首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although studies have shown that the gut is capable of being a cytokine-producing organ and that the proinflammatory cytokines TNF-alpha, IL-1beta, and IL-6 are upregulated following the onset of sepsis, it remains unknown whether the gut is indeed the major source of the increased cytokine production under such conditions. To determine this, male rats were subjected to cecal ligation and puncture (CLP, a model of polymicrobial sepsis) or sham operation followed by the administration of normal saline solution subcutaneously (i.e., fluid resuscitation). Systemic and portal blood samples were taken simultaneously at 2, 5, 10, or 20 h after CLP or sham operation. Plasma levels of TNF-alpha, IL-1beta, and IL-6 were determined using an enzyme-linked immunosorbent assay. In additional animals, the small intestine was harvested at 10 h after CLP or sham operation and examined for TNF-alpha, IL-1beta, and IL-6 gene expression by RT-PCR. The results indicate that the levels of TNF-alpha, IL-1beta, and IL-6 in both systemic and portal blood samples were significantly elevated during sepsis with the exception that the increase in IL-1beta was not significant at 2 h after CLP. However, there were no significant differences in the levels of those proinflammatory cytokines between systemic and portal blood at any points after the onset of sepsis. Moreover, there were no significant alterations in the proinflammatory cytokine gene expression in the small intestine at 10 h after CLP. Since the levels of TNF-alpha, IL-1beta, and IL-6 were not significantly increased in portal blood as compared to systemic blood and since there was no upregulation of gene expression for these cytokines, it appears that organs other than the gut are responsible for the upregulated proinflammatory cytokines during polymicrobial sepsis.  相似文献   

2.
Kim TH  Lee SH  Lee SM 《The FEBS journal》2011,278(13):2307-2317
The present study aimed to determine the role of Kupffer cells (KCs) in cytochrome P450 (CYP) isozyme activity and the expression of its gene during polymicrobial sepsis. For ablation of KCs, rats were pretreated with gadolinium chloride (GdCl(3)) at 48 and 24 h before cecal ligation and puncture (CLP). The depletion of KCs was confirmed by measuring the mRNA level of the KC marker gene CD163. Serum aminotransferase levels and lipid peroxidation showed an increase and hepatic glutathione content showed a decrease at 24 h after CLP. These changes were prevented by GdCl(3) pretreatment. Catalytic activities of CYP1A1, 1A2 and 2E1 showed a significant reduction at 24 h after CLP but were prevented by GdCl(3). A reduction in the levels of CYP2E1 protein and CYP2B1 and CYP2E1 mRNA expression was prevented by GdCl(3). Phosphorylation of CYP1A1/1A2 markedly increased 24 h after CLP, which was prevented by GdCl(3). The increased serum level of high mobility group box 1, hepatic level of Toll-like receptors 2 and 4, and inducible nitric oxide synthase protein expression were prevented by GdCl(3). In addition, elevated serum concentrations of tumor necrosis factor-α and interleukin-6, and increased hepatic mRNA levels of tumor necrosis factor-α and interleukin-6 were decreased by depletion of KCs. Our findings suggest that ablation of KCs protects against hepatic drug-metabolizing dysfunction by modulation of the inflammatory response.  相似文献   

3.
Sepsis is a critical inflammatory condition from which numerous patients die due to multiple organ failure and septic shock. The vasoactive hormone adrenomedullin (AM) and its binding protein (AMBP-1) are beneficial in sepsis by abrogating the progression to irreversible shock and decreasing proinflammatory cytokine release. To investigate the anti-inflammatory mechanism, we studied to determine the effect of the AM/AMBP-1 complex on peroxisome proliferator-activated receptor-gamma (PPAR-gamma) expression and activation by using RAW264.7 cells and a rat endotoxemia model. LPS treatment significantly decreased PPAR-gamma expression in vivo and in vitro and was associated with increased TNF-alpha production. Treatment with AM/AMBP-1 for 4 h completely restored PPAR-gamma levels in both models, resulting in TNF-alpha suppression. In a knockdown model using small interfering RNA in RAW264.7 macrophages, AM/AMBP-1 failed to suppress TNF-alpha production in the absence of PPAR-gamma. LPS caused the suppression of intracellular cyclic AMP (cAMP), which was prevented by simultaneous AM/AMBP-1 treatment. Although incubation with dibutyryl cAMP significantly decreased LPS-induced TauNuF-alpha release, it did not alter PPAR-gamma expression. Through inhibition studies using genistein and PD98059 we found that the Pyk-2 tyrosine kinase-ERK1/2 pathway is in part responsible for the AM/AMBP-1-mediated induction of PPAR-gamma and the anti-inflammatory effect. We conclude that AM/AMBP-1 is protective in sepsis due to its vasoactive properties and direct anti-inflammatory effects mediated through both the cAMP-dependent pathway and Pyk-2-ERK1/2-dependent induction of PPAR-gamma.  相似文献   

4.
Polymicrobial sepsis is characterized by an early, hyperdynamic phase followed by a late hypodynamic phase. Adrenomedullin (AM), a vasodilatory peptide, inhibits this transition from the early phase to the late phase. Adrenomedullin binding protein-1 (AMBP-1) enhances AM-mediated activities. The decrease of AMBP-1 levels in late sepsis reduces the vascular response to AM and produces the hypodynamic phase. Studies have indicated that the administration of LPS downregulates AMBP-1 production in the liver. Since hepatocytes are the primary source of AMBP-1 biosynthesis in the liver, we employed a co-culture strategy using hepatocyte and Kupffer cells to determine whether LPS directly or by increasing pro-inflammatory cytokines from Kupffer cells downregulates AMBP-1 production. Hepatocytes and Kupffer cells isolated from rats were co-cultured and treated with LPS for 24 h. LPS significantly attenuated AMBP-1 protein expression in a dose-dependent manner. Since AMBP-1 is basically a secretory protein, cell supernatants from co-culture cells treated with LPS were examined for AMBP-1 protein levels. LPS treatment caused a dose related decrease in AMBP-1 protein secretion. Similarly, LPS treatment produced a significant decrease in AMBP-1 protein expression in hepatocytes and Kupffer cells cultured using transwell inserts. LPS had no direct effect on AMBP-1 levels in cultured hepatocytes or Kupffer cells alone. To confirm that the observed effects in co-culture were due to the cytokines released from Kupffer cells, hepatocytes were treated with IL-1beta or TNF-alpha for 24 h and AMBP-1 expression was examined. The results indicated that both cytokines significantly inhibited AMBP-1 protein levels. Thus, pro-inflammatory cytokines released from Kupffer cells are responsible for downregulation of AMBP-1.  相似文献   

5.
The acute respiratory distress syndrome (ARDS) is a major cause of morbidity after injury. We hypothesized that alveolar macrophage (AMPhi) chemokine and cytokine release after hemorrhage and sepsis is regulated by NF-kappaB and MAPK. Adult male rats underwent soft tissue trauma and hemorrhagic shock (~90 min) followed by crystalloid resuscitation. Sepsis was induced by cecal ligation and puncture (CLP) 20 h after resuscitation. AMPhi were harvested, and TNF-alpha, IL-6, and macrophage inflammatory protein (MIP)-2 release and serum IL-6 and TNF-alpha levels were measured at 5 h after HCLP. Lung tissues were analyzed for activation of NF-kappaB, myeloperoxidase activity, and wet/dry weight ratio. In control animals, AMPhi were stimulated with LPS with or without inhibitors of NF-kappaB and MAPK. Serum TNF-alpha and IL-6 levels and spontaneous AMPhi TNF-alpha and MIP-2 release were elevated (P < 0.05) after HCLP, concomitantly with the development of lung edema and leukocyte activation. Activation of NF-kappaB increased in lungs from the hemorrhage and CLP group compared with shams. Inhibition of NF-kappaB or the upstream MAPK significantly decreased LPS-stimulated AMPhi activation. Because enhanced release of inflammatory mediators by AMPhi may contribute to ARDS after severe trauma, inhibition of intracellular signaling pathways represents a target to attenuate organ injury under those conditions.  相似文献   

6.
This study examined the role of nitric oxide (NO) on the expression of the hepatic vasoregulatory gene during polymicrobial sepsis. Aminoguanidine (AG, 100 mg/kg) or Nomega-nitro-L-arginine methyl ester (L-NAME, 100 mg/kg) was injected intraperitoneally at 0, 3, 6, 10, and 20 h after a cecal ligation and puncture (CLP). The heart rate increased 24 h after the CLP, and this increase was attenuated by L-NAME and further attenuated by AG. The mean arterial pressure in the CLP animals did not change significantly 24 h after the onset of sepsis but was increased after the L-NAME injection. Sepsis increased the serum aminotransferase levels, which were attenuated by AG but augmented by L-NAME. CLP increased the mRNA level of the ET-1 and ETB receptors in the liver. This increase was prevented by AG but augmented by L-NAME. The level of iNOS and HO-1 mRNA expression were increased by CLP, which was prevented by both AG and L-NAME. The level of TNF-alpha and COX-2 mRNA expression increased after CLP, and was attenuated by AG. These results show that iNOS and eNOS are regulated differently in sepsis. While eNOS appears to have a protective role in liver microcirculation, the strong upregulation of iNOS might contribute to a microvascular dysfunction and hepatic injury.  相似文献   

7.
Kim JY  Lee SM 《Life sciences》2004,75(16):2015-2026
The aim of this study was to investigate the effects of ascorbic acid on hepatic vasoregulatory gene expression during polymicrobial sepsis. Rats were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP). Rats received either vehicle (n = 10) or ascorbic acid (AA, 100 mg/kg, n = 10) intravenously immediately after the CLP procedure. Serum aminotransferase levels and hepatic lipid peroxides markedly increased 24 h after CLP and this increase was attenuated by AA treatment. The hepatic concentrations of reduced glutathione decreased in CLP animals. This decrease was inhibited by AA. CLP significantly increased the mRNA level of ET-1 (p < 0.01) and ETB receptor (p < 0.01) in livers; an increase that was prevented by AA treatment. There were no significant changes in ETA mRNA expression among any of the experimental groups. There were significant increases in the mRNA expression of nitric oxide synthases (p < 0.01) and heme oxygenase-1 (p < 0.01) in livers from CLP animals. This increase was prevented by AA treatment. The expression of tumor necrosis factor-alpha and cyclooxygenase-2 mRNAs significantly increased 4.9-fold (p < 0.01) and 4.4-fold (p < 0.01) in livers from CLP animals, respectively. This increase was attenuated by AA treatment. Our data suggest that AA reduces oxidative stress and lipid peroxidation, regulates the hepatic vasoregulatory gene expression in polymicrobial sepsis and thus it could reduce hepatic microvascular dysfunction during sepsis.  相似文献   

8.
Our previous studies have shown that norepinephrine (NE) upregulates proinflammatory cytokines by activating alpha(2)-adrenoceptor. Therefore, modulation of the sympathetic nervous system represents a novel treatment for sepsis. We have also shown that a novel stomach-derived peptide, ghrelin, is downregulated in sepsis and that its intravenous administration decreases proinflammatory cytokines and mitigates organ injury. However, it remains unknown whether ghrelin inhibits sympathetic activity through central ghrelin receptors [i.e., growth hormone secretagogue receptor 1a (GHSR-la)] in sepsis. To study this, sepsis was induced in male rats by cecal ligation and puncture (CLP). Ghrelin was administered through intravenous or intracerebroventricular injection 30 min before CLP. Our results showed that intravenous administration of ghrelin significantly reduced the elevated NE and TNF-alpha levels at 2 h after CLP. NE administration partially blocked the inhibitory effect of ghrelin on TNF-alpha in sepsis. GHSR-la inhibition by the administration of a GHSR-la antagonist, [d-Arg(1),d-Phe(5), d-Trp(7,9),Leu(11)]substance P, significantly increased both NE and TNF-alpha levels even in normal animals. Markedly elevated circulating levels of NE 2 h after CLP were also significantly decreased by intracerebroventricular administration of ghrelin. Ghrelin's inhibitory effect on NE release was completely blocked by intracerebroventricular injection of the GHSR-1a antagonist or a neuropeptide Y (NPY)/Y(1) receptor antagonist. However, ghrelin's downregulatory effect on TNF-alpha release was only partially diminished by these agents. Thus ghrelin has sympathoinhibitory properties that are mediated by central ghrelin receptors involving a NPY/Y1 receptor-dependent pathway. Ghrelin's inhibitory effect on TNF-alpha production in sepsis is partially because of its modulation of the overstimulated sympathetic nerve activation.  相似文献   

9.
Clearance of apoptotic cells is crucial to maintain cellular function under normal and pathological conditions. We have recently shown that administration of immature dendritic cell-derived exosomes to septic animals promotes phagocytosis of apoptotic cells and improves survival by providing milk fat globule epidermal growth factor-factor VIII (MFG-E8). MFG-E8 acts as an opsonin for apoptotic cells to be engulfed by phagocytosis. In the present study we investigated whether the CX(3)C-chemokine fractalkine (CX(3)CL1) promotes apoptotic cell clearance through the induction of MFG-E8 in peritoneal macrophages. Cultured rat peritoneal macrophages (pMphi) and RAW264.7 macrophages were stimulated with LPS and CX(3)CL1. MFG-E8 expression was assessed by Western blot, cytokine secretion was assessed by ELISA, and phagocytosis of apoptotic thymocytes was determined by microscopy. For in vivo studies, cecal ligation and puncture (CLP) was used to induce sepsis in rats and mice. LPS significantly decreased MFG-E8 levels and phagocytosis of apoptotic cells, whereas CX(3)CL1 induced MFG-E8 expression in both nonstimulated and LPS-stimulated pMphi, without affecting TNF-alpha and IL-6 release. Anti-MFG-E8 blocking antibodies completely abrogated the prophagocytic effect of CX(3)CL1. Twenty hours after the induction of sepsis in rats via CLP, plasma CX(3)CL1 levels as well as MFG-E8 production in peritoneal macrophages decreased by 21% and 56%, respectively. Administration of CX(3)CL1 on the other hand induced MFG-E8 and prevented tissue injury. We conclude that CX(3)CL1 induces MFG-E8 in vitro and in vivo and enhances clearance of apoptotic cells in an MFG-E8-dependent manner. These findings suggest a possible novel treatment for patients in sepsis.  相似文献   

10.
11.
Studies have shown that increased gut-derived norepinephrine (NE) release plays an important role in producing hepatocellular dysfunction at the early stage of sepsis. Although the gut has been demonstrated to be the major source of NE in sepsis, it remains unknown whether the increased NE is associated with up-regulation of intestinal NE biosynthesis enzymes such as tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH). To determine this, adult male rats were subjected to sepsis by cecal ligation and puncture (CLP) followed by fluid resuscitation. Small intestinal samples were harvested at 2 h (i.e., early sepsis) or 20 h (late sepsis) after CLP or sham-operation. Protein levels of TH and DBH were determined by Western blot analysis and immunohistochemistry. Their gene expression was assessed by RT-PCR technique. The results indicate that intestinal TH protein levels increased significantly at 2 and 20 h after CLP, while DBH was not altered under such conditions. Immunohistochemical examination shows that both TH and DBH were located in intestinal sympathetic nerve fibers and TH staining was markedly increased in septic animals. TH gene expression increased significantly at 2 h but not at 20 h after CLP, while DBH gene expression was not altered in sepsis. Thus, the increased TH gene and protein expression appears to be responsible for the increased gut-derived NE in sepsis.  相似文献   

12.
13.
Previous studies have shown that adrenomedullin (AM), a potent vasodilatory peptide, is upregulated during sepsis. However, it remains unknown whether the increased AM observed under such conditions is solely due to the elevated levels of circulating lipopolysaccharide (LPS). To determine this, an Alzet micro-osmotic pump, containing a low dose of Escherichia coli LPS or vehicle (sterile normal saline), was implanted in the peritoneal cavity of the normal male adult rat. At 10 h after the pump implantation, samples of blood and small intestine were harvested for the determination of AM by radioimmunoassay. In additional groups, rats were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP). LPS binding agent polymyxin B was administrated intramuscularly at 1 h prior to as well as 5 h after the onset of sepsis. At 10 h after CLP or sham-operation, blood and intestinal samples were harvested and levels of AM were then determined. Plasma levels of LPS were also measured by Limulus amebocyte lysate assay. The results indicate that administration of a low dose of LPS via the peritoneal cavity in normal animals (which did not significantly alter cardiac output, blood pressure or heart rate) markedly increased plasma and intestinal levels of AM. In addition, plasma and tissue levels of AM increased significantly at 10 h after CLP. Administration of polymyxin B, however, attenuated the increase in AM levels under such conditions. Similarly, the increased plasma levels of LPS was significantly reduced by polymyxin B during sepsis. These results, taken together, suggest that the upregulated AM observed during polymicrobial sepsis is at least in part due to the increase in circulating levels of endotoxin.  相似文献   

14.
15.
Myocellular creatine (Cr) uptake is predominantly governed by a sodium-dependent Cr transporter (CreaT) and plays a pivotal role in skeletal muscle energy metabolism. The CreaT belongs to a neurotransmitter transporter family that can be functionally regulated by protein tyrosine kinase-induced tyrosine phosphorylation. The association between myocellular Cr and c-Src-related tyrosine phosphorylation of the CreaT and the influence of oral Cr supplementation on this association were investigated during sepsis. Animals were randomized to receive standard rat chow or standard rat chow with oral Cr supplementation for 4 days followed by cecal ligation and puncture (CLP) or sham operation. Fast-twitch gastrocnemius muscles were harvested 24 h after operation. Myocellular free Cr levels were 70% higher after CLP. Western blotting of the immunoprecipitated CreaT with an anti-phosphotyrosine or anti-phospho-c-Src (Y-416) antibody revealed that tyrosine phosphorylation of the CreaT and tyrosine-phosphorylated c-Src (Tyr(416)) expression in the CreaT-c-Src complex were significantly increased after CLP compared with sham operation. These changes were observed in homogenates and plasma membrane fractions of gastrocnemius muscles. Although oral Cr supplementation increased myocellular free Cr levels equivalently in CLP and sham-operated animals, c-Src-related tyrosine phosphorylation of the CreaT in homogenates and plasma membrane fractions of gastrocnemius muscles was, however, downregulated in Cr-supplemented CLP animals compared with Cr-supplemented sham-operated rats. During sepsis, increased myocellular free Cr levels are associated with enhanced tyrosine phosphorylation of the CreaT, which is likely induced by active c-Src. Oral Cr supplementation downregulates c-Src-related tyrosine phosphorylation of the CreaT. The data suggest that myocellular Cr homeostasis and CreaT activity are tightly regulated and closely related during sepsis.  相似文献   

16.
Our aim was to investigate whether neonatal LPS challenge may improve hormonal, cardiovascular response and mortality, this being a beneficial adaptation when adult rats are submitted to polymicrobial sepsis by cecal ligation and puncture (CLP). Fourteen days after birth, pups received an intraperitoneal injection of lipopolysaccharide (LPS; 100μg/kg) or saline. After 8-12 weeks, they were submitted to CLP, decapitated 4, 6 or 24h after surgery and blood was collected for vasopressin (AVP), corticosterone and nitrate measurement, while AVP contents were measured in neurohypophysis, supra-optic (SON) and paraventricular (PVN) nuclei. Moreover, rats had their mean arterial pressure (MAP) and heart rate (HR) evaluated, and mortality and bacteremia were determined at 24h. Septic animals with neonatal LPS exposure had higher plasma AVP and corticosterone levels, and higher c-Fos expression in SON and PVN at 24h after surgery when compared to saline treated rats. The LPS pretreated group showed increased AVP content in SON and PVN at 6h, while we did not observe any change in neurohypophyseal AVP content. The nitrate levels were significantly reduced in plasma at 6 and 24h after surgery, and in both hypothalamic nuclei only at 6h. Septic animals with neonatal LPS exposure showed increase in MAP during the initial phase of sepsis, but HR was not different from the neonatal saline group. Furthermore, neonatally LPS exposed rats showed a significant decrease in mortality rate as well as in bacteremia. These data suggest that neonatal LPS challenge is able to promote beneficial effects on neuroendocrine and cardiovascular responses to polymicrobial sepsis in adulthood.  相似文献   

17.
Although expression of the fractalkine (CX3CL1, FKN) is enhanced in inflamed tissues, it is detected at steady state in various organs such as the intestine, and its receptor CX3CR1 is highly expressed in resident-type dendritic cells and macrophages. We hypothesized that FKN might regulate the inflammatory responses of these cells. Therefore, murine macrophages were pretreated with FKN and then stimulated with LPS. We found that macrophages pretreated with 0.03 nM FKN but not with 3 nM FKN secreted 50% less TNF-alpha than did cells treated with LPS alone. Cells treated with 0.03 nM FKN and LPS also showed reduced phosphorylation of ERK1/2 and reduced NF-kappaB p50 subunit. Interestingly, the p65 subunit of NF-kappaB was translocated to the nuclei but redistributed to the cytoplasm in the early phase by forming a complex with peroxisome proliferator-activated receptor (PPAR) gamma. Exogenous 15-deoxy-Delta(12,14)-prostaglandin J2, a natural ligand for PPAR-gamma, also induced redistribution of p65 with decreased TNF-alpha secretion after LPS challenge. Pretreatment with 0.03 nM but not 3 nM FKN increased the cellular levels of 15-deoxy-Delta(12,14)-prostaglandin J2 as well as mRNA of PPAR-gamma. Requirement of PPAR-gamma for the effect of 0.03 nM FKN was confirmed by small interfering RNA of PPAR-gamma. In contrast, pretreatment with 3 nM FKN induced higher levels of IL-23 compared with cells pretreated with 0.03 nM FKN and produced TNF-alpha in a CX3CR1-dependent manner. These dose-dependent differential effects of FKN establish its novel role in immune homeostasis and inflammation.  相似文献   

18.
Polymicrobial sepsis induces suppression of macrophage function as determined by a reduction of pro-inflammatory cytokine production upon re-exposure to lipopolysaccharide (LPS) in vitro. We examined whether macrophages were refractory to only LPS challenge or if they were immunoparalyzed and unable to respond to other stimuli such as lipoteichoic acid (LTA) or zymosan (ZYM). This study evaluated the capacity of peritoneal macrophages to produce pro-inflammatory and anti-inflammatory cytokines as well as chemokines following mild or severe sepsis induced by cecal ligation and puncture (CLP). Peritoneal macrophages were isolated 29 h after CLP and challenged with different stimuli. LPS was a more potent stimulus for cytokine induction than LTA or ZYM in both mild and severe sepsis. In mild sepsis, the macrophage cytokine response to LPS was selective and less refractory than in severe sepsis. While production of IL-6 and KC was reduced, secretion of TNF-alpha and MIP-1alpha was enhanced in those cells isolated from mice with mild sepsis. Production of IL-10 and the IL-1 receptor antagonist , MIP-2, and MCP-1 in response to LPS stimulation was equivalent to the amount produced by naive macrophages. Our results indicate that macrophages are not immunoparalyzed during sepsis and may still be induced to secrete some inflammatory mediators.  相似文献   

19.
In order to determine the cortisol response after an immune challenge in the gilthead seabream (Sparus aurata), a cortisol receptor (GR) was cloned, sequenced and its expression determined after lipopolysaccharide (LPS) treatment. To clone the gilthead seabream GR (sbGR), consecutive PCR amplifications and screening of a pituitary cDNA library were performed. We obtained a clone of 4586 bp encoding a 784aa protein. Northern blot analysis from head kidney, heart and intestine revealed that the full length sbGR mRNA was approximately 6.5 Kb. A LPS treatment, used as an acute stress model, was employed to characterise the expression of sbGR and some selected genes involved in the immune response (IL-1beta, TNF-alpha, Mx protein, cathepsin D and PPAR-gamma). All genes were expressed in all tissues examined and responses were tissue and time dependent revealing differential gene expression profiles after LPS administration. Furthermore, analysis of plasma cortisol levels after LPS injection, showed an acute response to inflammatory stress with a significant increase two and six h after injection, recovering to basal levels 12 h post-stress in all LPS concentrations tested.  相似文献   

20.
We have shown that membrane sphingomyelin (SM) is an independent predictor of the variance of fasting plasma insulin (FPI) concentrations and the homeostasis model assessment (HOMA) estimate of insulin resistance in obese women. The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a key component in adipocyte differentiation that may also contribute to the sensitivity of cells to insulin. PPAR-gamma is activated by fatty acids, and the membrane composition may have an impact on the activity of PPAR-gamma and thus on the sensitivity of adipocytes to insulin. We investigated these possible links by determining the phospholipid contents of adipocyte membranes, the mRNA expression of PPAR-gamma, and the FPI and HOMA estimate of insulin resistance in obese women. The mRNA levels of tumor necrosis factor-alpha (TNF-alpha), which is suspected to play a role in insulin resistance and which downregulates PPAR-gamma expression, were also quantified. FPI and HOMA were strongly positively correlated with membrane SM (P < 0.005) and cholesterol (P < 0.005). PPAR-gamma mRNA levels were negatively correlated with FPI (P < 0.05) and HOMA (P < 0.05) and positively correlated with high-density lipoprotein (HDL) cholesterol (P < 0.05), membrane SM (P < 0.05), and cholesterol contents (P < 0.05). TNF-alpha mRNA levels were not correlated with membrane parameters. In stepwise multiple regression analysis, the variations in PPAR-gamma mRNA levels were mainly explained by HDL cholesterol (31.9%) and membrane SM (17.7%). Our study shows that the expression of PPAR-gamma, a major factor controlling adipocyte functions, the lipid composition of the membrane, and insulin sensitivity are probably closely associated in the adipose tissue of obese women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号