首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
Obesity increases the risk of development of atherosclerosis. However, this risk significantly depends on adipose tissue distribution in the body and ectopic accumulation of visceral adipose tissue (VAT). Recent evidence suggests that each visceral fat deposit is anatomically and functionally different. Due to proximity to the organ, each visceral fat deposit exerts a local modulation rather than a systemic effect. Because of its unique location and biomolecular properties, a “non-traditional” fat depot – the epicardial adipose tissue – has been considered to play a causative role in atherosclerosis. Epicardial adipose tissue may be measured with imaging techniques and is clinically related to left ventricular mass, coronary artery disease, and metabolic syndrome. Therefore, epicardial fat measurement may play a role in stratification of cardiometabolic risk and may serve as a therapeutic target.  相似文献   

3.

Background

Middle age obesity is recognized as a risk factor for Alzheimer''s disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions.

Methodology/Principal Findings

To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes.

Conclusions/Significance

Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-α and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokine secretion with no obvious effects on adipocyte culture phenotype. These data support the hypothesis that high fat diet-dependent obesity results in concomitant pro-inflammatory changes in brain and adipose tissue that is characterized, in part, by increased levels of APP that may be contributing specifically to inflammatory changes that occur.  相似文献   

4.
Central (visceral) obesity is more closely associated with insulin resistance, type 2 diabetes, and cardiovascular disease than is peripheral [subcutaneous (sc)] obesity, but the underlying mechanism for this pathophysiological difference is largely unknown. To understand the molecular basis of this difference, we sequenced 10,437 expressed sequence tags (ESTs) from a human omental fat cDNA library and discovered a novel visceral fat depot-specific secretory protein, which we have named omentin. Omentin ESTs were more abundant than many known adipose genes, such as perilipin, adiponectin, and leptin in the cDNA library. Protein sequence analysis indicated that omentin mRNA encodes a peptide of 313 amino acids, containing a secretory signal sequence and a fibrinogen-related domain. Northern analysis demonstrated that omentin mRNA was predominantly expressed in visceral adipose tissue and was barely detectable in sc fat depots in humans and rhesus monkeys. Quantative real-time PCR showed that omentin mRNA was expressed in stromal vascular cells, but not fat cells, isolated from omental adipose tissue, with >150-fold less in sc cell fractions. Accordingly, omentin protein was secreted into the culture medium of omental, but not sc, fat explants. Omentin was detectable in human serum by Western blot analysis. Addition of recombinant omentin in vitro did not affect basal but enhanced insulin-stimulated glucose uptake in both sc (47%, n = 9, P = 0.003) and omental (approximately 30%, n = 3, P < 0.05) human adipocytes. Omentin increased Akt phosphorylation in the absence and presence of insulin. In conclusion, omentin is a new adipokine that is expressed in omental adipose tissue in humans and may regulate insulin action.  相似文献   

5.
Androgens and body fat distribution   总被引:2,自引:0,他引:2  
An important sex difference in body fat distribution is generally observed. Men are usually characterized by the android type of obesity, with accumulation of fat in the abdominal region, whereas women often display the gynoid type of obesity, with a greater proportion of their body fat in the gluteal-femoral region. Accordingly, the amount of fat located inside the abdominal cavity (intra-abdominal or visceral adipose tissue) is twice as high in men compared to women. This sex difference has been shown to explain a major portion of the differing metabolic profiles and cardiovascular disease risk in men and women. Association studies have shown that circulating androgens are negatively associated with intra-abdominal fat accumulation in men, which explains an important portion of the link between low androgens and features of the metabolic syndrome. In women, the low circulating sex hormone-binding globulin (SHBG) levels found in abdominal obesity may indirectly indicate that elevated free androgens are related to increased visceral fat accumulation. However, data on non SHBG-bound and total androgens are not unanimous and difficult to interpret for total androgens. These studies focusing on plasma levels of sex hormones indirectly suggest that androgens may alter adipose tissue mass in a depot-specific manner. This could occur through site-specific modulation of preadipocyte proliferation and/or differentiation as well as lipid synthesis and/or lipolysis in mature adipocytes. Recent results on the effects of androgens in cultured adipocytes and adipose tissue have been inconsistent, but may indicate decreased adipogenesis and increased lipolysis upon androgen treatment. Finally, adipose tissue has been shown to express several steroidogenic and steroid-inactivating enzymes. Their mere presence in fat indirectly supports the notion of a highly complex enzymatic system modulating steroid action on a local basis. Recent data obtained in both men and women suggest that enzymes from the aldoketoreductase 1C family are very active and may be important modulators of androgen action in adipose tissue.  相似文献   

6.
Fat‐free mass or lean tissue mass includes nonskeletal muscle components such as the fat‐free component of adipose tissue fat cells. This fat‐free component of adipose tissue may need to be taken into consideration when large changes in body fat occur following a weight loss intervention. It is not uncommon to see a loss of lean mass with interventions designed to promote the loss of large amounts of fat mass. However, after eliminating the influence of the fat‐free component of adipose tissue on dual‐energy x‐ray absorptiometry (DXA)‐derived lean mass, the original loss of lean mass is no longer observed or is markedly reduced. This suggests that the majority of the lean mass lost with dieting may be the fat‐free component of adipose tissue. To accurately estimate the change in lean tissue, eliminating the fat‐free adipose tissue from DXA‐derived lean mass is needed when large changes in body fat occur following an intervention.  相似文献   

7.
Visceral obesity is linked to insulin resistance and cardiovascular disease. A recent genetic study indicated that the gene locus for the anti-oxidant defense enzyme methionine sulphoxide reductase A (MsrA) is positively associated with the development of visceral adiposity. This work tested the hypothesis that Msr activity is diminished in visceral fat as a result of obesity. It used two animal models of obesity, wild-type rats fed a high-fat (45% of calories from fat) diet and Zucker rats fed a 10% fat calorie diet. The data indicate that MsrA activity was selectively reduced by ~ 25% in the visceral adipose, but not subcutaneous adipose or liver, of both rat models as compared to control, wild type rats receiving a 10% fat calorie diet. MsrB activity was similarly reduced only in visceral fat. The data indicate that Msr activity is reduced by obesity and may alter oxidative stress signalling of obesity.  相似文献   

8.
Adipose tissue is a critical regulator of energy balance and substrate metabolism, and synthesizes several different substances with endocrine or paracrine functions, which regulate the overall energetic homeostasis. An excessive amount of adipose tissue has been associated with the development of type 2 diabetes, premature atherosclerosis, and cardiovascular disease. It is believed that the adverse metabolic impact of visceral fat relies on a relative resistance to the action of insulin in this depot compared to other adipose tissue depots. However, information on insulin signalling reactions in human fat is limited. In this paper, we review the major insulin signalling pathways in adipocytes and their relevance for metabolic regulation, and discuss recent data indicating different signalling properties of visceral fat as compared to other fat depots, which may explain the metabolic and hormonal specificity of this fat tissue depot in humans.  相似文献   

9.
Despite the magnitude of the obesity epidemic, the mechanisms that contribute to increases in fat mass and to differences in fat depots are still poorly understood. Prostanoids have been proposed as potent adipogenic hormones, e.g. metabolites of prostaglandin J2 (PGJ2) bind and activate PPARγ. We hypothesize that an altered expression of enzymes in PGJ2 synthesis may represent a novel pathogenic mechanism in human obesity. We characterized adipose depot-specific expression of enzymes in PGJ2 synthesis, prostaglandin transporter and PPARγ isoforms. Paired omental and subcutaneous adipose tissue samples were obtained from 26 women undergoing elective abdominal surgery and gene expression examined in whole tissue and cultured preadipocytes using an Affymetrix cDNA microarray technique and validated with quantitative real-time PCR. All enzymes involved in prostaglandin synthesis were expressed in both adipose tissues. Expression of prostaglandin synthase-1 (PGHS1), prostaglandin D synthase (PTGDS), human prostaglandin transporter (hPGT) and PPARγ2 was higher in OM adipose tissue compared to SC, whereas 17β-hydroxysteroid dehydrogenase 5 (AKR1C3) showed predominance in SC adipose tissue. In SC adipose tissue, PGHS1 mRNA expression increased with BMI. The differential, depot-specific expression of key enzymes involved in transport, synthesis and metabolism of prostaglandins may have an important impact upon fat cell biology and may help to explain some of the observed depot-specific differences. In addition, the positive correlation between PGHS1 and BMI offers the novel hypothesis that the regulation of PG synthesis may have a role in determining fat distribution in human obesity.  相似文献   

10.
Lipin, a lipodystrophy and obesity gene   总被引:3,自引:0,他引:3  
Phan J  Reue K 《Cell metabolism》2005,1(1):73-83
Lipodystrophy and obesity represent extreme and opposite ends of the adiposity spectrum and have typically been attributed to alterations in the expression or function of distinct sets of genes. We previously demonstrated that lipin deficiency impairs adipocyte differentiation and causes lipodystrophy in the mouse. Using two different tissue-specific lipin transgenic mouse strains, we now demonstrate that enhanced lipin expression in either adipose tissue or skeletal muscle promotes obesity. This occurs through diverse mechanisms in the two tissues, with lipin levels in adipose tissue influencing the fat storage capacity of the adipocyte, and lipin levels in skeletal muscle acting as a determinant of whole-body energy expenditure and fat utilization. Thus, variations in lipin levels alone are sufficient to induce extreme states of adiposity and may represent a mechanism by which adipose tissue and skeletal muscle modulate fat mass and energy balance.  相似文献   

11.
Plasminogen activator inhibitor type 1 (PAI-1), an inhibitor of fibrinolysis and an important and independent cardiovascular risk factor, has been shown to be elevated in obesity and type 2 diabetes. Recent study results have suggested that adipose tissue--visceral fat in particular--could play an important role in the fibrinolytic process.In order to assess the specific role of this fat distribution, we measured PAI-1 activity (AU/ml) and visceral fat (CT-scan at level L4-L5) in 2 groups of 30 overweight and obese diabetic and overweight and obese non-diabetic women. Subjects were matched for age, weight, body mass index, fat mass and total abdominal fat. Visceral adipose tissue and PAI-1 were significantly higher in diabetic women (p = 0.022 and p = 0.004 respectively) than in non-diabetic patients. Visceral fat correlated significantly with PAI-1 activity, even after correction for insulin and triglycerides (r = 0.28, p = 0.034). Stepwise regression analysis showed visceral fat as the most important determinant factor for PAI-1 in the whole group and in the non-diabetic group. In the diabetic group, fasting insulin was the most important determinant. These results show that visceral fat is more important than BMI or total body fat in the determination of PAI-1 levels. Furthermore, the increased amount of visceral fat in type 2 diabetics may contribute to the increase of PAI-1 activity levels and the subsequent increased risk for thrombovascular disease, regardless of BMI and total fatness.  相似文献   

12.
13.
Trypanosoma cruzi the cause of Chagas disease persists in tissues of infected experimental animals and humans. Here we demonstrate the persistence of the parasite in adipose tissue from of three of 10 elderly seropositive patients with chronic chagasic heart disease. Nine control patients had no parasites in the fat. We also demonstrate that T. cruzi parasitizes primary adipocytes in vitro. Thus, in humans as in mice the parasite may persist in adipose tissue for decades and become a reservoir of infection.  相似文献   

14.
Obesity, characterized by excessive adiposity, is a risk factor for many metabolic pathologies, such as type 2 diabetes mellitus (T2DM). Numerous studies have shown that adipose tissue distribution may be a greater predictor of metabolic health. Upper-body fat (visceral and subcutaneous abdominal) is commonly associated with the unfavorable complications of obesity, while lower-body fat (gluteal–femoral) may be protective. Current research investigations are focused on analyzing the metabolic properties of adipose tissue, in order to better understand the mechanisms that regulate fat distribution in both men and women. This review will highlight the adipose tissue depot- and sex-dependent differences in white adipose tissue function, including adipogenesis, adipose tissue developmental patterning, the storage and release of fatty acids, and secretory function. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

15.
BACKGROUND: Intra-peritoneal adipose tissue is recognized as a predictor of metabolic syndrome and may contribute to the risk for cardiovascular disease by the production of adipocytokines, including adiponectin. Nevertheless, there is no knowledge on whether other visceral depots of adipose tissue, including the epicardial fat, have any metabolically active role, including production of adiponectin. AIM OF THE STUDY: We sought to evaluate adiponectin protein expression in epicardial adipose tissue in vivo both in patients with severe coronary artery disease (CAD) and in subjects without CAD. METHODS: Twenty-two patients were enrolled for the study. We selected 16 patients who underwent elective coronary artery bypass graft surgery for critical CAD, 5 who underwent surgery for valve replacement and 1 for correction of an interatrial defect. Epicardial adipose tissue biopsy samples were obtained before the initiation of cardiopulmonary bypass. Adiponectin protein level in epicardial adipose tissue was evaluated by Western blotting. RESULTS: Adiponectin protein value, expressed as adiponectin/actin ratio, in epicardial adipose tissue was significantly lower in patients with severe CAD than in those without CAD (1.42 +/- 0.77 vs 2.36 +/- 0.84 p = 0.02, 95% CI 0.64-1.74). CONCLUSIONS: This study showed for the first time that human epicardial adipose tissue expresses adiponectin. Adiponectin expression is significantly lower in epicardial fat isolated from patients with CAD.  相似文献   

16.
Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11β-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11β-HSD1 levels. To identify the specific dietary fats that regulate adipose 11β-HSD1 and thereby impact upon metabolic disease, we either fed mice diets enriched (45% calories as fat) in saturated (stearate), monounsaturated (oleate), or polyunsaturated (safflower oil) fats ad libitum or we pair fed them a low-fat (11%) control diet for 4 wk. Adipose and liver mass and glucocorticoid receptor and 11β-HSD1 mRNA and activity levels were determined. Stearate caused weight loss and hypoinsulinemia, partly due to malabsorption, and this markedly increased plasma corticosterone levels and adipose 11β-HSD1 activity. Oleate induced pronounced weight gain and hyperinsulinemia in association with markedly low plasma corticosterone and adipose 11β-HSD1 activity. Weight gain and hyperinsulinemia was less pronounced with safflower compared with oleate despite comparable suppression of plasma corticosterone and adipose 11β-HSD1. However, with pair feeding, safflower caused a selective reduction in visceral fat mass and relative insulin sensitization without affecting plasma corticosterone or adipose 11β-HSD1. The dynamic depot-selective relationship between adipose 11β-HSD1 and fat mass strongly implicates a dominant physiological role for local tissue glucocorticoid reactivation in fat mobilization.  相似文献   

17.
Obesity is becoming an important public health problem given its strong association with insulin resistance and Type 2 diabetes. Previously considered an inert depot, fat is now regarded as a highly metabolically active tissue in many pathophysiological processes. In humans, the accumulation of omental rather than subcutaneous adipose tissue appears to be tightly linked to cardiovascular disease and other important comorbidities. Proteomics has emerged as a method for the large-scale study of proteins in biological samples, for instance, fluids, cells or tissues, which encompasses not only the identities of the proteins present, but also quantification and post-translational modification events. Human adipose tissue proteome analysis, still in its early stages, may help understand the molecular mechanisms of obesity and the role of omental fat in the pathogenesis of obesity-associated diseases. This review covers recent advances in human adipose tissue proteomics, focusing on the analysis of the omental and the subcutaneous fat.  相似文献   

18.
Research efforts investigating the pathophysiology of adipose tissue have often focused separately on either the metabolic or cardiovascular components of an expanding fat mass. However, the growth and development of the fat cells and their vasculature are closely interrelated, a fact that has been established through more than a century of diverse studies of adipose tissue. Recently, the prevalence of obesity in the United States has stimulated investigations into the cardiovascular and metabolic correlates occurring with excessive lipid deposition and subsequent adipose tissue expansion. These investigations have resulted in conclusive evidence that, from a cardiovascular perspective, obesity results in an elevated blood volume and cardiac output, accompanied by an expansion of adipose water space, whereas from a metabolic aspect, the disease is characterized by adipocyte enlargement and associated alterations in metabolic pathways and hormonal responsiveness. Because these separate areas of research have independently shown interdepot differences in perfusion requirements and metabolic adaptations during the transition from the lean to obese state, adipocyte expansion may be partially dependent on the pattern of vascularity. This hypothesis is discussed by examining the integral relationship between the cardiovascular system and adipocyte metabolism, hopefully providing new insight into control of the pathophysiological processes of an expanding adipose organ.  相似文献   

19.
In obesity, rapidly expanding adipose tissue becomes hypoxic, precipitating inflammation, fibrosis, and insulin resistance. Compensatory angiogenesis may prevent these events. Mice lacking the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1(-/-)) have "healthier" adipose tissue distribution and resist metabolic disease with diet-induced obesity. Here we show that adipose tissues of 11βHSD1(-/-) mice exhibit attenuated hypoxia, induction of hypoxia-inducible factor (HIF-1α) activation of the TGF-β/Smad3/α-smooth muscle actin (α-SMA) signaling pathway, and fibrogenesis despite similar fat accretion with diet-induced obesity. Moreover, augmented 11βHSD1(-/-) adipose tissue angiogenesis is associated with enhanced peroxisome proliferator-activated receptor γ (PPARγ)-inducible expression of the potent angiogenic factors VEGF-A, apelin, and angiopoietin-like protein 4. Improved adipose angiogenesis and reduced fibrosis provide a novel mechanism whereby suppression of intracellular glucocorticoid regeneration promotes safer fat expansion with weight gain.  相似文献   

20.
Obesity and arterial hypertension, important risk factors for atherosclerosis and coronary artery disease, are characterized by an increase in vascular tone. While obesity is known to augment vasoconstrictor prostanoid activity in endothelial cells, less is known about factors released from fat tissue surrounding arteries (perivascular adipose). Using lean controls and mice with either monogenic or diet-induced obesity, we set out to determine whether and through which pathways perivascular adipose affects vascular tone. We unexpectedly found that in the aorta of obese mice, perivascular adipose potentiates vascular contractility to serotonin and phenylephrine, indicating activity of a factor generated by perivascular adipose, which we designated “adipose-derived contracting factor” (ADCF). Inhibition of cyclooxygenase (COX) fully prevented ADCF-mediated contractions, whereas COX-1 or COX-2-selective inhibition was only partially effective. By contrast, inhibition of superoxide anions, NO synthase, or endothelin receptors had no effect on ADCF activity. Perivascular adipose as a source of COX-derived ADCF was further confirmed by detecting increased thromboxane A2 formation from perivascular adipose-replete aortae from obese mice. Taken together, this study identifies perivascular adipose as a novel regulator of arterial vasoconstriction through the release of COX-derived ADCF. Excessive ADCF activity in perivascular fat under obese conditions likely contributes to increased vascular tone by antagonizing vasodilation. ADCF may thus propagate obesity-dependent hypertension and the associated increased risk in coronary artery disease, potentially representing a novel therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号