首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transglutaminase 3 (TGase 3), involved in the cross-linking of structural proteins in the epidermis, is activated by limited proteolysis of zymogen into two fragments during keratinocyte differentiation. Using recombinant TGase 3, the N-terminus sequence of the proteolyzed fragment was analyzed. Antibody against the synthetic peptide corresponding to the cleavage site specifically detected the fragment in the mouse forestomach extract.  相似文献   

2.
Epidermal-type Transglutaminase 3 (TGase 3) is a Ca(2+)-dependent enzyme involved in the cross-linking of structural proteins required in the assembly of the cell envelope. We have recently shown that calcium-activated TGase 3, like TGase 2, can bind, hydrolyze, and is inhibited by GTP despite lacking structural homology with other GTP-binding proteins. Here we report the crystal structure determined at 2.0 A resolution of TGase 3 in complex with GMP to elucidate the structural features required for nucleotide recognition. Binding affinities for various nucleotides were found by fluorescence displacement to be as follows: guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) (0.4 microm), GTP (0.6 microm), GDP (1.0 microm), GMP (0.4 microm), and ATP (28.0 microm). Furthermore, we found that GMP binds as a reversible, noncompetitive inhibitor of TGase 3 transamidation activity, similar to GTPgammaS and GDP. A genetic algorithm similarity program (GASP) approach (virtual ligand screening) identified three compounds from the Lead Quest trade mark data base (Tripos Inc.) based on superimposition of GTPgammaS, GDP, and GMP guanine nucleotides from our crystal structures to generate the minimum align flexible fragment. These three were nucleotide analogs without a phosphate group containing the minimal binding motif for TGase 3 that includes a nucleoside recognition groove. Binding affinities were measured as follows: TP349915 (K(d) = 4.1 microm), TP395289 (K(d) = 38.5 microm), TP394305 (K(d) = 1.0 mm). Remarkably, these compounds do not inhibit but instead activate TGase 3 transamidation by about 10-fold. These results suggest that the nucleotide binding pocket in TGase 3 may be exploited to either enhance or inhibit the enzymatic activity as required for different therapeutic approaches.  相似文献   

3.
Tissue transglutaminase (TGase) exhibits both a GTP binding/hydrolytic capability and an enzymatic transamidation activity. Increases in TGase expression and activation often occur in response to stimuli that promote cellular differentiation and apoptosis, yet the signaling mechanisms used by these stimuli to regulate TGase expression and activation and the role of TGase in these cellular processes are not well understood. Retinoic acid (RA) consistently induces TGase expression and activation, and it was shown recently that RA-induced TGase expression was inhibited in NIH3T3 mouse fibroblasts co-stimulated with epidermal growth factor (EGF). Here we investigate whether EGF also antagonized RA-induced TGase expression in breast cancer cells. We found that EGF stimulation affected TGase expression and activation very differently in these cancer cells. Not only did EGF fail to block RA-induced TGase expression, but also EGF alone was sufficient to potently up-regulate TGase expression and activation in SKBR3 cells, as well as MDAMB468 and BT-20 cells. Inhibiting phosphoinositide 3-kinase activity severely diminished the ability of EGF and RA to increase TGase protein levels, whereas a constitutively active form of phosphoinositide 3-kinase potentiated the induction of TGase expression by EGF in SKBR3 cells. Because EGF is an established antiapoptotic factor, we examined whether the protection afforded by EGF was dependent on its ability to up-regulate TGase activity in SKBR3 and BT-20 cells. Exposure of cells to a TGase inhibitor or expression of a dominant-negative form of TGase potently inhibited EGF-mediated protection from doxorubicin-induced apoptosis. Moreover, expression of exogenous TGase in SKBR3 cells mimicked the survival advantage of EGF, suggesting that TGase activation is necessary and sufficient for the antiapoptotic properties of EGF. These findings indicate for the first time that EGF can induce TGase expression and activation in human breast cancer cells and that this contributes to their oncogenic potential by promoting chemoresistance.  相似文献   

4.
Retinoic acid (RA) is a potent activator of tissue transglutaminase (TGase) expression, and it was recently shown that phosphoinositide 3-kinase (PI3K) activity was required for RA to increase TGase protein levels. To better understand how RA-mediated TGase expression is regulated, we considered whether co-stimulation of NIH3T3 cells with RA and epidermal growth factor (EGF), a known activator of PI3K, would facilitate the induction or increase the levels of TGase expression. Instead of enhancing these parameters, EGF inhibited RA-induced TGase expression. Activation of the Ras-ERK pathway by EGF was sufficient to elicit this effect, since continuous Ras signaling mimicked the actions of EGF and inhibited RA-induced TGase expression, whereas blocking ERK activity in these same cells restored the ability of RA to up-regulate TGase expression. However, TGase activity is not antagonistic to EGF signaling. The mitogenic and anti-apoptotic effects of EGF were not compromised by TGase overexpression, and in fact, exogenous TGase expression promoted basal cell growth and resistance to serum deprivation-induced apoptosis. Moreover, analysis of TGase expression and GTP binding activity in a number of cell lines revealed high basal TGase GTP binding activity in tumor cell lines U87 and MDAMB231, indicating that constitutively active TGase may be a characteristic of certain cancer cells. These findings demonstrate that TGase may serve as a survival factor and RA-induced TGase expression requires the activation of PI3K but is antagonized by the Ras-ERK pathway.  相似文献   

5.
Epidermal-type transglutaminase (TGase 3) is devoid of GTPase activity, but its TGase activity is inhibited by GTP as in the case of tissue-type TGase (TGase 2). In addition, the inhibition was not affected by the presence of higher concentrations of Ca ion. These results indicate that GTP interacts with TGase 3 in a manner different from its action on TGase 2.  相似文献   

6.
Transglutaminase (TGase) 2 is a ubiquitously expressed enzyme that modifies proteins by cross-linking or polyamination. An aberrant activity of TGase 2 has implicated its possible roles in a variety of diseases including age-related cataracts. However, the molecular mechanism by which TGase 2 is activated has not been elucidated. In this report, we showed that oxidative stress or UV irradiation elevates in situ TGase 2 activity. Neither the expression level nor the in vitro activity of TGase 2 appeared to correlate with the observed elevation of in situ TGase 2 activity. Screening a number of cell lines revealed that the level of TGase 2 activation depends on the cell type and also the environmental stress, suggesting that unrecognized cellular factor(s) may specifically regulate in situ TGase 2 activity. Concomitantly, we observed that human lens epithelial cells (HLE-B3) exhibited about 3-fold increase in in situ TGase 2 activity in response to the stresses. The activated TGase 2 catalyzed the formation of water-insoluble dimers or polymers of alphaB-crystallin, betaB(2)-crystallin, and vimentin in HLE-B3 cells, providing evidence that TGase 2 may play a role in cataractogenesis. Thus, our findings indicate that in situ TGase 2 activity must be evaluated instead of in vitro activity to study the regulation mechanism and function of TGase 2 in biological and pathological processes.  相似文献   

7.
Tissue transglutaminase (TGase) is a dual function enzyme that couples an ability to bind GTP with transamidation activity. Retinoic acid (RA) consistently induces TGase expression and activation, and it was recently shown that increased TGase expression protected cells from apoptosis. To better understand how RA regulates TGase, we considered whether RA employed pro-survival signaling pathways to mediate TGase expression and activation. It was found that RA stimulation of NIH3T3 cells activated ERK and phosphoinositide 3-kinase (PI3K); however, only PI3K activation was necessary for RA-induced TGase expression. The overexpression of a constitutively active form of PI3K did not induce TGase expression, indicating that PI3K signaling was necessary but not sufficient for TGase expression. The exposure of cells expressing exogenous TGase to the PI3K inhibitor, LY294002, reduced the ability of TGase to be photoaffinity-labeled with [alpha-(32)P]GTP, providing evidence that PI3K regulates the GTP binding activity of TGase as well as its expression. Moreover, cell viability assays showed that incubation of RA-treated cells with LY294002 together with the TGase inhibitor, monodansylcadaverine (MDC), converted RA from a differentiation factor to an apoptotic stimulus. These findings demonstrate that PI3K activity is required for the RA-stimulated expression and GTP binding activity of TGase, thereby linking the up-regulation of TGase with a well established cell survival factor.  相似文献   

8.
Epidermal-type TGase (TGase 3) is involved in the formation of the cornified cell envelope by cross-linking a variety of structural proteins in the epidermis. Unknown proteases activate this enzyme from the zymogen form by limited proteolysis during epidermal differentiation. It has been difficult to isolate sufficient quantities of native enzymes from tissues for biochemical studies of the properties of TGase 3. In this paper, we circumvented these problems by expressing recombinant full-length mouse TGase 3 in a baculovirus system, and purifying it to homogeneity by successive chromatography and HPLC. Treatment of the purified recombinant protein with dispase, a bacterial protease known to activate zymogens, produced activated TGase 3. The migration of TGase 3 zymogen in SDS-polyacrylamide gel electrophoresis was anomalous when the proTGase 3 was pre-incubated with calcium ion. GTP inhibited the enzymatic activity of recombinant TGase 3. Calpain, a calcium-dependent neutral protease, was a candidate protease, but had no effect on the activation of TGase 3 zymogen.  相似文献   

9.
10.
Small proline-rich 1 (SPR1) proteins are important for barrier function in stratified squamous epithelia. To explore their properties, we expressed in bacteria a recombinant human SPR1 protein and isolated native SPR1 proteins from cultured mouse keratinocytes. By circular dichroism, they possess no alpha or beta structure but have some organized structure associated with their central peptide repeat domain. The transglutaminase (TGase) 1 and 3 enzymes use the SPR1 proteins as complete substrates in vitro but in different ways: head domain A sequences at the amino terminus were used preferentially for cross-linking by TGase 3, whereas those in head domain B sequences were used for cross-linking by TGase 1. The TGase 2 enzyme cross-linked SPR1 proteins poorly. Together with our data base of 141 examples of in vivo cross-links between SPRs and loricrin, this means that both TGase 1 and 3 are required for cross-linking SPR1 proteins in epithelia in vivo. Double in vitro cross-linking experiments suggest that oligomerization of SPR1 into large polymers can occur only by further TGase 1 cross-linking of an initial TGase 3 reaction. Accordingly, we propose that TGase 3 first cross-links loricrin and SPRs together to form small interchain oligomers, which are then permanently affixed to the developing CE by further cross-linking by the TGase 1 enzyme. This is consistent with the known consequences of diminished barrier function in TGase 1 deficiency models.  相似文献   

11.
Transglutaminases (TGases) are seven enzymes, cross-linking proteins by gamma-glutamil-epsilon-lysine bonds, four of which are expressed in the skin. A new member of the TGase family, TGase 5, has been identified recently, and in the present study we evaluated its role in keratinocyte differentiation in vitro. In addition to the previously described isoforms, full-length TGase 5 and Delta3 (deletion of exon 3), we identified two new splicing variants, Delta11 and Delta3Delta11 (deletion of exons 11 or 3, 11). We expressed full-length TGase 5, Delta3, Delta11, and Delta3Delta11 isoforms in the keratinocyte and baculovirus systems. The results indicate that both full-length TGase 5 and Delta11 are active, whereas Delta3 and Delta3Delta11 have very low activity. Expression studies show that full-length TGase 5 is induced during the early stages of keratinocyte differentiation and is differently regulated in comparison with the other epidermal TGases. Kinetic and in vitro cross-linking experiments indicate that full-length TGase 5 is very efficient in using specific epidermal substrates (loricrin, involucrin, and SPR3). In keratinocyte expression system, TGase 5 isoforms are retained in an intermediate filament-enriched fraction, suggesting its association with insoluble proteins. Indeed, TGase 5 co-localize with vimentin and it is able to cross-link vimentin in vitro.  相似文献   

12.
13.
Several active transglutaminase (TGase) isoforms are known to be present in human and rodent tissues, at least three of which, namely, TGase 1, TGase 2 (tissue transglutaminase), and TGase 3, are present in the brain. TGase activity is known to be present in the cytosolic, nuclear, and extracellular compartments of the brain. Here, we show that highly purified mouse brain nonsynaptosomal mitochondria and mouse liver mitochondria and mitoplast fractions derived from these preparations possess TGase activity. Western blotting and experiments with TGase 2 knock-out (KO) mice ruled out the possibility that most of the mitochondrial/mitoplast TGase activity is due to TGase 2, the TGase isoform responsible for the majority of the activity ([14C]putrescine-binding assay) in whole brain and liver homogenates. The identity of the mitochondrial/mitoplast TGase(s) is not yet known. Possibly, the activity may be due to one of the other TGase isoforms or perhaps to a protein that does not belong to the classical TGase family. This activity may play a role in regulation of mitochondrial function both in normal physiology and in disease. Its nature and regulation deserve further study.  相似文献   

14.
Transglutaminases (TGase), a family of cross-linking enzymes present in most cell types, are important in events as diverse as cell-signaling and matrix stabilization. Transglutaminase 1 is crucial in developing the epidermal barrier, however the skin also contains other family members, in particular TGase 3. This isoform is highly expressed in the cornified layer, where it is believed to stabilize the epidermis and its reduction is implicated in psoriasis. To understand the importance of TGase 3 in vivo we have generated and analyzed mice lacking this protein. Surprisingly, these animals display no obvious defect in skin development, no overt changes in barrier function or ability to heal wounds. In contrast, hair lacking TGase 3 is thinner, has major alterations in the cuticle cells and hair protein cross-linking is markedly decreased. Apparently, while TGase 3 is of unique functional importance in hair, in the epidermis loss of TGase 3 can be compensated for by other family members.  相似文献   

15.
Transglutaminase 3 (TGase 3) is a member of a family of Ca2+-dependent enzymes that catalyze covalent cross-linking reactions between proteins or peptides. TGase 3 isoform is widely expressed and is important for effective epithelial barrier formation in the assembly of the cell envelope. Among the nine TGase enzyme isoforms known in the human genome, only TGase 2 is known to bind and hydrolyze GTP to GDP; binding GTP inhibits its transamidation activity but allows it to function in signal transduction. Here we present biochemical and crystallographic evidence for the direct binding of GTP/GDP to the active TGase 3 enzyme, and we show that the TGase 3 enzyme undergoes a GTPase cycle. The crystal structures of active TGase 3 with guanosine 5'-O-(thiotriphosphate) (GTPgammaS) and GDP were determined to 2.1 and 1.9 A resolution, respectively. These studies reveal for the first time the reciprocal actions of Ca2+ and GTP with respect to TGase 3 activity. GTPgammaS binding is coordinated with the replacement of a bound Ca2+ with Mg2+ and conformational rearrangements that together close a central channel to the active site. Hydrolysis of GTP to GDP results in two stable conformations, resembling both the GTP state and the non-nucleotide bound state, the latter of which allows substrate access to the active site.  相似文献   

16.
The effects of transglutaminase (TGase) substrates putrescine, dansylcadaverine, spermine, etc., and the TGase inhibitor cystamine were tested on the motility of demembranated mammalian spermatozoa. These products blocked within a few seconds the motility of demembranated reactivated spermatozoa at concentrations ranging from 0.25 to 5 mM. These minimal inhibitory concentrations could be decreased 5–150-fold when TGase substrates and inhibitor were incubated with demembranated spermatozoa for 15 min prior to the addition of Mg·ATP. The inhibition was reversed by higher concentrations of Mg·ATP but none of these TGase substrates or inhibitor could inhibit bull sperm dynein ATPase. TGase activities, as measured by the incorporation of 3H-putrescine into TCA-precipitable proteins, were present in both sperm Triton-soluble and -insoluble fractions. On the other hand, amine acceptor protein substrates for the TGase-catalyzed reaction were present only in the insoluble fraction. The Triton-soluble TGase was similar to the known “tissue” TGases; the Triton-insoluble TGase activity was calcium independent. The same TGase substrates and inhibitor that blocked the motility of reactivated spermatozoa also blocked TGase activities. Linear relationships were observed between the concentrations of these substances required to block sperm motility and those to block TGase activities. These data suggest the involvement of a TGase activity in sperm motility.  相似文献   

17.
Streptomyces transglutaminase (TGase) is an important industrial enzyme that catalyzes cross-linking of proteins. It is secreted as a zymogene and then is activated by proteases under physiological conditions. Although the activation process of TGase has been well investigated, the physiological function of TGase in Streptomyces has not been revealed. In this study, physiological function of TGase from Streptomyces hygroscopicus was found to be involved in differentiation by construction of a TGase gene interruption mutation strain (Δtg). The mutant Δtg showed an absence of differentiation compared with the parent strain. Furthermore, the production of TGase was found to be increased with the extending growth arrest phase of mycelium in submerged cultures. Thus, to enhance yield of TGase, the mycelium differentiation of Streptomyces was regulated via low temperature stress in a 3-L stirred-tank fermenter. The production of TGase increased by 39 % through extending the growth arrest phase for 4 h. This study found that TGase is involved in Streptomyces differentiation and proposed an approach to improve TGase production by regulation of mycelium differentiation in submerged cultures.  相似文献   

18.
Transglutaminase 2 (TGase 2) promotes nuclear factor-κB (NF-κB) activity through depletion of the inhibitory subunit of NF-κB (I-κBα) via protein cross-linking, leading to resolution of inflammation. Increased expression of TGase 2 contributes to inflammatory disease pathogenesis via constitutive NF-κB activation. Conversely, TGase 2 inhibition often reverses inflammation in animal models. The role of TGase 2 in apoptosis remains less clear, as both pro- and anti-apoptotic functions of TGase 2 have been demonstrated under different experimental conditions. Apoptosis is intact in a TGase 2 knock out mouse (TGase2?/?), which is phenotypically normal. However, upon exposure to tumor necrosis factor (TNF)-α-induced apoptotic stress, mouse embryonic fibroblasts (MEFs) from TGase2?/? mice were more sensitive to cell death than MEFs from wild-type (TGase 2+/+) mice. In the current study, to explore the role of TGase 2 in apoptosis, TGase 2-binding proteins were identified by LC/MS. TGase 2 was found to associate with cathepsin D (CTSD). Binding of TGase 2 to CTSD resulted in the depletion of CTSD via cross-linking in vitro as well as in MEFs, leading to decreased levels of apoptosis. Furthermore, cytoplasmic CTSD levels were higher in MEFs from TGase 2?/? mice than in those from TGase 2+/+ mice, as were caspase 3 activation and poly (ADP-ribose) polymerase (PARP) processes. These results suggest that TGase 2, while not previously implicated as a major regulatory factor in apoptosis, may regulate the balance between cell survival and cell death through the modulation of CTSD levels.  相似文献   

19.
Streptomyces transglutaminase (TGase) is secreted as a zymogen (pro-TGase) in liquid cultures and is then processed by the removal of its N-terminal region, resulting in active TGase. To date, there is no report describing TGase (or pro-TGase) secretion in Escherichia coli. In this study, the pro-TGase from Streptomyces hygroscopicus was efficiently secreted by E.?coli BL21(DE3) using the TGase signal peptide or the pelB signal peptide. The secreted pro-TGase was efficiently transformed into active TGase by adding dispase to the culture supernatant of the recombinant strains. Mutational analysis showed that deletion of the first six amino acids of the N-terminal of the pro-region reduced the secretion of pro-TGase, and removal of the next 10 amino acids resulted in the formation of insoluble pro-TGase. These results suggest that the pro-region of TGase is essential for its efficient secretion and solubility in E.?coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号