首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Dupuis  P V Vignais 《Biochemistry》1987,26(2):410-418
Beef heart mitchondrial oligomycin sensitivity conferring protein (OSCP) labeled with [14C]-N-ethylmaleimide ([14C]OSCP) at the only cysteine residue, Cys-118, present in the sequence [Ovchinnikov, Y. A., Modyanov, N. N., Grinkevich, V. A., Aldanova, N. A., Trubetskaya, O. E., Nazimov, I.V., Hundal, T., & Ernster, L. (1984) FEBS Lett. 166, 19-22] exhibits full biological activity in a reconstituted F0-F1 system [Dupuis, A., Issartel, J. P., Lunardi, J., Satre, M., & Vignais, P. V. (1985) Biochemistry 24, 728-733]. The binding parameters of [14C]OSCP with respect to the F0 sector of submitochondrial particles largely depleted of F1 and OSCP (AUA particles) have been explored. In the absence of added F1, a limited number of high-affinity OSCP binding sites were detected in the AUA particles (20-40 pmol/mg of particles); under these conditions, the low-affinity binding sites for OSCP were essentially not saturable. Addition of F1 to the particles promoted high-affinity binding for OSCP, with an apparent Kd of 5 nM, a value 16 times lower than the Kd relative to the binding of OSCP to F1 in the absence of particles. Saturation of the F1 and OSCP binding sites of AUA particles was attained with about 200 pmol of both F1 and OSCP added per milligram of particles. The oligomycin-dependent inhibition of F1-ATPase bound to AUA particles was assayed as a function of bound OSCP. At subsaturating concentrations of F1, the dose-effect curves were rectilinear until inhibition of ATPase activity by oligomycin was virtually complete, and maximal inhibition was obtained for an OSCP to F1 ratio of 1 (mol/mol).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Liver mitochondria from rats fed ethanol chronically demonstrated a 35% decrease in mitochondrial ATPase activity. Moreover, the ATPase activity was inhibited only 61% by addition of oligomycin. Treatment of mitochondria from ethanol-fed rats with the detergent, Lubrol-WX, caused the release of 36% of the F1 from the resulting inner membrane particles. In comparison, only 5% of the F1 was dissociated when control mitochondria were subjected to the Lubrol treatment. However, when the units of ATPase activity from the supernatant and particles obtained after Lubrol treatment were added together, their sums were equivalent in preparations from control and ethanol-fed animals. Moreover, polyacrylamide gel electrophoresis analyses indicated equal amounts of the alpha + beta subunits of F1 in mitochondria from control and ethanol-fed rats. Reconstitution experiments with urea particles and F1 prepared from both control and ethanol mitochondria revealed a decrease in oligomycin sensitivity which could be attributed to an alteration in the functioning of either the oligomycin sensitivity conferring protein or a membrane sector subunit that interacts with oligomycin. Analysis by reconstitution also demonstrated that there were no ethanol-elicited alterations in the properties of the F1 portion of the ATP synthase complex. These observations indicate that the activity of the ATP synthase complex is altered significantly by ethanol-elicited changes in the functioning of those polypeptides involved in modulating both oligomycin sensitivity and the association of F1 with membrane sector subunits.  相似文献   

3.
The mitochondrial F1F0 complex is highly sensitive to macrolide antibiotics and especially targeted by oligomycins. These compounds bind to the membrane-embedded sector F0 and block proton conductance through the inner membrane, thus inhibiting both ATP synthesis and hydrolysis. Oligomycin sensitivity is universally recognized as a clue of the functional integrity and matching between F0 and F1. Since oligomycin binding implies multiple interactions with amino acid residues of F0, amino acid substitutions often affect the inhibition efficiency. Moreover, variegated factors spanning from membrane properties to xenobiotic incorporation and detachment of the oligomycin-insensitive F1 sector can alter the oligomycin sensitivity of the enzyme complex. The overview on the multiple factors involved strengthens the link between altered oligomycin sensitivity and physiopathological conditions associated with defective ATPases. An improved understanding of the mechanisms involved may also favor drug design to counteract oxidative damage, which stems from most mitochondrial dysfunctions.  相似文献   

4.
The topographical organization of oligomycin sensitivity conferring protein (OSCP) in the mitochondrial adenosinetriphosphatase (ATPase)-ATP synthase complex has been studied. The accessibility of OSCP to monoclonal antibodies has been qualitatively visualized by using the protein A-gold electron microscopy immunocytochemistry or quantitatively estimated by immunotitration of OSCP in depolymerized or intact membranes. Besides, OSCP cannot be labeled by 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) which selectively labels the hydrophobic core of membrane proteins. These observations demonstrate an external location of OSCP on the inner face of the inner mitochondrial membrane. The position of OSCP relative to other peptides of the complex has been analyzed by cross-linking experiments using either zero length N-(ethoxycarbonyl)-2-ethoxydihydroquinoline or 11-A span dimethyl suberimidate cross-linkers in the ATPase-ATP synthase complex. The OSCP cross-linked products were identified either by immunocharacterization with anti-alpha, anti-beta, or anti-OSCP monoclonal antibodies or by their molecular weight. OSCP was cross-linked with either the alpha- or beta-subunits of F1 or to a subunit of Mr 24 000. Other types of cross-linking were obtained by the labeling of OSCP with [cysteamine-35S]-N-succinimidyl 3-[[2-((2-nitro-4-azidophenyl)amino)ethyl]dithio]propionate ([35S]SNAP) and reconstitution of SNAP-OSCP with F1 in urea-treated submitochondrial particles. Under these conditions, OSCP is found to be adjacent to two other peptides of molecular weight close to 30 000. A comparison is made between the topology and the organization of the b-subunit of Escherichia coli and OSCP, suggesting an analogy between OSCP and the hydrophilic part of the b-subunit.  相似文献   

5.
Immunological studies were designed to study the structure of the oligomycin sensitivity conferring protein (OSCP) integrated in the mitochondrial ATPase-ATPsynthase complex. The monoclonal antibody 2B1B1 used in this study could bind as well to purified or membrane bound OSCP as shown previously by Protein A-gold immunocytochemistry and by competitive immunotitration. In this paper, it is shown that 2B1B1 can also immunoprecipitate the F0F1 complex from a Triton X-100 extract. This means that not only, 2B1B1 binds to the surface of OSCP but also that the binding of 2B1B1 did not destroy the interactions between F0 and F1 and further demonstrates the external location of the 2B1B1 binding site in the ATPase-ATPsynthase complex. This antigenic site was located on the N-terminal sequence of OSCP, between residues 1 and 72, as demonstrated after chemical cleavage of OSCP with formic acid, hydroxylamine and partial cleavage with cyanogen bromide. The proximity of Tyr and Arg to the epitope was suggested by the lack of 2B1B1 binding to iodinated OSCP and by the susceptibility of this binding to trypsin or to endoproteinase Arg-C treatments of OSCP, respectively. A more precise location of the epitope has been attempted by using the method of synthesis of overlapping octapeptides on solid support. It was found that 2 groups of octapeptides could bind 2B1B1. The first group contained in common the sequence Pro7-Pro8-Val9-Gln10-Ile11-Tyr12- and the second group of peptides contained the sequence Arg62-Ser63-Val64-Lys65. Another monoclonal antibody, AF4H7, which competes with 2B1B1, also recognized the first group of peptides. The possible involvement of these 2 fragments in the epitope localized at the surface of OSCP is discussed. In addition, secondary structure theoretical analysis predicts that these 2 domains should be in a beta-strand configuration.  相似文献   

6.
The rat liver 26,500-dalton ATPase binding protein and beef heart oligomycin sensitivity conferral protein are able to interact with the rat liver Type II ATPase to form discrete complexes. The equilibrium constants for these interactions are similar and each forms a 1:1 complex with the ATPase. The reassociated complex of Type II ATPase and 26,500-dalton ATPase binding protein or of oligomycin sensitivity conferral protein and Type II ATPase has properties similar to that of Type I ATPase. Dimerization of oligomycin sensitivity conferral protein by oxidation with copper phenanthroline chelate abolishes its ability to interact with the Type II ATPase. The isoelectric point and amino acid composition of the 26,500-dalton ATPase binding protein and oligomycin sensitivity conferral protein are similar. The polypeptide patterns produced by cyanogen bromide cleavage indicates a similar but nonidentical pattern to the 26,500-dalton ATPase binding protein and the oligomycin sensitivity conferral protein.  相似文献   

7.
The interaction of soluble mitochondrial ATPase from beef heart with the natural ATPase inhibitor was studied. It was found that the phosphorylation of small amounts of ADP by phosphoenolpyruvate and pyruvate kinase, and an ensuing catalytic cycle supports the binding of the inhibitor to the enzyme. The association of the inhibitor with F1-ATPase does not increase the content of ATP in the F1-ATPase-inhibitor complex. The inhibitor of catalytic activity bathophenanthroline-Fe2+ chelate prevents the interaction, while the association of the inhibitor with F1-ATPase is delayed if the reaction is carried out in 2H2O. The date indicate that a transient state involved in the catalytic cycle is the form of the enzyme that interacts with the inhibitor. The proton-motive force-induced dissociation of the inhibitor from particulate ATPase is prevented by bathophenanthroline-Fe2+ chelate and nitrobenzofurazan chloride, which indicates that a functional catalytic (beta) subunit is required for the proton-motive force-induced release of the inhibitor. The data suggest a direct involvement of catalytic (beta) subunit in the mechanism by which the F1-ATPase senses the proton-motive force.  相似文献   

8.
The requirement of bovine heart mitochondrial oligomycin sensitivity conferring protein (OSCP) in conferring dicyclohexylcarbodiimide (DCCD)-sensitivity to membrane-bound F1 was investigated by using OSCP-depleted membrane fraction (UF0) of ATP synthase. The ATPase activity of UF0-F1 was completely insensitive to DCCD while that of UF0-F1-OSCP was inhibited 95% by 16 microM DCCD. Both UF0-F1 and UF0-F1-OSCP complexes bound 5 nmol [14C]DCCD/mg UF0, and all the radioactivity was found to be associated with the DCCD-binding proteolipid. The data suggest that OSCP may be necessary for transmitting not only energy-linked signals, but also signals induced by F0 inhibitory ligands in mitochondrial energy transduction.  相似文献   

9.
Interactions between oligomycin sensitivity conferring protein (OSCP) and subunits of beef heart mitochondrial F1-ATPase have been explored by cross-linking at an OSCP/F1 molar ratio close to 1 to ensure specific high-affinity binding of OSCP to F1 [see Dupuis et al. [Dupuis, A., Issartel, J.-P., Lunardi, J., Satre, M., & Vignais, P.V. (1985) Biochemistry (preceding paper in this issue)]]. Cross-links between F1 subunits and OSCP were established by means of two zero length cross-linkers, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide and N-(ethoxycarbonyl)-2-ethoxydihydroquinoline. The cross-linked products were separated by sodium dodecyl suflate-polyacrylamide gel electrophoresis. Coomassie blue staining revealed two cross-linked products of Mr 75 000 and 80 000 which could result from the binding of OSCP to the alpha and beta subunits of F1. Definite identification of the cross-linked products was achieved by chemical labeling with specific radiolabeled reagents and by blotting on nitrocellulose filters followed by immunocharacterization with anti-alpha, anti-beta, and anti-OSCP antibodies. OSCP was found to cross-link with the alpha and beta subunits of F1.  相似文献   

10.
The preparation of anti-OSCP monoclonal antibodies is described for the first time. One of these antibodies prevents the activating effect of OSCP in reconstitution experiments. These antibodies and antibodies previously obtained against the alpha- and beta-subunits of pig heart mitochondrial F1-ATPase have been used to look for well conserved epitopes in various species. One anti-beta antibody can recognize all species tested while the anti-OSCP antibodies only recognize the pig or beef enzyme. The above anti-beta antibody inhibits ATP synthesis without modifying the rate of ATP hydrolysis. This antibody also prevents the ADP-induced hysteretic inhibition of F1-ATPase.  相似文献   

11.
Upon treatment of beef heart mitochondrial oligomycin sensitivity conferring protein (OSCP) with [14C]-N-ethylmaleimide ( [14C]NEM) or dithiobis(nitro[14C] benzoate), 1 mol of either SH reagent was incorporated per mol of OSCP. Radiolabeling occurred at the level of the only cysteine residue, Cys-118, present in the OSCP sequence reported by Ovchinnikov et al. [Ovchinnikov, Y. A., Modyanov, N. N., Grinkevich, V. A., Aldanova, N. A., Trubetskaya, O. E., Nazimov, I. V., Hundal, T., & Ernster, L. (1984) FEBS Lett. 166, 19-22]; it did not alter the biological activity of OSCP tested in a reconstituted F0-F1 system that catalyzed oligomycin-sensitive ATPase activity or ATP-Pi exchange. The parameters of [14C]NEM-OSCP binding to isolated beef heart mitochondrial F1 were assessed by equilibrium dialysis. Addition of trace amounts of Tween 20 prevented unspecific adsorption of OSCP. The binding curves showed that each F1 possesses a high-affinity OSCP binding site (Kd = 0.08 microM) and two low-affinity OSCP binding sites (Kd = 6-8 microM). Binding of OSCP to the high-affinity site on F1 is probably responsible for the ability of OSCP to confer oligomycin sensitivity to F1 in the ATPase complex.  相似文献   

12.
Kinetics of interaction between the H+-translocating component of the mitochondrial ATPase complex and oligomycin or dicyclohexylcarbodiimide were studied in beef heart submitochondrial particles, and the results suggest that the two inhibitors have different binding sites with respect to the membrane and to F1. Oligomycin seems to be bound to a subunit or a part of a subunit in F0, which is localized superficially, and which is influenced by F1, since the presence of F1 considerably lowers the rate of inhibition. The oligomycin binding site further seems to be influenced by the different conformational states of F1 occurring during the catalytic cycle of the enzyme. The binding site of DCCD on F0, on the other hand, seems to be deeply embedded in the membrane and not influenced by F1.  相似文献   

13.
14.
Oligomycin sensitivity conferral protein, in the absence of coupling factor 6 (F6), is able to bind the ATPase to mitochondrial membranes with an apparent association constant of 10(6) M-1. The F6-dependent ATPase binding has an apparent association constant 1 to 2 orders of magnitude lower than that obtained with oligomycin sensitivity conferral protein. The oligomycin sensitivity conferral protein-dependent, membrane-bound ATPase activity is sensitive to rutamycin while the F6-dependent, membrane-bound ATPase activity is insensitive to rutamycin. F1-ATPase and Type II ATPase require F6 in addition to oligomycin sensitivity conferral protein and FB to reconstitute 32Pi-ATP exchange activity in silicotungstic acid particles. This F6 requirement for the 32Pi-ATP exchange is not related to the F6 effect on the ATPase binding. The Type I ATPase and therefore the 26,500-dalton subunit associated with it requires F6 and FB to reconstitute 32Pi-ATP exchange activity in silicotungstic acid particles. Oligomycin sensitivity conferral protein can be interchanged with the 26,500-dalton ATPase binding protein in the binding of the ATPase and the 32Pi-ATP exchange.  相似文献   

15.
Early studies have suggested the presence in the central nervous system of possible estrogen binding sites/proteins other than classical nuclear estrogen receptors (nER). We report here the isolation and identification of a 23 kDa membrane protein from digitonin-solubilized rat brain mitochondrial fractions that binds 17beta-estradiol conjugated to bovine serum albumin at C-6 position (17beta-E-6-BSA), a ligand that also specifically binds nER. This protein was partially purified using affinity columns coupled with 17beta-E-6-BSA and was recognized by the iodinated 17beta-E-6-BSA (17beta-E-6-[125I]BSA) in a ligand blotting assay. The binding of 17beta-E-6-BSA to this protein was specific for the 17beta-estradiol portion of the conjugate, not BSA. Using N-terminal sequencing and immunoblotting, this 23 kDa protein was identified as the oligomycin-sensitivity conferring protein (OSCP). This protein is a subunit of the FOF1 (F-type) mitochondrial ATP synthase/ATPase required for the coupling of a proton gradient across the F0 sector of the enzyme in the mitochondrial membrane to ATP synthesis in the F1 sector of the enzyme. Studies using recombinant bovine OSCP (rbOSCP) in ligand blotting revealed that rbOSCP bound 17beta-E-6-[125I]BSA with the same specificity as the purified 23 kDa protein. Further, in a ligand binding assay, 17beta-E-6-[125I]BSA also bound rbOSCP and it was displaced by both 17beta-E-6-BSA and 17alpha-E-6-BSA as well as partially by 17beta-estradiol and diethylstilbestrol (DES), but not by BSA. This finding opens up the possibility that estradiol, and probably other compounds with similar structures, in addition to their classical genomic mechanism, may interact with ATP synthase/ATPase by binding to OSCP, and thereby modulating cellular energy metabolism. Current experiments are addressing such an issue.  相似文献   

16.
17.
In addition to two major alpha- and beta-subunits, the soluble oligomycin-insensitive F1ATPase purified from sweet potato root mitochondria contains four different minor subunits of gamma (Mr = 35,500), delta (Mr = 27,000), delta' (Mr = 23,000), and epsilon (Mr = 12,000) (Iwasaki, Y., and Asashi, T. (1983) Arch. Biochem. Biophys. 227, 164-173). Among these minor subunits, the delta-subunit specifically cross-reacted with an antibody against the delta-subunit of maize mitochondrial F1 which contains only three minor gamma-, delta- and epsilon-subunits like F1ATPases from other organisms, indicating that the delta'-subunit is an extra subunit of sweet potato F1 which is absent in the maize F1. All of the four minor subunits of sweet potato F1 were purified and their N-terminal amino acid sequences of 30-36 residues were determined. The N-terminal sequence of gamma-subunit was homologous to those of the gamma-subunits of bacterial F1 and mammalian mitochondrial F1. The N-terminal sequence of the delta-subunit was homologous to those of the delta-subunits of bacterial F1, chloroplast CF1, and oligomycin sensitivity conferring protein of bovine mitochondrial F1F0. A sequence homology was also observed between the sweet potato epsilon-subunit and the epsilon-subunit of bovine mitochondrial F1. The N-terminal sequence of the delta'-subunit did not show any significant sequence homology to known protein sequences. These subunit correspondences place plant mitochondrial F1 at an unique position in the evolution of F1ATPase.  相似文献   

18.
The binding of oligomycin sensitivity conferring protein (OSCP) to soluble beef-heart mitochondrial ATPase (F1) has been investigated. OSCP forms a stable complex with F1, and the F1 · OSCP complex is capable of restoring oligomycin- and DCCD-sensitive ATPase activity to F1- and OSCP-depleted submitochondrial particles. The F1 · OSCP complex retains 50% of its ATPase activity upon cold exposure while free F1 is inactivated by 90% or more. Both free F1 and the F1 · OSCP complex release upon cold exposure a part—probably 1 out of 3—of their subunits; whether subunits are also lost is uncertain. The cold-treated F1 · OSCP complex is still capable of restoring oligomycin- and DCCD-sensitive ATPase activity to F1- and OSCP-depleted particles. OSCP also protects F1 against modification of its subunit by mild trypsin treatment. This finding together with the earlier demonstration that trypsin-modified F1 cannot bind OSCP indicates that OSCP binds to the subunit of F1 and that F1 contains three binding sites for OSCP. The results are discussed in relation to the possible role of OSCP in the interaction of F1 with the membrane sector of the mitochondrial ATPase system.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - OSCP oligomycin sensitivity conferring protein - SDS sodium dodecylsulfate This paper is dedicated to the memory of David E. Green—scholar, pioneer, visionary.  相似文献   

19.
We show that urea inhibits the ATPase activity of MgATP submitochondrial particles (MgATP-SMP) with Ki = 0.7 M, probably as a result of direct interaction with the structure of F0F1-ATPase. Counteracting compounds (sorbitol, mannitol or inositol), despite slightly (10-20%) inhibiting the ATPase activity, also protect the F0F1-ATPase against denaturation by urea. However, this protection was only observed at low urea concentrations (less than 1.5 M), and in the presence of three polyols, the Ki for urea shift from 0.7 M to 1.2 M. Urea also increases the initial activation rate of latent MgATP-SMP in a dose-dependent-manner. However, when the particles (0.5 mg/ml) were preincubated in the presence of 1 M, 2 M or 3 M urea, a decrease in the activation level occurred after 1 h, 30 and 10 min, respectively. At high MgATP-SMP concentration (3 mg/ml) a decrease in activation was observed after 2 h, 1 h and 20 min, respectively. These data indicate that the effect of urea on the activation of MgATP-SMP depends on time, urea and protein concentrations. It was also observed that polyols suppress the activation of latent MgATP-SMP in a dose-dependent manner, and protect the particles against urea denaturation during activation. We suppose that a decrease in membrane mobility promoted by interactions of polyols with phospholipids around the F0F1-ATPase may also increase the compactation of protein structure, explaining the inhibition of natural inhibitor protein of ATPase (IF1) release and the activation of the enzyme.  相似文献   

20.
The 55,000 dalton polypeptide component of the membrane sector of the mitochondrial oligomycin sensitive ATPase has been purified by recycling chromatography on BioGel P-100. The amino acid composition of the purified polypeptide differs significantly from that of the α-subunit of F1 with which it shares a similar apparent molecular weight. However, the amino acid composition of the former is identical to that of the Factor B polypeptide, which is known to occur in oligomeric forms. Evidence is presented which suggests that the mitochondrial uncoupler binding proteins and the various oligomeric forms of the Factor B polypeptide, including the 55,000 dalton species described in the present report, are identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号