首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relationship between secondary succession, soil disturbance, and soil biological activity were studied on a sagebrush community (Artemisia tridentata) in the Piceance Basin of northwestern Colorado, U.S.A. Four levels of disturbance were imposed. I: the vegetation was mechanically removed and as much topsoil as possible was left; 2: the vegetation was mechanically removed and the topsoil scarified to a depth of 30 cm; 3: topsoil and subsoil were removed to a depth of 1 m, mixed and replaced; 4: topsoil and subsoil were removed to a depth of 2 m and replaced in a reverse order. Plant species composition, dehydrogenase and phosphatase enzymatic activity, mycorrhizae infection potentials, and percent organic matter were the variables measured.Treatment 4 drastically altered the pattern of vegetation succession. Treatments 2, 3, and 4 started with Salsola iberica as the dominant species but six years later, 3 and to lesser extent 2 changed in the direction of the species composition of 1, dominated by perennial grasses and perennial forbs. Treatment 4 developed a shrub dominated community. The rate of succession was not decreased by the increased levels of disturbance. Both dehydrogenase enzyme activity and mycorrhizae infection potential (MIP) increased with the change from Salsola iberica to a vegetation dominated by either perennial grasses and forbs or shrubs. The intensity of disturbance in 2, 3, and 4 reduced drastically dehydrogenase activity and MIP, but in six years they recovered to levels comparable to 1. Phosphatase enzyme activity and organic matter were unrelated to species composition but related to treatment and time elapsed. In both cases a significant decrease was observed throughout the six-year period.Nomenclature followsThis study was funded by the United States Department of Energy under Contract No. DE-AS02-76EV04018.  相似文献   

2.
A factorial design 23 × 4 with two levels of Mussorie rockphosphate (RP) with or without vesicular-arbuscular mycorrhizal (VAM) fungi and Bradyrhizobium japonicum, and four treatments of phosphate-solubilizing microbes (PSM) Pseudomonas striata, Bacillus polymyxa, Aspergillus awamori was employed using Patharchatta sandy loam soil (Typic Hapludoll). The observations included mycorrhization, nodulation, grain and straw yield, N and P uptake, available soil P and the PSM population in the soil after crop harvest. Inoculation with endophytes alone caused about 70% root colonization. Addition of rockphosphate or inoculation with PSM, except B. polymyxa, stimulated root infection of native as well as introduced VAM endophytes. Application of RP or inoculation with Bradyrhizobium japonicum, mycorrhizal fungi or phosphate-solubilizing microorganisms significantly increased nodulation, N uptake, available soil P and the PSM population in the soil after the crop harvest. The grain and straw yields did not increase following RP addition or mycorrhizal inoculation but increased significantly after inoculation wit Bradyrhizobium or PSM. In general, the application of RP, Bradyrhizobium, VAM and PSM in combinations of any two or three resulted in significant increases in nodulation, plant growth, grain yield and uptake of N and P. Among the four factor interactions, rockphosphate, Bradyrhizobium and P. striata in the absence of VAM resulted in maximal nodulation, grain and straw yields and N uptake by soybean. The highest P uptake by soybean grain was recorded with Bradyrhizobium and A. awamori in the absence of rockphosphate and VAM. Generally, available soil P and PSM population after crop harvest were not significantly increased by the treatment combinations giving the maximal uptake of nutrients. However, they increased significantly in response to PSM, which produced no significant increase in total uptake of nutrients.Research paper no. 7498  相似文献   

3.
Monoterpenes from three different members of the Anthemideae family, Artemisia tridentata ssp. vaseyana, Artemisia cana ssp. viscidula and Artemisia tridentata ssp. spiciformis were isolated and their structures determined using spectroscopic techniques. A total of 26 irregular and regular monoterpenes were identified. Among these, 20 had previously been identified in the Anthemideae family. Of the remaining six, four were known, but previously unidentified in this family. 2,2-Dimethyl-6-isopropenyl-2H-pyran, 2,3-dimethyl-6-isopropyl-4H-pyran and 2-isopropenyl-5-methylhexa-trans-3,5-diene-1-ol were isolated from both A. tridentata ssp. vaseyana and A. cana ssp. viscidula. The irregular monoterpene 2,2-dimethyl-6-isopropenyl-2H-pyran has a carbon skeleton analogous to the biologically important triterpene squalene. Two additional irregular monoterpenes, artemisia triene and trans-chrysanthemal were isolated from A. cana ssp. viscidula and lavandulol was isolated from A. tridentata ssp. spiciformis. This is the first time a compound possessing a lavandulyl-skeletal type has been found in the Anthemideae family.  相似文献   

4.
We examined 737 plant species from 121 families of angiosperms and four species of pteridophytes for mycorrhizal association. Only 372 species showed infection. Mycorrhizal colonization was recorded in 49% of the total flora. The quantum of colonization ranged from 10% to 90%. In all, 35 species exhibited mycorrhizal colonization higher than 75%. Of the four pteridophytes, Isoetes coromandelina showed mycorrhizal colonization by Entrophospora schenckii and Glomus aggregation in its rhizosphere. For the first time in India, 102 of these species were reported to be mycorrhizal. Glomus fasciculatum (13.8%) and G. aggregation (11%) were prevalent in the rhizosphere soils. Acaulospora foveata (0.2%), A. longula (0.5%) and Glomus hoi (0.9%) were the least represented as mycorrhizal spores. A total of 40 vesicular-arbuscular mycorrhizal fungal species belonging to Acaulospora, Entrophospora, Gigaspora, Glomus, Sclerocystis and Scutellospora were isolated from the rhizosphere soils of different ecosystems.  相似文献   

5.
Summary Inoculation with vesicular-arbuscular (VA) mycorrhizal fungiGlomus fasciculatus, G. mosseae, G. etunicatus orAcaulospora scrobiculatus, increased plant dry weight and seed yields of pot-grown soybean plants in sterilized soil. Inoculation with a mixture ofG. fasciculatus, G. mosseae andG. etunicatus, orG. fasciculatus alone, increased seed yields and other agronomic traits of soybean plants grown in a no-tillage, rice-stubble field.  相似文献   

6.
 Vesicular-arbuscular mycorrhizae (VAM) were common in seedlings of Pseudotsuga menziesii and Tsuga heterophylla grown in a greenhouse soil bioassay in soils collected from the Oregon Coast Range. Although root samples were heavily colonized by ectomycorrhizal fungi (EM), VAM colonization was observed in the cortical cells of both secondary and feeder roots. Vesicles, arbuscules, and hyphae typical of VAM occurred in 48% of 61 P. menziesii and 25% of 57 T. heterophylla seedlings. The ecological significance of VAM presence in the Pinaceae, as well as interactions among VAM, EM, and the plant host, deserve future investigation. Accepted: 16 August 1995  相似文献   

7.
The influence of vesicular-arbuscular mycorrhizae on the growth of seedlings of Caesalpinia eriostachys, Cordia alliodora, Ipomoea wolcottiana and Pithecellobium mangense was investigated in a greenhouse experiment conducted at the Biological Station of Chamela on the Pacific coast of Mexico. Dry biomass production, relative growth rate, root/shoot ratio and mycorrhizal dependency were quantified for 75-day-old seedlings. With the exception of the pioneer species I. wolcottiana, mycorrhizal infection resulted in increases in biomass production, relative growth rate and leaf area. The root/shoot ratios attained for the species, however, did not show a consistent trend with infection. Nevertheless, all species had root/shoot ratios below 1 with infection and only one, Cordia alliodora, had a ratio greater than 1 without infection. The two late successional species from the mature part of the forest, Caesalpinia eriostachys and P. mangense, showed a larger mycorrhizal dependency than the two associated with disturbed environments.  相似文献   

8.
Run-Jin Liu 《Mycorrhiza》1995,5(4):293-297
The development of vesicular-arbuscular mycorrhizal fungi (VAMF): Glomus mosseae (Nicol and Gerd.) Gerdemann and Trappe, Glomus versiforme (Karsten) Berch, Sclerocystis sinuosa Gerdemann and Bakhi and Verticillium dahliae and the effects of the VAMF on the verticillium wilt of cotton (Gossypium hirsutum L. and Gossypium barbadense L.) were studied with paper pots, black plastic tubes and clay pots under natural growth conditions. All of the tested VAMF were able to infect all the cotton varieties used in the present experiment and typical vesicles and arbuscules were formed in the cortical cells of the cotton roots after inoculation. The cap cells, meristem, differentiating and elongating zones of the root tip were found to be colonized by the VAMF. In the case of most V. dahliae infection, the colonization occurred mostly from the root tip up to 2 cm. VAMF and V. dahliae mutually reduced their percentage of infection when inoculated simultaneously. VAMF inoculation reduced the numbers of germinable microsclerotia in the soil of the mycorrhizosphere, while the quantity of VAM fungal spores in the soil was not influenced by infection of with V. dahliae. The % of arbuscule colonization in roots was negatively correlated with the disease grades, while the numbers of vesicles in roots were not. These results suggest that certain vital competition and antagonistic reactions exist between VAMF and V. dahliae. VAMF reduced the incidence and disease indices of verticillium wilt of cotton during the whole growth phase. It is evident that cotton seedling growth was promoted, flowering was advanced, the numbers of flowers and bolls were increased, and this resulted in an increase in the yield of seed cotton. Among the VAMF species, Glomus versiforme was the most effective, and Sclerocystis sinuosa was inferior. So far as the author is aware, such an effect of VAMF on the increase of cotton wilt tolerance/resistance is reported here far the first time.  相似文献   

9.
Summary Drought resistance of wheat (Triticum aestivum L.) as influenced by two vesiculararbuscular mycorrhizal (VAM) fungi,Glomus fasciculatum 10 andGlomus deserticola 19, was evaluated. Soil columns 0.15 m diam. by 1.20 m length were used to reduce the influence of limited rooting space. With initial soil water at 0.5 MPa (0.145 kg kg–1), plants were subjected to low-level water stress throughout the experiment and severe water stress for 24 h at one (55 days after transplanting, Feekes scale 10.1) two (55 and 63 days, Feekes 10.1 and 10.2), or three (55, 63, and 70 days, Feekes 10.1, 10.1, and 10.2) periods. After each stress period, one set of plants was watered and grown to maturity without subsequent water stress. A second set of plants was harvested 1 week after stress.G. fasciculatum-inoculated plants harvested 7 days after stress at 55 days had greater leaf area and leaf, total plant, and root weight than non-VAM plants.G. deserticola-inoculated plants had greater leaf area and leaf weight than non-VAM plants. After stress at 55 and 63 days, leaf area, and leaf and total dry weight were again greater for VAM than for non-VAM plants. However, after stress at 55, 63, and 70 days, differences in aboveground biomass between VAM and non-VAM plants were not significant at P=0.05. Aboveground biomass was not affected by VAM species in plants stressed at 55 or 55 and 63 days, butG. fasciculatum-inoculated plants produced more tillers atter stress at 55 days. When grown to maturity, VAM plants which had undergone three stress periods had twice the biomass and grain yield as non-VAM plants subjected to the same stress. The three stress periods reduced number of heads and kernel numbers of weight of non-VAM plants compared to VAM plants.G. fasciculatum-inoculated plants consistently had increased root weight and rooting depth.Contribution from the Agricultural Research Service, USDA, in cooperation with the Nebr. Agric. Exp. Stn., Univ. Nebr.-Lincoln, Lincoln, Nebr. Published as Paper No. 7571 Journal Series, Nebr. Agric. Exp. Stn.  相似文献   

10.
The effect of P applications and mycorrhizal inoculation on the growth and P nutrition of Anthyllis cytisoides L. (Fabaceae) and Brachypodium retusum (Pers.) Beauv. (Poaceae) was studied. Both plants are widely distributed and well adapted to semi-arid habitats in southern Spain. In all treatments, even with high P doses, mycorrhizal plants showed a higher concentration of phosphorus in their tissues than non-mycorrhizal plants. Mycorrhizal inoculation enhanced the growth of the plants when no P was applied. At high P addition, non-mycorrhizal plants showed higher growth than mycorrhizal plants. The response of each plant type to P application was somewhat different.  相似文献   

11.
Summary Growth and phosphorus uptake of pearl millet (Pennisetum americanum) on an unsterile, phosphorus-deficient soil was improved by the seed inoculation withAzospirillum brasilense or soil inoculation with the vesicular-arbuscular mycorrhizal fungi (Acaulospora,Gigaspora margarita, Glomus fasciculatum). These microorganisms acted synergistically when added simultaneously and the response was significant withAzospirillum brasilense + Gigaspora margarita andAzospirillum brasilense + Glomus fasciculatum combinations over uninoculated control as far as the dry matter content of shoots, root biomass and phosphorus uptake of the millet was concerned.  相似文献   

12.
Phosphorus levels, phenology of roots and shoots, and development of vesicular arbuscular mycorrhizal (VAM) fungi were monitored for two years in natural populations of the perennial alpine herb, Ranunculus adoneus. The purpose of this study was to understand how phosphorus uptake relates to the phenology of R. adoneus and to ascertain whether arbusculus, fungal structures used for nutrient transfer, were present when maximum phosphorus accumulation was occurring. Arbuscules were only present for a few weeks during the growing season of R. adoneus and their presence corresponded with increased phosphorus accumulation in both the roots and shoots of R. adoneus. In addition, phosphorus accumulation and peaks in mycorrhizal development occurred well after plant reproduction and most plant growth had occurred. The late season accumulation of phosphorus by mycorrhizal roots of R. adoneus is stored for use during early season growth and flowering the following spring. In this way R. adoneus can flower before soils thaw and root or mycorrhizal nutrient uptake can occur.  相似文献   

13.
In order to investigate the effect of vesicular-arbuscular mycorrhizae on the chilling resistance of Zea mays, seeds of two hybrids (Pioneer 3902 and Pride 5) were grown in soil inoculated with Glomus mosseae. Germination tests at 10° C and 25° C showed that Pride 5 was more resistant to chilling than Pioneer 3902. Plants grown at 25° C for 6 weeks were given a 1-week chilling treatment at 10° C and the responses of mycorrhizal and nonmycorrhizal plants of the two hybrids were compared. At 10° C, the mycorrhizal plants had greater biomass, carbohydrate, and protein content than the nonmycorrhizal plants.  相似文献   

14.
Summary For examination and recognition of mycorrhizal types, the structure of the hyphal mantle in tangential longitudinal sections has proved to be a valuable feature for investigation. Features of hyphal mantle structure have been used for establishing an identification key. The colour of the hyphal mantle is a helpful additional characteristic, but is not useful as a diagnostic feature because of variations in advanced age and under varying environmental conditions. Rhizomorphs yield good taxonomic characteristics. The Hartig net was uniform for all types examined. When differences were observed they had to be interpreted as different stages of development. Ultrastructural examination revealed further features of mycorrhizal types: namely the shape of septal pores, presence and structure of matrix material in the region of the hyphal mantle and characteristic deposits on cell walls of the hyphae. The ten types presented can be distinguished without any ultrastructural features. As far as the fungal partners involved are concerned, basidiomycetes are clearly dominant. For the first time two basidiomycetes with continuous parenthesomes of their dolipores were found to form ectomycorrhizae. Classification of these fungi with the heterobasidiomycetes is discussed.  相似文献   

15.
This study reports the effect of vesicular-arbuscular mycorrhizal (VAM) fungi on dry matter production by Pachycereus pecten-aboriginum (Engelm.) Britt & Rose, an arborescent cactus of arid and tropical dry forest in Mexico. Seedlings in the presence or absence of VAM fungi were grown in soil between two plates of glass (20 × 30 cm) for 8 months inside growth chambers (30/25° C, 13/11 h day/night and a light intensity of 400 mol m-2 s-1). VAM seedlings had significantly (P<0.01) higher dry matter production (0.418 versus 0.169 g), root/shoot ratios (0.26 versus 0.14) and specific root length (0.65 versus 1.41 mm mg-1) than non-VAM seedlings, suggesting a more efficient exploitation of soil resources by the VAM cacti. The data point to a role for VAM fungi in the establishment, growth, water relations and nutrition of cacti in the arid tropics.  相似文献   

16.
While the biophysics of anemophilous pollen dispersal is understood in principle, empirical studies for testing such principles are rare, particularly in native ecosystems. This paper describes mechanisms underlying the dispersal of Artemisia pollen in a Wyoming sagebrush steppe. The relationships between meteorological variables and pollen flux were defined during the 1999 Artemisia flowering season, and detailed processes at the individual plant level were experimentally tested in the field in 2000. Results indicated that Artemisia pollen presentation is continuous but with early morning maxima. Atmospheric pollen concentrations and potential dispersal rates are controlled at diurnal time scales by individual flower development together with characteristic changes in temperature/humidity and wind speeds, at multi-day scales by frontal weather patterns, and at week-long scales by flowering phenology.  相似文献   

17.
Biotic factors in the rhizosphere and their effect on the growth ofPlantago major L. ssp.pleiosperma Pilger (Great plantain) were studied. In a pot experiment the effect on shoot growth of the addition of 2.5% rhizosphere soil at four levels of phosphate was highly dependent on the availability of phosphate: a promoting effect at low phosphate levels was observed while a reducing effect occurred at higher phosphate levels. As the roots were infected with vesicular-arbuscular mycorrhizal (VAM) fungi in the treatment with rhizosphere soil, two other experiments were set up to separate effects of the indigenous VAM fungi from effects of the total rhizosphere population. The uptake of phosphate and shoot growth was not decreased at higher phosphate availability when VAM inoculum was added alone or in combination with rhizosphere soil. The growth reducing effect of the rhizosphere soil could therefore not be ascribed only to mycorrhizal infection. The results suggest that biotic factors in the rhizosphere soil affect the phosphate uptake ofPlantago major ssp.pleiosperma. This may, under conditions of phosphate limitation, lead to an increase of phosphate stress and, subsequently, a growth reduction. Futhermore, it is concluded that VAM fungi, as part of the rhizosphere population, may compensate this phosphate stress by enhancing the phosphate uptake.Grassland Species Research Group Publication No. 148.  相似文献   

18.
Stein C  Rissmann C  Hempel S  Renker C  Buscot F  Prati D  Auge H 《Oecologia》2009,159(1):191-205
Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15–24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The effect of the non-systemic fungicide thiram on the vesicular-arbuscular mycorrhizal (VAM) symbiosis and on Leucaena leucocephala was evaluated in a greenhouse experiment. In the uninoculated soil treated with P at a level optimal for mycorrhizal activity, mycorrhizal colonization of roots was low, and did not change as the concentration of thiram in the soil increased with the from 0 to 1000 mg/kg. When this soil was inoculated VAM fungus Glomus aggregatum, with VAM colonization was enhanced significantly, but decreased increase in thiram concentration until it coincided with the level observed in the uninoculated soil. Similarly, symbiotic effectiveness was reduced, its expression delayed or completely eliminated with increase in the concentration of thiram. Amending soil to a P level sufficient for non-mycorrhizal host growth fully compensated for thiram-induced loss of VAM activity if the thiram levels did not exceed 125 mg/kg. In soil treated with 50 mg thiram/kg, the toxicity of the fungicide dissipated within 66 days of application. At higher concentrations, the toxicity of the chemical on the mycorrhizal symbiosis appeared to be enhanced.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3716  相似文献   

20.
Water conservation is important for plants that maintain physiologically active foliage during prolonged periods of drought. A variety of mechanisms for water conservation exist including stomatal regulation, foliage loss, above- and below-ground allocation patterns, size of xylem vessels and leaf pubescence. Using the results of a field and simulation study with Artemisia tridentata in the Great Basin, USA, we propose an additional mechanism of water conservation that can be used by plants in arid and semi-arid environments following pulses of water availability. Precipitation redistributed more uniformly in the soil column by roots (hydraulic redistribution of water downward) slows the rate at which this water can subsequently be taken up by plants, thus prolonging water availability during periods of drought. By spreading out water more uniformly in the soil column at lower water potentials following precipitation events, water use is reduced due to lower soil conductivity. The greater remaining soil water and more uniform distribution result in higher plant predawn water potentials and transpiration rates later in the drought period. Simulation results indicate that plants can benefit during drought periods from water storage following both summer rain events (small summer pulses) and overwinter recharge (large spring pulse). This mechanism of water conservation may aid in sustaining active foliage, maintaining root-soil hydraulic connectivity, and increasing survival probability of plants which remain physiologically active during periods of drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号