首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-stranded DNA aptamers specific for antibiotics tetracyclines   总被引:1,自引:0,他引:1  
Tetracyclines (TCs) are a group of antibiotics comprising of a common tetracycline (TET) nucleus with variable X(1) and X(2) positions on 5 and 6 carbon atoms, such as oxytetracycline (OTC) and doxycycline (DOX). In this study, the tetracycline group specific (TGS) ssDNA aptamers were identified by modified SELEX method by employing tosylactivated magnetic beads (TMB) coated with OTC, TET, and DOX, respectively, as targets and counter targets. Twenty TGS-aptamers were selected, of which seven aptamers, designated as T7, T15, T19, T20, T22, T23, and T24, showed high affinity to the basic TET backbone (K(d)=63-483 nM). The specificity of these TGS-aptamers to structural analogues followed the order in which the TCs was employed during SELEX process (OTC>TET>DOX) except aptamer T22, which was highly specific to TET than OTC or DOX. Aptamers that were specific to one target molecule but fail to bind the other structurally related TCs were eliminated during counter selection steps. Three aptamers, T7, T19, and T23 contained palindromic consensus sequence motif GGTGTGG. The remaining TGS-aptamers showed many consensus sequences that are truncated forms of this palindrome forming mirror image or inverted sequences. For example, GTGG or its inverted form, GGTG motif was found in all TGS-aptamers. A consensus sequence motif TGTGCT or its truncated terminal T-residue was found in most TGS-aptamers, which is predicted to be essential for high affinity and group specificity. These TGS-aptamers have potential applications such as target drug delivery, and detection of TCs in pharmaceutical preparations and contaminated food products.  相似文献   

2.
A series of chiral non-racemic dexoxadrol analogues with various substituents in position 4 of the piperidine ring was synthesized and pharmacologically evaluated. Only the enantiomers having (S)-configuration at the 2-position of the piperidine ring and 4-position of the dioxolane ring were considered. Key steps in the synthesis were an imino-Diels-Alder reaction of enantiomerically pure imine (S)-13, which had been obtained from d-mannitol, with Danishefsky's Diene 14 and the replacement of the p-methoxybenzyl protective group with a Cbz-group. It was shown that (S,S)-configuration of the ring junction (position 2 of the piperidine ring and position 4 of the dioxolane ring) and axial orientation of the C-4-substituent ((4S)-configuration) are crucial for high NMDA receptor affinity. 2-(2,2-Diphenyl-1,3-dioxolan-4-yl)piperidines with a hydroxy moiety ((S,S,S)-5, K(i)=28nM), a fluorine atom ((S,S,S)-6, WMS-2539, K(i)=7nM) and two fluorine atoms ((S,S)-7, K(i)=48nM) in position 4 represent the most potent NMDA antagonists with high selectivity against σ(1) and σ(2) receptors and the polyamine binding site of the NMDA receptor. The NMDA receptor affinities of the new ligands were correlated with their electrostatic potentials, calculated gas phase proton affinities (negative enthalpies of deprotonation) and dipole moments. According to these calculations decreasing proton affinity and increasing dipole moment are correlated with decreasing NMDA receptor affinity.  相似文献   

3.
We present an important role of the ratio of affinities in unmodified gold nanoparticles-based colorimetric aptasensor reactions. An affinity ratio, representing the competitive interactions among aptamers, targets, and unmodified gold nanoparticles (umAuNPs), was found to be an important factor for the sensitivity (the performance), where the affinity ratio is the affinity of the aptamer to targets divided by the affinity to umAuNPs (K(dAuNP)/K(dTarget)). In this study, the five different aptamers having different affinity ratios to both umAuNPs and targets are used, and the degree of color change is well correlated with its affinity ratio. This result is verified by using a tetracycline binding aptamer (TBA) showing different affinities to its three derivatives, tetracycline, oxytetracycline and doxycycline. Based on this model, the sensitivity of umAuNPs based colorimetric detection for ibuprofen can be enhanced simply through reducing the ibuprofen binding aptamer's affinity to umAuNP by using bis (p-sulfonatophenyl) phenylphosphine as an AuNP-capping ligand, instead of using the citrate. As a result, a clear color change is observed even at a 20-fold less amount of ibuprofen. This study presents that the performance (detection sensitivity) of umAuNPs-based colorimetric aptasensors could be improved by simply adjusting the affinity ratio of the aptamers to targets and umAuNPs, without knowing the conformational changes of aptamers upon the target binding or needing any modification of aptamer sequences.  相似文献   

4.
Epigenetic modifications of N-terminal histone tails, especially histone H3, are important for the regulation of the target genes in chromatin. Specific methods for detection of these modifications in histone H3?N-terminal peptides are valuable tools for diagnostic and therapeutic purposes. As an alternative to antibodies, RNA aptamers display compatible binding affinities and selectivites against various biologically relevant targets. Systematic evolution of ligands by exponential enrichment (SELEX) was performed against histone H3R8Me2sym. A 14-amino acid peptide that mimics this modified histone tail was prepared in a biotinylated form and 10 selection cycles of SELEX were carried out. This produced 4 aptamers, one of which (clone 1) was observed to have low nanomolar binding affinity (K(d)=12 nM) against the cognate peptide. The affinity of this aptamer is comparable to 2 commercially available antibodies against differently modified histone H3 peptides and it displays a greater selectivity than the antibodies.  相似文献   

5.
A single-stranded DNA (ssDNA) aptamer was successfully developed to specifically bind to nicotinamide phosphoribosyl transferase (Nampt) through systematic evolution of ligands by exponential enrichment (SELEX) and successfully implemented in a gold-interdigitated (GID) capacitor-based biosensor. Surface plasmon resonance (SPR) analysis of the aptamer revealed high specificity and affinity (K(d)=72.52nM). Changes in surface capacitance/charge distribution or dielectric properties in the response of the GID capacitor surface covalently coupled to the aptamers in response to changes in applied AC frequency were measured as a sensing signal based on a specific interaction between the aptamers and Nampt. The limit of detection for Nampt was 1ng/ml with a dynamic serum detection range of up to 50ng/ml; this range includes the clinical requirement for both normal Nampt level, which is 15.8ng/ml, and Nampt level in type 2 diabetes mellitus (T2DM) patients, which is 31.9ng/ml. Additionally, the binding kinetics of aptamer-Nampt interactions on the capacitor surface showed that strong binding occurred with increasing frequency (range, 700MHz-1GHz) and that the dissociation constant of the aptamer under the applied frequency was improved 120-240 times (K(d)=0.3-0.6nM) independent on frequency. This assay system is an alternative approach for clinical detection of Nampt with improved specificity and affinity.  相似文献   

6.
A series of new selective, high affinity A(1)-AdoR agonists is reported. Compound 23 that incorporated a carboxylic acid functionality in the 4-position of the pyrazole ring displayed K(iL) value of 1 nM for the A(1)-AdoR and >5000-fold selectivity over the A(3) and A(2A)-AdoRs. In addition, compound 19 that incorporated a carboxamide functionality in the 4-position of the pyrazole ring displayed subnanomolar affinity for the A(1)-AdoR (K(iL)=0.6 nM) and >600-fold selectivity over the A(3) and A(2A)-AdoRs.  相似文献   

7.
Three different series of 1H-pyrrolopyrimidine-2,4-dione derivatives were designed and synthesized as ligands for the α(1)-adrenergic receptors (α(1)-ARs). A microwave-assisted protocol was developed in order to improve purity and yields of some final products. The majority of the synthesized compounds, tested in binding assays, displayed α(1)-AR affinities in the nanomolar range. Highest affinity values were found in derivatives 10b and 10c (K(i)=1.4 nM for both) whereas compound 10e was endowed with the best profile in term of α(1)-AR affinity (K(i)=2.71 nM) coupled with high selectivity towards 5-HT(1A) receptors (K(i) >10,000). Molecular docking studies were performed on human α(1)-ARs and human 5-HT(1A) receptors in order to rationalize the observed experimental affinity and selectivity; these computational studies helped to clarify molecular requirements for the design of high-selective α(1)-adrenergic ligands.  相似文献   

8.
A series of vesamicol analogues, o-iodo-trans-decalinvesamicol (OIDV) or o-bromo-trans-decalinvesamicol (OBDV), were synthesized and their affinities to vesicular acetylcholine transporter (VAChT) and σ receptors (σ-1, σ-2) were evaluated by in vitro binding assays using rat cerebral or liver membranes. OIDV and OBDV showed greater binding affinity to VAChT (K(i)=20.5±5.6 and 13.8±1.2nM, respectively) than did vesamicol (K(i)=33.9±18.1nM) with low affinity to σ receptors. A saturation binding assay in rat cerebral membranes revealed that [(125)I]OIDV had a single high affinity binding site with a K(d) value of 1.73nM and a B(max) value of 164.4fmol/mg protein. [(125)I]OIDV revealed little competition with inhibitors, which possessed specific affinity to each σ (σ-1 and σ-2), serotonin (5-HT(1A) and 5-HT(2A)), noradrenaline, and muscarinic acetylcholine receptors. In addition, BBB penetration of [(125)I]OIDV was verified in in vivo. The results of the binding studies indicated that OIDV and OBDV had great potential to be VAChT imaging probes with high affinity and selectivity.  相似文献   

9.
Herein we report the synthesis and biological evaluation of some potent and selective A(1) adenosine receptor agonists, which incorporate a functionalised linker attached to an antioxidant moiety. N(6)-(2,2,5,5-Tetramethylpyrrolidin-1-yloxyl-3-ylmethyl)adenosine (VCP28, 2e) proved to be an agonist with high affinity (K(i)=50nM) and good selectivity (A(3)/A(1) > or = 400) for the A(1) adenosine receptor. N(6)-[4-[2-[1,1,3,3-Tetramethylisoindolin-2-yloxyl-5-amido]ethyl]phenyl]adenosine (VCP102, 5a) has higher binding affinity (K(i)=7 nM), but lower selectivity (A(3)/A(1)= approximately 3). All compounds bind weakly (K(i)>1 microM) to A(2A) and A(2B) receptors. The combination of A(1) agonist activity and antioxidant activity has the potential to produce cardioprotective effects.  相似文献   

10.
Ahn JY  Jo M  Dua P  Lee DK  Kim S 《Oligonucleotides》2011,21(2):93-100
RNA and DNA aptamers that bind to target molecules with high specificity and affinity have been a focus of diagnostics and therapeutic research. These aptamers are obtained by SELEX often requiring many rounds of selection and amplification. Recently, we have shown the efficient binding and elution of RNA aptamers against target proteins using a microfluidic chip that incorporates 5 sol-gel binding droplets within which specific target proteins are imbedded. Here, we demonstrate that our microfluidic chip in a SELEX experiment greatly improved selection efficiency of RNA aptamers to TATA-binding protein, reducing the number of selection cycles needed to produce high affinity aptamers by about 80%. Many aptamers were identical or homologous to those isolated previously by conventional filter-binding SELEX. The microfluidic chip SELEX is readily scalable using a sol-gel microarray-based target multiplexing. Additionally, we show that sol-gel embedded protein arrays can be used as a high-throughput assay for quantifying binding affinities of aptamers.  相似文献   

11.
Racemic exo-epiboxidine 3, endo-epiboxidine 6, and the two unsaturated epiboxidine-related derivatives 7 and 8 were efficiently prepared taking advantage of a palladium-catalyzed Stille coupling as the key step in the reaction sequence. The target compounds were assayed for their binding affinity at neuronal alpha4beta2 and alpha7 nicotinic acetylcholine receptors. Epiboxidine 3 behaved as a high affinity alpha4beta2 ligand (K(i)=0.4 nM) and, interestingly, evidenced a relevant affinity also for the alpha7 subtype (K(i)=6 nM). Derivative 7, the closest analogue of 3 in this group, bound with lower affinity at both receptor subtypes (K(i)=50 nM for alpha4beta2 and K(i)=1.6 microM for alpha7) evidenced a gain in the alpha4beta2 versus alpha7 selectivity when compared with the model compound.  相似文献   

12.
The binding constants (K(i) values) of 24 caracurine V and 6 iso-caracurine V analogues for the muscle type of nicotinic ACh receptors (nAChR) from Torpedo californica were determined in a binding assay using (+/-)-[(3)H]epibatidine as a radioligand. The allyl alcohol group present in the iso-caracurine V ring system was found to be essential for high binding affinity. The most potent compounds are the dimethyl and di-(4-nitrobenzyl)-iso-caracurinium V salts 29 (18 nM), and 31 (79 nM), respectively. Compound 29 and the corresponding diallyl analogue 30 (350 nM) exhibited similar binding affinities as the equally substituted neuromuscular-blocking agents toxiferine I (14 nM) and alcuronium (234 nM), respectively. The SAR results were confirmed by QSAR studies, which additionally revealed that the presence of hydrogen-bond acceptor groups close to the quaternary nitrogen, is detrimental for the nicotinic binding affinity. The diallyl- and dimethylcaracurinium V salts 13 and 27, respectively, which are known to be among the most potent allosteric modulators of M(2) receptors (EC(50)=10 and 8nM, respectively), exhibited rather low nicotinic binding affinities for muscle type nAChR (K(i)=1.5 and 5.2 microM, respectively). Such a large difference in affinity suggests that it is possible to develop compounds with high muscarinic allosteric potency and low or negligible affinities for (alpha1)(2)beta1gammadelta nAChR. Additionally, the iso-caracurine V analogues with binding affinities comparable to those of (+)-tubocurarine and alcuronium could become a new class of neuromuscular-blocking agents.  相似文献   

13.
14.
Imidazolidine and 1,4-diazepane analogs of N-(2-benzofuranyl)methyl-N'-(4-alkoxybenzyl)piperazines were prepared to explore the effect of ring contraction and expansion on σ receptor affinity and subtype selectivity within a series of cyclic diamines. In vitro receptor binding assays revealed that all cyclic vicinal diamines possessed affinity and selectivity for σ(1) receptors. The imidazolidines possessed nanomolar σ(1) affinities (K(i)=6.45-53.5nM), and relatively low levels of subtype selectivity (σ(2)/σ(1)=58-237). However, the piperazines and diazepanes achieved picomolar σ(1) interactions, with K(i) ranges of 0.05-10.28 and 0.10-0.194nM, respectively. Moreover, the piperazines and diazepanes showed excellent discrimination over the σ(2) receptor, with σ(1) selectivities of 143-16140 and 220-11542, respectively.  相似文献   

15.
A series of new tetrahydroprotoberberine (THPB) derivatives were designed, synthesized, and tested for their binding affinity towards dopamine (D(1) and D(2)) and serotonin (5-HT(1A) and 5-HT(2A)) receptors. Many of the THPB compounds exhibited high binding affinity and activity at the dopamine D(1) receptor, as well as high selectivity for the D(1) receptor over the D(2), 5-HT(1A), and 5-HT(2A) receptors. Among these, compound 19c exhibited a promising D(1) receptor binding affinity (K(i)=2.53nM) and remarkable selectivity versus D(2)R (inhibition=81.87%), 5-HT(1A)R (inhibition=61.70%), and 5-HT(2A)R (inhibition=24.96%). Compared with l-(S)-stepholidine (l-SPD) (D(1)K(i)=6.23nM, D(2)K(i)=56.17nM), compound 19c showed better binding affinity for the D(1) receptor (2.5-fold higher) and excellent D(2)/D(1) selectivity. Functional assays found compounds 18j, 18k, and 19c are pure D(1) receptor antagonists. These results indicate that removing the C10 hydroxy group and introducing a methoxy group at C11 of the pharmacophore of l-SPD can reverse the function of THPB compounds at the D(1) receptor. These results are in accord with molecular docking studies.  相似文献   

16.
The protein Mop from Haemophilus influenzae is a member of the molbindin family of proteins. Using isothermal titration calorimetry (ITC), Mop was observed to bind molybdate at two distinct sites with a stoichiometry of 8 mol molybdate per Mop hexamer. Six moles of molybdate bound endothermically at high affinity sites (K(a)=8.5 x 10(7)M(-1)), while 2 mol of molybdate bound exothermically at lower affinity sites (K(a)=3.7 x 10(7)M(-1)). Sulphate was also found to bind weakly at the higher affinity sites. ITC revealed that the affinity of molybdate binding to the endothermic site decreased with increasing pH and was accompanied by the transfer from the buffer to the protein of one proton per Mop monomer. These kinetic and thermodynamic results are interpreted with reference to molbindin crystal structures and data concerning molbindin binding affinities. Mop binds molybdate with high specificity, capacity, and affinity which indicates that Mop has a role as an intracellular molybdate binding protein involved in oxyanion homeostasis.  相似文献   

17.
The type 4 cAMP-specific phosphodiesterases (PDE4s) are Mg(2+)-dependent hydrolases that catalyze the hydrolysis of 3', 5'-cAMP to AMP. Previous studies indicate that PDE4 exists in two conformations that bind the inhibitor rolipram with affinities differing by more than 100-fold. Here we report that these two conformations are the consequence of PDE4 binding to its metal cofactor such as Mg(2+). Using a fluorescence resonance energy transfer (FRET)-based equilibrium binding assay, we identified that L-791,760, a fluorescent inhibitor, binds to the apoenzyme (free enzyme) and the holoenzyme (enzyme bound to Mg(2+)) with comparable affinities (K(d) approximately 30 nM). By measuring the displacement of the bound L-791,760, we have also identified that other inhibitors bind differentially with the apoenzyme and the holoenzyme depending upon their structure. CDP-840, SB-207499, and RP-73401 bind preferentially to the holoenzyme. The conformational-sensitive inhibitor (R)-rolipram binds to the holoenzyme and apoenzyme with affinities (K(d)) of 5 and 300 nM, respectively. In contrast to its high affinity (K(d) approximately 2 microM) and active holoenzyme complex, cAMP binds to the apoenzyme nonproductively with a reduced affinity (K(d) approximately 170 microM). These results demonstrate that cofactor binding to PDE4 is responsible for eliciting its high-affinity interaction with cAMP and the activation of catalysis.  相似文献   

18.
The synthesis and receptor affinity of 6,8-diazabicyclo[3.2.2]nonanes representing conformationally constrained ethylenediamines are described. The Dieckmann analogous cyclization of the (piperazin-2-yl)propionate 9 provided the bicyclononane 10 only, when the first cyclization product was trapped with chlorotrimethylsilane. 10 was stereoselectively transformed into the bicyclic amines 19a,b and amides 22a,b, which were investigated in competition experiments with radioligands for their sigma(1)-, sigma(2)-, kappa-, and mu-receptor affinities. The (2R)-configured dimethylamine 19a showed promising sigma(1)-receptor affinity (K(i)=23.8 nM) and selectivity, whereas the (2S)-configured (dichlorophenyl)acetamide 22b displayed a sigma-receptor binding profile (sigma(1): K(i)=184 nM; sigma(2): K(i)=263 nM) very similar to the binding profile of the atypical antipsychotic BMY-14802 (26).  相似文献   

19.
Structure-activity relationships of 2-phenyl-imidazo[2,1-i]purin-5-ones as ligands for human A(3) adenosine receptors (ARs) were investigated. An ethyl group in the 8-position of the imidazoline ring of 4-methyl-2-phenyl-imidazopurinone leading to chiral compounds was found to increase affinity for human A(3) ARs by several thousand-fold. Propyl substitution instead of methyl at N4 decreased A(3) affinity but increased A(1) affinity leading to potent A(1)-selective AR antagonists. The most potent A(1) antagonist of the present series was (S)-8-ethyl-2-phenyl-4-propyl-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one (S-3) exhibiting a K(i) value of 7.4 nM at rat A(1) ARs and greater than 100-fold selectivity versus rat A(2A) and human A(3) ARs. At human A(1) ARs 2-phenylimidazo[2,1-i]purin-5-ones were generally less potent and therefore less A(1)-selective (S-3: K(i)=98 nM). 2-, 3-, or 4-Mono-chlorination of the 2-phenyl ring reduced A(3) affinity but led to an increase in affinity for A(1) ARs, whereas di- (3,4-dichloro) or polychlorination (2,3,5-trichloro) increased A(3) affinity. The most potent and selective A(3) antagonist of the present series was the trichlorophenyl derivative (R)-8-ethyl-4-methyl-2-(2,3,5-trichlorophenyl)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one (R-8) exhibiting a subnanomolar K(i) value at human A(3) ARs and greater than 800-fold selectivity versus the other AR subtypes. Methylation of 4-alkyl-2-phenyl-substituted imidazo[2,1-i]purin-5-ones led exclusively to the N9-methyl derivatives, which exhibited largely reduced AR affinities as compared to the unmethylated compounds. [35S]GTP gamma S binding studies of the most potent 2-phenyl-imidazo[2,1-i]purin-5-ones at membranes of Chinese hamster ovary cells expressing the human A(3) AR revealed that the compounds were inverse agonists at A(3) receptors under standard test conditions. Due to their high A(3) affinity, selectivity, and relatively high water-solubility, 2-phenyl-imidazo[2,1-i]purin-5-ones may become useful research tools.  相似文献   

20.
We recently reported that N-(4-t-butylbenzyl)-N'-[4-(methylsulfonylamino)benzyl] thiourea (2) was a high affinity antagonist of the vanilloid receptor with a binding affinity of K(i)=63 nM and an antagonism of K(i)=53.9 nM in rat VR1 heterologously expressed in Chinese hamster ovary (CHO) cells (Mol. Pharmacol. 2002, 62, 947-956). In an effort to further improve binding affinity and antagonistic potency, we have modified the C-region of the lead 4-t-butylbenzyl group with diverse surrogates, such as araalkyl, alkyl, 4-alkynylbenzyl, indanyl, 3,3-diarylpropyl, 4-alkoxybenzyl, 4-substituted piperazine and piperidine. The lipophilic surrogates, arylalkyl and alkyl, conferred modest decreases in binding affinities and antagonistic potencies; the groups having heteroatoms resulted in dramatic decreases. Our findings indicate that 4-t-butylbenzyl is one of the most favorable groups for high receptor binding and potent antagonism to VR1 in this structural series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号