron resonance mass spectrometer. This instrumentation permitted establishing the amino acid composition and the determination of the post-translational modifications for each of the three charge components C1-C3. With the exception of N-terminal acetylation, the post-translational modifications were partial. The C1 component lacks any phosphorylated sites, a finding in agreement with the analysis of other MBP species. It also had a single methylation at R105 as did the components C2 and C3. The C2 component contains ten phosphorylated sites (S7, S18, S33, S64, S73, T96, S113, S141, S164, and S168), and modified arginine to citrulline residues at R24, and R165. Component C3 contains eight phosphorylated sites (S7, S33, S64, T96, S113, S141, S164, and S168), and citrulline residues at Arginine 41, R24 and R165. Partial deamidation of glutamine residues Q71, Q101 and Q146 were present in addition to asparagine N90 that was found in all three charge components. The glutamine at residue 3 is partially deamidated in isomers C1 and C2, whereas glutamine 74 and asparagine 83 were found not to be deamidated. Comparison of the PTM’s of MBP’s isolated from several vertebrate species reveals marked differences in their phosphate content. Chicken MBP does not share any phosphorylated sites with dogfish MBP; However, it does contain phosphorylated serine and threonine residues in common with mammalian MBP.  相似文献   

9.
The small bilobal calcium regulatory protein calmodulin (CaM) activates numerous target enzymes in response to transient changes in intracellular calcium concentrations. Binding of calcium to the two helix-loop-helix calcium-binding motifs in each of the globular domains induces conformational changes that expose a methionine-rich hydrophobic patch on the surface of each domain of the protein, which it uses to bind to peptide sequences in its target enzymes. Although these CaM-binding domains typically have little sequence identity, the positions of several bulky hydrophobic residues are often conserved, allowing for classification of CaM-binding domains into recognition motifs, such as the 1–14 and 1–10 motifs. For calcium-independent binding of CaM, a third motif known as the IQ motif is also common. Many CaM-peptide complexes have globular conformations, where CaM’s central linker connecting the two domains unwinds, allowing the protein to wrap around a single predominantly α-helical target peptide sequence. However, novel structures have recently been reported where the conformation of CaM is highly dissimilar to these globular complexes, in some instances with less than a full compliment of bound calcium ions, as well as novel stoichiometries. Furthermore, many divergent CaM isoforms from yeast and plant species have been discovered with unique calcium-binding and enzymatic activation characteristics compared to the single CaM isoform found in mammals.  相似文献   

10.

Background

Calmodulin (CaM) is a ubiquitously expressed calcium sensor that engages in regulatory interactions with a large number of cellular proteins. Previously, a unique mode of CaM target recognition has been observed in the crystal structure of a complex between CaM and the CaM-binding domain of calcineurin A.

Methodology/Principal Findings

We have solved a high-resolution crystal structure of a complex between CaM and the CaM-binding domain of calcineurin A in a novel crystal form, which shows a dimeric assembly of calmodulin, as observed before in the crystal state. We note that the conformation of CaM in this complex is very similar to that of unliganded CaM, and a detailed analysis revels that the CaM-binding motif in calcineurin A is of a novel ‘1-11’ type. However, using small-angle X-ray scattering (SAXS), we show that the complex is fully monomeric in solution, and a structure of a canonically collapsed CaM-peptide complex can easily be fitted into the SAXS data. This result is also supported by size exclusion chromatography, where the addition of the ligand peptide decreases the apparent size of CaM. In addition, we studied the energetics of binding by isothermal titration calorimetry and found them to closely resemble those observed previously for ligand peptides from CaM-dependent kinases.

Conclusions/Significance

Our results implicate that CaM can also form a complex with the CaM-binding domain of calcineurin in a 1∶1 stoichiometry, in addition to the previously observed 2∶2 arrangement in the crystal state. At the structural level, going from 2∶2 association to two 1∶1 complexes will require domain swapping in CaM, accompanied by the characteristic bending of the central linker helix between the two lobes of CaM.  相似文献   

11.
Boschek CB  Sun H  Bigelow DJ  Squier TC 《Biochemistry》2008,47(6):1640-1651
We have used fluorescence spectroscopy to investigate the structure of calmodulin (CaM) bound with CaM-binding sequences of either the plasma membrane Ca-ATPase or the skeletal muscle ryanodine receptor (RyR1) calcium release channel. Following derivatization with N-(1-pyrene)maleimide at engineered sites (T34C and T110C) within the N- and C-domains of CaM, contact interactions between these opposing domains of CaM resulted in excimer fluorescence that permits us to monitor conformational states of bound CaM. Complementary measurements take advantage of the unique conserved Trp within CaM-binding sequences that functions as a hydrophobic anchor in CaM binding and permits measurements of both a local and global peptide structure. We find that CaM binds with high affinity in a collapsed structure to the CaM-binding sequences of both the Ca-ATPase and RyR1, resulting in excimer formation that is indicative of contact interactions between the N- and the C-domains of CaM in complex with these CaM-binding peptides. There is a 4-fold larger amount of excimer formation for CaM bound to the CaM-binding sequence of the Ca-ATPase in comparison to RyR1, indicating a closer structural coupling between CaM domains in this complex. Prior to CaM association, the CaM-binding sequences of the Ca-ATPase and RyR1 are conformationally disordered. Upon CaM association, the CaM-binding sequence of the Ca-ATPase assumes a highly ordered structure. In comparison, the CaM-binding sequence of RyR1 remains conformationally disordered irrespective of CaM binding. These results suggest an important role for interdomain contact interactions between the opposing domains of CaM in stabilizing the structure of the peptide complex. The substantially different structural responses associated with CaM binding to Ca-ATPase and RyR1 indicates a plasticity in their respective binding mechanisms that accomplishes different physical mechanisms of allosteric regulation, involving either the dissociation of a C-terminal regulatory domain necessary for pump activation or the modulation of intersubunit interactions to diminish RyR1 channel activity.  相似文献   

12.
The mammalian aspartic proteinases procathepsin D and pepsinogen form insoluble inclusion bodies when expressed in bacteria. They become soluble but nonnative when synthesized as fusions to the carboxy terminus of E. coli maltose-binding protein (MBP). Since these nonnative states of the two aspartic proteinases showed no tendency to form insoluble aggregates, their biophysical properties were analyzed. The MBP portions were properly folded as shown by binding to amylose, but the aspartic proteinase moieties failed to bind pepstatin and lacked enzymatic activity, indicating that they were not correctly folded. When treated with proteinase K, only the MBP portion of the fusions was resistant to proteolysis. The fusion between MBP and cathepsin D had increased hydrophobic surface exposure compared to the two unfused partners, as determined by bis-ANS binding. Ultracentrifugal sedimentation analysis of MBP–procathepsin D and MBP–pepsinogen revealed species with very large and heterogeneous sedimentation values. Refolding of the fusions from 8 M urea generated proteins no larger than dimers. Refolded MBP–pepsinogen was proteolytically active, while only a few percent of renatured MBP–procathepsin D was obtained. The results suggest that MBP–aspartic proteinase fusions can provide a source of soluble but nonnative folding states of the mammalian polypeptides in the absence of aggregation.  相似文献   

13.
As an essential structural protein required for tight compaction of the central nervous system myelin sheath, myelin basic protein (MBP) is one of the candidate autoantigens of the human inflammatory demyelinating disease multiple sclerosis, which is characterized by the active degradation of the myelin sheath. In this work, recombinant murine analogues of the natural C1 and C8 charge components (rmC1 and rmC8), two isoforms of the classic 18.5-kDa MBP, were used as model proteins to get insights into the structure and function of the charge isomers. Various biochemical and biophysical methods such as size exclusion chromatography, calorimetry, surface plasmon resonance, small angle X-ray and neutron scattering, Raman and fluorescence spectroscopy, and conventional as well as synchrotron radiation circular dichroism were used to investigate differences between these two isoforms, both from the structural point of view, and regarding interactions with ligands, including calmodulin (CaM), various detergents, nucleotide analogues, and lipids. Overall, our results provide further proof that rmC8 is deficient both in structure and especially in function, when compared to rmC1. While the CaM binding properties of the two forms are very similar, their interactions with membrane mimics are different. CaM can be used to remove MBP from immobilized lipid monolayers made of synthetic lipids--a phenomenon, which may be of relevance for MBP function and its regulation. Furthermore, using fluorescently labelled nucleotides, we observed binding of ATP and GTP, but not AMP, by MBP; the binding of nucleoside triphosphates was inhibited by the presence of CaM. Together, our results provide important further data on the interactions between MBP and its ligands, and on the differences in the structure and function between MBP charge isomers.  相似文献   

14.
Calmodulin (CaM), a Ca(2+)-binding protein, is a well-known regulator of various cellular functions. One of the targets of CaM is metabotropic glutamate receptor 7 (mGluR7), which serves as a low-pass filter for glutamate in the pre-synaptic terminal to regulate neurotransmission. Surface plasmon resonance (SPR), circular dichroism (CD) spectroscopy and nuclear magnetic spectroscopy (NMR) were performed to study the structure of the peptides corresponding to the CaM-binding domain of mGluR7 and their interaction with CaM. Unlike well-known CaM-binding peptides, mGluR7 has a random coil structure even in the presence of trifluoroethanol. Moreover, NMR data suggested that the complex between Ca(2+)/CaM and the mGluR7 peptide has multiple conformations. The mGluR7 peptide has been found to interact with CaM even in the absence of Ca(2+), and the binding is directed toward the C-domain of apo-CaM rather than the N-domain. We propose a possible mechanism for the activation of mGluR7 by CaM. A pre-binding occurs between apo-CaM and mGluR7 in the resting state of cells. Then, the Ca(2+)/CaM-mGluR7 complex is formed once Ca(2+) influx occurs. The weak interaction at lower Ca(2+) concentrations is likely to bind CaM to mGluR7 for the fast complex formation in response to the elevation of Ca(2+) concentration.  相似文献   

15.
Tuberization in potato is controlled by hormonal and environmental signals. Ca(2+), an important intracellular messenger, and calmodulin (CaM), one of the primary Ca(2+) sensors, have been implicated in controlling diverse cellular processes in plants including tuberization. The regulation of cellular processes by CaM involves its interaction with other proteins. To understand the role of Ca(2+)/CaM in tuberization, we have screened an expression library prepared from developing tubers with biotinylated CaM. This screening resulted in isolation of a cDNA encoding a novel CaM-binding protein (potato calmodulin-binding protein (PCBP)). Ca(2+)-dependent binding of the cDNA-encoded protein to CaM is confirmed by (35)S-labeled CaM. The full-length cDNA is 5 kb long and encodes a protein of 1309 amino acids. The deduced amino acid sequence showed significant similarity with a hypothetical protein from another plant, Arabidopsis. However, no homologs of PCBP are found in nonplant systems, suggesting that it is likely to be specific to plants. Using truncated versions of the protein and a synthetic peptide in CaM binding assays we mapped the CaM-binding region to a 20-amino acid stretch (residues 1216-1237). The bacterially expressed protein containing the CaM-binding domain interacted with three CaM isoforms (CaM2, CaM4, and CaM6). PCBP is encoded by a single gene and is expressed differentially in the tissues tested. The expression of CaM, PCBP, and another CaM-binding protein is similar in different tissues and organs. The predicted protein contained seven putative nuclear localization signals and several strong PEST motifs. Fusion of the N-terminal region of the protein containing six of the seven nuclear localization signals to the reporter gene beta-glucuronidase targeted the reporter gene to the nucleus, suggesting a nuclear role for PCBP.  相似文献   

16.
Chan CW  Saimi Y  Kung C 《Gene》1999,231(1-2):21-32
Ca2+/calmodulin (CaM) regulates various physiological processes in a wide variety of organisms, metazoa and protists alike. To better understand Ca2+/CaM-dependent processes, particularly those with membrane-associated components, we studied Ca2+/CaM-binding membrane proteins in Paramecium tetraurelia, a unicellular model system. A CaM-binding protein, PCM1 (Paramecium CaM-binding membrane-bound protein), from a detergent-solubilized ciliary membrane fraction was identified and purified through Ca2+-dependent CaM-affinity chromatography. PCM1 has an apparent molecular mass of approx. 65kDa. It binds radiolabeled CaM in blot overlay assays and binds to CaM-affinity columns, both only in the presence of 10 microM or higher Ca2+. Three peptide sequences from PCM1 were obtained, and polymerase chain reaction (PCR) and Southern hybridization experiments were designed accordingly, leading to a partial cDNA clone for PCM1 and the discovery of three homologs: PCM2, PCM3 and PCM4. Amino acid sequences predicted by the full-length coding sequence for PCM3 and partial genes for PCM1, PCM2 and PCM4 are very similar (approx. 85% amino-acid identities). Their sequences indicate that they are hitherto novel proteins with beta/gamma-crystallin domains, cysteine-rich regions and potential CaM-binding domains. These protein motifs are suggested to mediate protein-protein interaction important for Ca2+/CaM signal transduction event(s) through the PCM family of proteins.  相似文献   

17.
Glutamate decarboxylase (GAD) catalyzes the decarboxylation of glutamate to CO2 and gamma-aminobutyrate (GABA). GAD is ubiquitous in prokaryotes and eukaryotes, but only plant GAD has been shown to bind calmodulin (CaM). Here, we assess the role of the GAD CaM-binding domain in vivo. Transgenic tobacco plants expressing a mutant petunia GAD lacking the CaM-binding domain (GADdeltaC plants) exhibit severe morphological abnormalities, such as short stems, in which cortex parenchyma cells fail to elongate, associated with extremely high GABA and low glutamate levels. The morphology of transgenic plants expressing the full-length GAD (GAD plants) is indistinguishable from that of wild-type (WT) plants. In WT and GAD plant extracts, GAD activity is inhibited by EGTA and by the CaM antagonist trifluoperazine, and is associated with a CaM-containing protein complex of approximately 500 kDa. In contrast, GADdeltaC plants lack normal GAD complexes, and GAD activity in their extracts is not affected by EGTA and trifluoperazine. We conclude that CaM binding to GAD is essential for the regulation of GABA and glutamate metabolism, and that regulation of GAD activity is necessary for normal plant development. This study is the first to demonstrate an in vivo function for CaM binding to a target protein in plants.  相似文献   

18.
A cDNA encoding a pea nuclear apyrase was previously cloned. Overexpressions of a full-length and a truncated cDNA have been successfully expressed in Escherichia coli BL21(DE3). The resulting fusion proteins, apyrase and the C-terminus (residues 315-453) of apyrase, were used for calmodulin (CaM) binding and phosphorylation studies. Fusion protein apyrase but not the C-terminus of apyrase can be recognized by polyclonal antibody pc480. This suggested that the motif recognized by pc480 was located in the N-terminal region of apyrase. The recombinant apyrase protein also showed an activity 70 times higher than that of endogenous apyrase using ATP as a substrate. The recombinant apyrase has a preference for ATP more than other nucleoside triphosphate substrates. CaM can bind to recombinant apyrase, but not to the C-terminus of apyrase. This implies that the CaM-binding domain must be in the first 315 amino acids of the N-terminal region of apyrase. We found that one segment from residue 293 to 308 was a good candidate for the CaM-binding domain. This segment 293 FNKCKNTIRKALKLNY 308 has a basic amphiphilic-helical structure, which shows the predominance of basic residues on one side and hydrophobic residues on the other when displayed on a helical wheel plot. Using the gel mobility shift binding assay, this synthetic peptide was shown to bind to CaM, indicating that it is the CaM-binding domain. Both recombinant apyrase and the C-terminus of apyrase can be phosphorylated by a recombinant human protein kinase CKII. Phosphorylation does not affect CaM binding to recombinant apyrase. However, CaM does inhibit CKII phosphorylation of recombinant apyrase and this inhibition can be blocked by 5 mM EGTA.  相似文献   

19.
Owing to subtle but potentially crucial structural and functional differences between calmodulin (CaM) of different species, the biochemical study of low-affinity CaM-binding proteins from Dictyostelium discoideum likely necessitates the use of CaM from the same organism. In addition, most of the methods used for identification and purification of CaM-binding proteins require native CaM in nonlimiting biochemical quantities. The gene encoding D. discoideum CaM has previously been cloned allowing production of recombinant protein. The present study describes the expression of D. discoideum CaM in Escherichia coli and its straightforward and rapid purification. Furthermore, we describe the optimization of a complete palette of assays to detect as little as nanogram quantities of proteins binding CaM with middle to low affinities. Purified CaM was used to raise high-affinity polyclonal antibodies suitable for immunoblotting, immunofluorescence, and immunoprecipitation experiments. The purified CaM was also used to optimize a specific and sensitive nonradioactive CaM overlay assay as well as to produce a high-capacity CaM affinity chromatography matrix. The effectiveness of this methods is illustrated by the detection of potentially novel D. discoideum CaM-binding proteins and the preparatory purification of one of these proteins, a short tail myosin I.  相似文献   

20.
Three antisera to myelin basic protein—a rabbit antiserum pool against rat myelin, a rabbit antiserum pool against rat myelin basic protein (MBP), and a monkey antiserum against bovine MBP—were found to contain detectable levels of antibodies that would bind radiolabeled S49 (GSLPQKAQRPQDENG). Strongly encephalitogenic in Lewis rat, S49 is a synthetic peptide representing residues 69–84 of bovine MBP with a deletion of glycine-76 and histidine-77 to make it analogous to rat and guinea pig MBPs. The rabbit antimyelin antiserum and the monkey anti-MBP antiserum contained antibodies directed against a non-sequential determinant that required asparagine 84, the glycine-histidine deletion, and residues 69–71 for maximal activity. S49-reactive antibodies from the rabbit anti-MBP antiserum were directed solely against a sequential determinant comprising residues 69–71. S49-reactive antibodies from all three antisera reacted in liquid phase with purified intact rat, guinea pig, and bovine MBP showing that the determinant is exposed for B cell recognition even in bovine MBP and can serve both as immunogen and reactant.This work supported at Duke University Medical Center by Research Grant NS-10237 from the National Institutes of Health of the U.S. Public Health Service and the Medical Scientist Training Program Grant #5-T32-OMO-7171-08; at St. Luke's Hospital Center by NS-15322 from the National Institutes of Health of the U.S. Public Health Service; and at Northwestern University by Research Grant NS-06262 from the National Institutes of Health of the U.S. Public Health Service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号