首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using thermal and photochemical methods a series of new chromium complexes has been prepared: (ν6-p-C6H4F2)Cr(CO)3; (ν6-C6H5CF3)Cr(CO)3; [m-C6H4(CF3)2]Cr(CO)3; (ν6-C6H5F)Cr(CO)2H(SiCl3); (ν6-C6H5F)Cr(CO)2(SiCl3)2; (p-C6H4F2)Cr(CO)2-H(SiCl3); (C6H5CF3)Cr(CO)2H(SiCl3(p-C6H4F2)Cr(CO)2(SiCl3)2; C6H5CF3)Cr(CO)2(SiCl3)2; [m-C6H4(CF3)2]Cr(CO)2-H(SiCl3); [m-C6H4(CF3)2]Cr(CO)2(SiCl3)2. Two compounds were structurally characterized by X-ray diffraction. These data combined with IR and 1H NMR have allowed assessment of some of the electronic and steric effects. The Cr-arene bond is considerably longer in the Cr(II) derivatives than in the Cr(0) species. Also the Cr center, as might be expected, is less electron rich in the Cr(II) dicarbonyl disilyl derivatives. The ν6-p-C6H4F2 ligands are slightly folded so that the C---F carbons are moved further away from the Cr center. Comparison of structural and electronic effects is made with a series of similar chromium compounds reported in the literature. These new (arene)Cr(II) derivatives possess more labile ν6-arene ligands, which promise a rich chemistry at the chromium center.  相似文献   

2.
New mixed metal complexes SrCu2(O2CR)3(bdmap)3 (R = CF3 (1a), CH3 (1b)) and a new dinuclear bismuth complex Bi2(O2CCH3)4(bdmap)2(H2O) (2) have been synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction analyses. Thermal decomposition behaviors of these complexes have been examined by TGA and X-ray powder diffraction analyses. While compound 1a decomposes to SrF2 and CuO at about 380°C, compound 1b decomposes to the corresponding oxides above 800°C. Compound 2 decomposes cleanly to Bi2O3 at 330°C. The magnetism of 1a was examined by the measurement of susceptibility from 5–300 K. Theoretical fitting for the susceptibility data revealed that 1a is an antiferromagnetically coupled system with g = 2.012(7), −2J = 34.0(8) cm−1. Crystal data for 1a: C27H51N6O9F9Cu2Sr/THF, monoclinic space group P21/m, A = 10.708(6), B = 15.20(1), C = 15.404(7) Å, β = 107.94(4)°, V = 2386(2) Å3, Z = 2; for 1b: C27H60N6O9Cu2Sr/THF, orthorhombic space group Pbcn, A = 19.164(9), B = 26.829(8), C = 17.240(9) Å, V = 8864(5) Å3, Z = 8; for 2: C22H48O11N4Bi2, monoclinic space group P21/c, A = 17.614(9), B = 10.741(3), C = 18.910(7) Å, β = 109.99(3)°, V = 3362(2) Å3, Z = 4.  相似文献   

3.
Condensation of Z-PPh2CH2C(But)=NNH2 with 4-nitroacetophenone gave the azine phosphine Z,E-PPh2CH2C(But)=N-N=CMe(C6H4NO2-4) (I). The corresponding phsophine oxide II was prepared by treatment of I with H2O2. The phosphine I with [Mo(CO)4(nbd)] (nbd=norbornadiene) gave [Mo(CO)4{PPh2CH2C(But)=N-N=CMe(C6H4NO2-4)}] (1a); the corresponding tungsten 1b and chromium 1c complexes were made similarly. The crystal structure of 1a was determined by X-ray diffraction and showed the presence of a six-membered chelate ring with the bulky 4-nitrophenyl group held close to the metal. Oxidation of 1a with bromine gave the seven-coordinate molybdenum (II) complex 2. Treatment of [PtMe2(cod)] (cod=cycloocta-1,5-diene) with I at 20°C gave the dimethyl-platinum (II) complex [PtMe2{PPh2CH2C(But)=N-N=CMe(C6H4NO2-4)}] (3a) which with MeI gave the iodotrimethylplatinum(IV) complex 4. Treatment of 3a with C≡O opened the chelate ring to give the dimethyl(carbonyl)platinum(II) complex 5 containing a monodentate phosphine ligand. When 3a was heated in toluene solution at 110°C it gave the cyclometallated methylplatinum(II) complex [PtMe{PPh2CH2C(But)=N-N=CMe(C6H3NO2-4)}] (6). Treatment of 6 with MeI gave the platinum(IV) complex 7. The dichloropalladium(II) complex [PdCl2{PPh2CH2C(But)=N-N=CMe(C6H4NO2-4)}] (3b) was prepared by treatment of [PdCl2(NCPh)2] with I in CH2Cl2. Treatment of [PtCl2(NCMe)2] with 2 equiv. of I gave the trans-bis(phosphine) complex 8. When 2 equiv. of I were treated with [PtCl2(cod)] followed by NH4PF6 this gave the salt 9a containing two six-membered chelate rings; the analogous palladium(II) 9b) salt was also prepared. Treatment of 2 equiv. of I with [PtCl2(cod)] followed by NH4PF6 gave the PF6 salt 10 containing a six-membered chelate ring and a monodentate ligand. When 10 was treated with AgNO3 followed by NH4PF6 this gave the bis-chelate complex 11 containing five- and six-membered chelate rings. Treatment of [IrCl(CO)2(p-toluidine)] with I gave the cyclometallated iridium(III) hydride complex [IrHClCO{PPh2CH2C(But)=N-N=CMe(C6H3NO2-4)}] (12). [RuCl2(PPh3)3] with the phosphine I resulted in the Ru(II) complex 13 in which the ortho hydrogens of the 4-nitrophenyl group are agostically interacting with ruthenium. Proton, Phosphorus-31, some carbon-13 NMR and IR data have been obtained. Crystals of 1a are orthorhombic, space group Pna21, with a = 1819.3(2), b = 1050.0(1), c = 1614.8(2) pm and Z = 4; final R = 0.0191 for 2616 observed reflections.  相似文献   

4.
A series of square-planar complexes [MLCl]ClO4 (M = Pd(II), Pt(II); L = bis(3-(diphenylphosphino)propyl)sulfide (psp), bis(3-(diphenylarsino)propyl)sulfide (asa)) have been prepared and characterized. The X-ray crystal structures of two of them have been determined: [Pd(psp)Cl]ClO4, P21/c, A = 12.519(2), B = 15.766(2), C = 16.501(2) Å, β = 105.22(1)°, Z = 4; and [Pt(asa)Cl]ClO4, P21/c, a = 12.583(5), B = 16.007(6), C = 16.549(6) Å, β = 104.89(3)°, Z = 4. In both structures, there is a conformational disorder between the chair and skew-boat orientation in one of the two six-membered chelate rings. The C---H…O hydrogen bond between the hybrid ligand and the perchlorate counter ion that induces the conformational disorder is discussed.  相似文献   

5.
HRu2Fe2PdC(CO)123-ß-C10H15) cluster was prepared in the reaction of (Et4N) [HFe2Ru2C(CO)12] with [Pd(η3-ß-C10H15)Cl]2. X-ray structural study of HRu2Fe2PdC(CO)123-ß-C10H15) (where ß-C10H15 is ß-pinenyl) revealed a wing-tip butterfly geometry of the metal core and (1R, 2S, 3S, 5R) absolute configuration for both crystallography independent molecules in the crystal. Chiroptical properties of this cluster are compared with other clusters containing a Pd(η3-ß-C10H15) fragment and discussed.  相似文献   

6.
The reaction of ReH92− with Mo(diglyme)(CO)3 leads to the formation of the mixed metal cluster trianion, ReMo3H4(CO)123−. This species has been characterized analytically, spectroscopically and through X-ray diffraction analysis. A pseudo-tetrahedral arrangement of M(CO)3 fragments is adopted, such that each set of three carbonyl ligands eclipses the adjacent three tetrahedral edges, an apparent result of the location of the hydride ligands on the tetrahedral faces. Variable temperature NMR studies revealed a fluctional process for some of the carbonyl ligands, but not for the hydrides. Crystal data for [Me4N]3[ReMo3H4(CO)12]·THF; space group P21/n, a = 12.157(2), B = 21.480(4), C = 15.964(3) Å, β = 98.26(1)°, Z = 4, R = 0.067 and Rw = 0.076.  相似文献   

7.
The thermal and photochemical reactions of CpRe(PPh3)2H4 and CpRe(PPh3)H4 (Cp = η5-C5H5) with PMe3, P(p-tolyl)3, PMe2Ph, DMPE, DPPE, DPPM, CO, 2,6-xylylisocyanide and ethylene have been examined. While CpRe(PPh3)2H2 is thermally inert, it will undergo photochemical substitution of one or two PPh3 ligands. With ethylene, substitution is followed by insertion of the olefin into the C-H bond of benzene, giving ethylbenzene. CpRe(PPh3)H4 undergoes thermal loss of PPh3, which leads to substituted products of the type CpRe(L) H4. Photochemically, reductive elimination of dihydrogen occurs preferentially. The complex trans-CpRe(DMPE)H2 was structurally characterized, crystallizing in the monoclinic space group P21/n (No. 14) with a = 6.249(6), b = 16.671(8), c = 13.867(7) Å, β = 92.11(6)°, V = 1443.7(2.9) Å and Z = 4. The complex trans-CpRe(PMe2Ph)2H2 was structurally characterized, crystallizing in the monoclinic space group P21/n (No. 14) with a = 7.467(3), b = 23.874(14), c = 11.798(6) Å, β = 100.16(4)°, V = 2070.2(3.4) Å3 and Z = 4.  相似文献   

8.
The reactions of the polysulfur and selenium cationic clusters S82+ and Se82+ with various iron carbonyls were investigated. Several new chalcogen containing iron carbonyl cluster cations were isolated, depending on the nature of the counteranion. In the presence of SbF6 as a counterion, the cluster [Fe3(E2)2(CO)10] [SbF6]2·SO2 (E = S, Se) could be isolated from the reaction of E82+ and excess iron carbonyl. The cluster is a picnic-basket shaped molecule of two iron centers linked by two Se2 groups, with the whole fragment capped by an Fe(CO)4 group. Crystallographic data for C10O12Fe3Se4Sb2F12S (I): space group monoclinic P21/c, A = 11.810(9), b = 24.023(6), c = 10.853(7) Å, β = 107.15(5)°, V = 2942(3) Å3, Z = 4, R = 0.0426, Rw = 0.0503. When Sb2F11 is present as the counterion, or Se4[Sb2F11]2 is used as the cluster cation source, a different cluster can be isolated, which has the formula [Fe4(Se2)3(CO)12] [SbF6]2·3SO2. The dication contains two Fe2Se2 fragments bridged by an Se2 group. Crystallographic data for C12O18Fe4Se6Sb2F12S3 (III): space group triclinic , b = 18.400(9), C = 10.253(4) Å, = 93.10(4), β = 103.74(3), γ = 93.98(3)°, V = 1995(1) Å3, Z = 2, R = 0.0328, Rw = 0.0325. The CO stretches in the IR spectrum all show a large shift to higher wavenumbers, suggesting almost no τ backbonding from the metals. This also correlates with the observed bond distances. All the compounds are extremely sensitive to air and water, and readily lose SO2 when removed from the solvent. Thus all the crystals were handled at −100°C. The clusters seem to be either insoluble or unstable in all solvents investigated.  相似文献   

9.
Abstraction of chloride from the Pd complex {[η3-2,6-(tBu2PCH2)2C6H3)]PdCl with AgBF4 in THF gives {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(THF)}+BF4 −. Attemped crystallization of this THF complex produced the aqua complex {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(OH2)}+BF4 −. Crystal structures of two crystalline forms of this compound are reported. In {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(OH2)}+BF4 −·THF, one hydrogen of the water is hydrogen bonded to the oxygen of the THF, and the other hydrogen is hydrogen bonded to an F of the BF4 − anion. Another crystalline form has no THF, but has both of the hydrogens of water hydrogen bonded to different BF4 − anions, such that two different BF4 − anions bridge two {[η3-2,6-(tBu2PCH2)2C6H3)]Pd(OH2)}+ cations. A crystal structure is also reported for the palladium chloride complex [η3-2,6-(tBu2PCH2)2C6H3)]PdCl.  相似文献   

10.
The aqueous chemistry of vanadium with physiologically relevant ligands constitutes a subject of burgeoning research, extending from bacterial metalloenzymic functions to human-health physiology. Vanadium, in the form of VCl3 and V2O5, reacted expediently with citric acid, in a 1:2 molar ratio in water at pH4, and, in the presence of various cations, afforded crystalline materials bearing the general formula (Cat)2[V2O4(C6H6O7)2nH2O (A) (Cat+=Na+, NH4 +, n=2; Me4N+, K+, n=4). Exploration of the reactivity of A toward H2O2 yielded the peroxo-containing complexes (Cat)2[V2O2(O2)2(C6H6O7)2]·2H2O (B) (Cat+=K+, NH4 +). Both classes of compounds were characterized analytically and spectroscopically. The X-ray structures of complexes A and B emphasize the exceptional stability of the dimeric rhombic unit V2O2, which is retained upon H2O2 reaction, and the preserved mode of coordination of the citrate ligand as a doubly deprotonated moiety. In these complexes, typical six and eight coordination numbers were observed for the Na+ and K+ counter-ions, respectively. The variety of synthetic approaches leading to A, along with the stepwise and direct assembly and isolation of peroxo-compounds (B), denotes the significance of reaction pathways and intermediates in vanadium(III–V)–citrate synthetic chemistry. Hence, a systematic investigation of reactivity modes in aqueous vanadium–citrate systems emerges as a crucial tool for the establishment of chemical interconnectivity among low MW complex species, potentially participating in the intricate biodistribution of that metal ion in biological fluids.  相似文献   

11.
The chloro complexes trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4, react with 1-alkynes HC---C---R in the presence of NEt3 to afford the corresponding acetylide derivatives trans-[Pt(Me) (C---C---R) (PPh3)2] (R = p-tolyl (1), Ph (2), C(CH3)3 (3)). These complexes, with the exception of the t-butylacetylide complex, react with the chloroalcohols HO(CH2)nCl (n = 2, 3) in the presence of 1 equiv. of HBF4 to afford the alkyl(chloroalkoxy)carbene complexes trans-[Pt(Me) {C[O(CH2)nCl](CH2R) } (PPh3)2][BF4] (R = p-tolyl, N = 2 (4), N = 3 (5); R=Ph, N = 2 (6)). A similar reaction of the bis(acetylide) complex trans-[Pt(C---C---Ph)2(PMe2Ph)2] with 2 equiv. HBF4 and 3-chloro-1-propanol affords trans-[Pt(C---CPh) {C(OCH2CH2CH2Cl)(CH2Ph) } (PMe2Ph)2][BF4] (7). T alkyl(chloroalkoxy)-carbene complex trans-[Pt(Me) {C(OCH2CH2Cl)(CH2Ph) } (PPh3)2][BF4] (8) is formed by reaction of trans-[Pt(Me)(Cl)(PPh3)2], after treatment with AgBF4 in HOCH2CH2Cl, with phenylacetylene in the presence of 1 equiv. of n-BuLi. The reaction of the dimer [Pt(Cl)(μ-Cl)(PMe2Ph)]2 with p-tolylacetylene and 3-chloro-1-propanol yields cis-[PtCl2{C(OCH2CH2CH2Cl)(CH2C6H4-p-Me}(PMe2Ph)] (9). The X-ray molecular structure of (8) has been determined. It crystallizes in the orthorhombic system, space group Pna21, with a = 11.785(2), B = 29.418(4), C = 15.409(3) Å, V = 4889(1) Å3 and Z = 4. The carbene ligand is perpendicular to the Pt(II) coordination plane; the PtC(carbene) bond distance is 2.01(1) Å and the short C(carbene)-O bond distance of 1.30(1) Å suggests extensive electronic delocalization within the Pt---C(carbene)---O moietry.  相似文献   

12.
The phosphinoalkenes Ph2P(CH2)nCH=CH2 (n= 1, 2, 3) and phosphinoalkynes Ph2P(CH2)n C≡CR (R = H, N = 2, 3; R = CH3, N = 1) have been prepared and reacted with the dirhodium complex (η−C5H5)2Rh2(μ−CO) (μ−η2−CF3C2CF3). Six new complexes of the type (ν−C5H5)2(Rh2(CO) (μ−η11−CF3C2CF3)L, where L is a P-coordinated phosphinoalkene, or phosphinoalkyne have been isolated and fully characterized; the carbonyl and phosphine ligands are predominantly trans on the Rh---Rh bond, but there is spectroscopic evidence that a small amount of the cis-isomer is formed also. Treatment of the dirhodium-phosphinoalkene complexes with (η−CH3C5H4)Mn(CO)2thf resulted in coordination of the manganese to the alkene function. The Rh2---Mn complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2P(CH2)3CH=CH2} (η−CH3C5H4)Mn(CO)2] was fully characterized. Simi treatment of the dirhodium-phosphinoalkyne complexes with Co2(CO)8 resulted in the coordination of Co2(CO)6 to the alkyne function. The Rh2---Co2 complex [(η−C5H5)2Rh2(CO) (μ−η11−CF3C2CF3) {Ph2PCH2C≡CCH3}Co2(CO)2], C37H25Co2F6O7PRh2, was fully characteriz spectroscopically, and the molecular structure of this complex was determined by a single crystal X-ray diffraction study. It is triclinic, space group (Ci1, No. 2) with a = 18.454(6), B = 11.418(3), C = 10.124(3) Å, = 112.16(2), β = 102.34(3), γ = 91.62(3)°, Z = 2. Conventional R on |F| was 0.052 fo observed (I > 3σ(I)) reflections. The Rh2 and Co2 parts of the molecule are distinct, the carbonyl and phosphine are mutually trans on the Rh---Rh bond, and the orientations of the alkynes are parallel for Rh2 and perpendicular for Co2. Attempts to induce Rh2Co2 cluster formation were unsuccessful.  相似文献   

13.
Metathesis of [(η33−C10H16)Ru(Cl) (μ−Cl)]2 (1) with [R3P) (Cl)M(μ-Cl)]2 (M = Pd, Pt), [Me2NCH2C6H4Pd(μ-Cl)]2 and [(OC)2Rh(μ-Cl)]2 affords the heterobimetallic chloro bridged complexes (η33-C10H16) (Cl)Ru(μ-Cl)2M(PR3)(Cl) (M = Pd, Pt), (η33-C10H16) (Cl)Ru(μ-Cl)2PdC6H4CH2NMe2 and (η33-C10H16) (Cl)Ru(μ-Cl)2Rh(CO)2, respectively. Complex 1 reacts with [Cp*M(Cl) (μ-Cl)]2 (M = Rh, Ir), [p-cymene Ru(Cl) (μ-Cl]2 and [(Cy3P)Cu(μ-Cl)]2 to give an equilibrium of the heterobimetallic complexes and of educts. The structures of (η33-C10H16)Ru(μ-Cl)2Pd(PR3) (Cl) (R = Et, Bu) and of one diastereoisomer of (η33-C10H16)Ru(μ-Cl)2IrCp*(Cl) were determined by X-ray diffraction.  相似文献   

14.
Ab initio (B3LYP) calculations show that PD·H---ReH4(PH3)3 (PD = Proton donor) interactions follow the order PD = pyrrole > NH3 > HCCH > C2H4 > CH3---H 0 and decrease with the pKa of the PD. For equivalent pKa's, NH interacts more strongly than CH. However, intermolecular hydrogen-bonding of the M---H·H---C type is too weak to be detected experimentally in FTIR or UV-vis studies between ReH5(PPh3)3 and PhCCH, C6F5H or PhCHCl2.  相似文献   

15.
A new method has been developed for the preparation of nitroaryl transition metal complexes using copper(II) nitrate in the presence of acetic anhydride (Menke conditions) to directly nitrate an aryl group which is already σ-bound to a transition metal centre. Under these conditions ruthenium(II) aryl complexes of the type: (where R1=R2=H; R1=H, R2=CH3; R1=CH3, R2=H) react to yield three distinct types of nitroaryl-containing products (I–III).

The preparation and characterisation of these compounds are described. X-ray crystallographic data for one example of each of the three types of compound, are also reported. The compounds that have been studied crystallographically are Ru(C6H4NO2-4)(η2-O2CCH3)(CO)(PPh3)2 (1a), C45H37NO5P2Ru·(CH2Cl2)0.5, a = 20.254(5), b=19.437(8), c=22.629(3) Å, β=115.390(10)°, monoclinic, space group C2/c, Z=8; Ru(C6H4N[O]O-2)- Cl(CO)(PPh3)2 (4a), C43H34ClNO3P2Ru, a=9.331(3), b=12.443(2), c=16.346(3) Å, =82.81(2), β=85.03(2), γ=74.76(2)°, triclinic, space group P , Z=2; Ru(C6H2CH3-2,NO2-4,N[O]O-6)Cl(CO)(PPh3)2 (5b), C44H35Cl- N2O5P2Ru·(CH2Cl2)2, a=19.497(3), b=14.502(3), c=19.340(5) Å, β=122.79(1)°, monoclinic, space group Cc, Z=4.  相似文献   


16.
The new tripodal phosphine CH3C{CH2P(m-CF3C6H4)2}3, CF3PPP, was prepared by reacting CH3C(CH2Br)3 with Li+P(m-CF3C6H4)2, the latter being best obtained by adding Li+NiPr2 to PH(m-CF3C6H4)2. The rhodium complexes [RhCl(CO)(CF3PPP)], [Rh(LL)(CF3PPP)](CF3SO3) (LL = 2 CO or NBD), [RhX3(CF3PPP)], [RhX(MeCN)3(CF3PPP)](CF3SO3)2 (X = H and Cl), [RhCl2(MeCN)(CF3PPP)](CF3SO3) and [Rh(MeCN)3(CF3PPP)](CF3SO3)3 were prepared and characterized. The X-ray crystal structure of [Rh(NBD)(CF3PPP)](CF3SO3) is reported. The lower oxygen sensitivity of the CF3PPP rhodium(I) complexes, relative to the corresponding species with the parent ligand CH3C(CH2PPh2)3, is attributed to the higher effective nuclear charge on the metal centers caused by the presence of the six CF3 substituents on the terdentate phosphine. A similar effect may be responsible for the easier hydrolysis of the CF3PPP-containing, cationic rhodium(III) complexes relative to the corresponding compounds of the parent ligand.  相似文献   

17.
Manganese tricarbonyl complexes (η5-C5H4CH2CH2Br)Mn(CO)3 (3) and (η5-C5H4CH2CH2I)Mn(CO)3 (4), with an alkyl halide side chain attached to the cyclopentadienyl ligand, were synthesized as possible precursors to chelated alkyl halide manganese complexes. Photolysis of 3 or 4 in toluene, hexane or acetone-d6 resulted in CO dissociation and intramolecular coordination of the alkyl halide to manganese to produce (η51-C5H4CH2CH2Br)Mn(CO)2 (5) and (η51-C5H4CH2CH2I)Mn(CO)2 (6). Low temperature NMR and IR spectroscopy established the structures of 5 and 6. Photolysis of 3 in a glass matrix at 91 K demonstrated CO release from manganese. Low temperature NMR spectroscopy established that the coordinated alkyl halide complexes are stable to approximately −20°C.  相似文献   

18.
Preparations by the high dilution method are reported for seven macrocyclic thioether-esters and thioether-thioesters (L1–;L7). Yields in these reactions between thiodiglycolyl dichloride and appropriate ,ω-diols or dithiols range from 10 to 51%. The compounds are characterized by 1H and 13C NMR, IR and high resolution mass spectroscopy. They react with salts of Pd(II), Pt(II) and Ag(I) to form complexes of which MX2·L2, (M = Pt, X = Cl; M = Pd, X = Cl, Br, I, SCN), [Pd(L2)2][CF3SO3]2·H2O and [Ag(L5)2][CF3SO3]·C2H5OH have been isolated and characterized by elemental analysis, IR and NMR spectroscopy. NMR spectra indicate reversible dissociation of the ligand occurs in dimethyl sulfoxide solvent for PdCl2·L2 but not for the Pt analogue. For PtCl2·L2, spectra indicate that the ligand is undergoing a conformational ‘wag’ about its pair of equivalent sulfurs. These remain bound to the metal while the unique sulfur moves from the apical position of the coordination sphere to a non-coordinated situation. Simultaneously, inversions at the bound sulfurs are occurring.  相似文献   

19.
The syntheses and structures of [Ni(H2O)6]2+[MF6]2− (M = Ti,Zr,Hf) and Ni3(py)12F6·7H2O are reported. The former three compounds are isostructural, crystallizing in the trigonal space group (No. 148) with Z = 3. The lattice parameters are a = 9.489(4), C = 9.764(7) Å, with V = 761(1) Å3 for Ti; a = 9.727(2), C = 10.051(3) Å, with V = 823.6(6) Å3 for Zr; and a = 9.724(3), C = 10.028(4)Å, with V = 821.2(8)Å3 for Hf. The structures consist of discrete [Ni(H2O)6]2+ and [MF6]2− octahedra joined by O---HF hydrogen bond Large single crystals were grown in an aqueous hydrofluoric acid solution. Ni3(py)12F6·7H2O crystallizes in the monoclinic space group I2/a (No. 15) with Z = 4. The lattice parameters are a = 16.117(4), B = 8.529(3), C = 46.220(7) Å, β = 92.46(2)°, and V = 6348(5) Å3. The structure consists of discrete Ni(py)4F2 octahedra linked through H---O---HF and H---O---HO hydrogen bonding interactions. Single c were grown from a (HF)x·pyridine/pyridine/water solution.  相似文献   

20.
Syntheses and C-H bond activation reactions of the novel electrophilic PtII complexes [(tmeda)Pt(CH3)(OEt2)][BAr1], [(tmeda)Pt(CH3)(THF)][BArf], and [(tmeda)Pt(CH3)(NC5F5)][BArf] are described {[BArf] = [(3,5-C6H3(CF3)2)4B]} (tmeda is N,N,N′,N′-tetramethylethylenediamine), [(tmeda)Pt(CH3)(OEt2)][BArf] and [(tmeda)Pt(CH3)(THF)][BArf] are unstable at room temperature, yielding methane and the Fischer carbene PtII hydrides, [(tmeda)Pt(=C(CH3)(OCH2CH3))(H)][BArf] and . The methane liberated from [(tmeda)Pt(CH3)(OEt2-d10)][BArf] consists of an isotopomeric mixture, (CH4, CH3D, CH2D2 and CHD3), indicating a multiple H/D exchange reaction following the C-D activation and prior to methane loss. [(tmeda)Pt(CH3)(THF-d8)][BAr] liberates CH4 and CH3D. Methane-13C, cyclohexane, toluene, and benzene react with [(tmeda)Pt(CH3)(NC5F5)][BArf] to yield methane and new organoplatinum complexes. Deuterated alkanes and arenes react with [(tmeda)Pt(CH3)(NC5F5] [BArf] to give a mixture of methane isotopomers. The relevance of these results to the oxidation of alkanes by aqueous platinum complexes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号