首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. 1. Using scaffolding and night-vision equipment, we observed fifth and sixth instars of the gypsy moth, Lymantria dispar (L.), on Quercus velutina Lam. in the field.
2. In low-density populations, larvae fed at night and spent the day resting in sheltered sites away from the canopy. In high-density populations, larvae remained in the canopy throughout the day and night, and the amount of feeding during daylight hours increased with population density.
3. Larvae at all population densities used a similar sequence of behaviours and sampled a number of leaves when selecting feeding sites, but larvae in high-density populations switched feeding sites more frequently and fed continuously for shorter periods.
4. Larvae seldom interfered with each other's feeding in any of the populations.
5. When fifth instars were collected from the field and held for 24 h in an electronic feeding monitor, they maintained feeding rhythms that were characteristic of their source populations. Larvae spent more time crawling and less time feeding when offered foliage from high-density rather than low-density populations.  相似文献   

2.
Larvae of Neureclipsis bimaculata (Trichoptera: Polycentropodidae) construct elaborate catchnets in lotic habitats to trap small drifting invertebrate prey. Three populations located at two oligotrophic and one eutrophic site were studied in southern Sweden. Measurements were made of larval weight, net size, seston quality and quantity, and stream velocity.
Neureclipsis larvae alter their net dimensions in response to both velocity and seston concentration. This was determined by comparing net structure and seston at the three locations. Larvae from the eutrophic, high quality seston site attain a significantly (P < 0.001) heavier instar V dry weight, spin a smaller catchnet, filter a volume of water dependent on body size, and slightly alter their catchnet dimensions with velocity. Larvae from the two oligothrophic sites are significantly smaller than those from the eutrophic site, spin a larger net at comparable velocities, filter a larger volume of water at comparable weights, and alter net dimensions with velocity.
Estimates of silk production indicate that the net cost is minimized by spinning a very fine silken strand and by adding silk over a period of time. The cost while large is offset by a large capture rate of prey.
The structure of Neureclipsis nets appears to be the result of a trade-off between maximizing food capture and minimizing hydraulic stress on the net.  相似文献   

3.
1. Larvae of Chlosyne janais (Lepidoptera: Nymphalidae) feed gregariously as early instars on the shrub Odontonema callistachyum (Acanthaceae). During the fourth instar, aggregations break up and larvae feed as solitary individuals.
2. The hypothesis that aggregation increases growth rate was tested by raising larvae on intact plants in the field in different group sizes and measuring their daily growth.
3. There was a striking effect of group size on larval growth whereby larvae more than doubled their weight gain by feeding in large rather than small aggregations on intact plants in the field.
4. This group-feeding advantage was lost altogether if larvae were raised on excised leaves in the laboratory, suggesting that large aggregations may facilitate growth either by inducing a nutrient sink or by overwhelming an induced allelochemical response in the plant.
5. Although larval survival was higher in cages that excluded enemies than in exposed aggregations, there was no influence of group size (experimentally manipulated) on short-term survival in the field. However, there was a weak positive relationship between short-term survival and the size of naturally occurring larval aggregations in the field. These data provide mixed support for the notion that gregarious feeding promotes defence against natural enemies.
6. Although the group defence hypothesis warrants further investigation, feeding facilitation is clearly an important factor contributing to the aggregation behaviour of C. janais larvae.  相似文献   

4.
SUMMARY. 1. Field experiments in a lake outlet stream were carried out on filter-feeding larvae of the caddisfly Hydropsyche siltalai Döhler, to assess whether microhabitat quality, establishment and growth rate is affected by position (upstream—downstream) within a dense aggregation of larvae.
2. Artificial substrates holding high-density aggregations of hydropsychid larvae were used. Marked III-instar H. siltalai larvae were implanted either in the upstream end or in the downstream end of an aggregation and recovered after 17 days.
3. Larvae recovered from the downstream end of an aggregation were smaller than those that had been implanted in the upstream end.
4. Fewer larvae had settled in the downstream end of aggregations compared to the exposed upstream part.
5. Naturally colonizing H. sitalai larvae were, in contrast to implanted larvae, more numerous behind aggregations. Small (first and second instar) Hydropsyche angustipennis (Curtis) and/or H. pellucidula (Curtis) larvae were more numerous in front of aggregations.
6. Current velocities, measured with a microcurrent velocity meter, and density of drifting prey, were significantly lower behind aggregations of hydropsychid larvae. Food availability decreased by about 50% behind aggregations.  相似文献   

5.
SUMMARY 1. False crane fly larvae, Ptychoptera townesi (Diptera), occurred in high densities in a flow-controlled section of stream where fine particulate organic matter (FPOM; 0.45 μm to 1 mm in diameter) had accumulated, but were quite rare both upstream and downstream from the section.
2. In laboratory studies, P. townesi grew only on FPOM less than 250 μm. Larvae consistently grew fastest when fed small particles (0.45–53 μm in diameter).
3. Ptychoptera townesi consumed relatively small amounts (0.002 mg per mg animal dry mass day−1) of FPOM (0.45–53 μm). They had long gut content passage times (greater than 19 h) and relatively high efficiencies of conversion of ingested food to body substance (20.7%). Gut content passage times were variable, and depended partially on the nature of the substrate.
4. False crane fly larvae compacted FPOM into faecal pellets considerably larger in size than particles ingested. They lost mass when allowed to feed on their own faecal material, as well as on faeces greater than 250 μm in diameter produced by shredders. However, they survived and grew on shredder faeces (53–500 μm in diameter) that contained a mixture of smaller particles and particles too large for ingestion.
5. The overall pattern of resource utilization by P. townes involved slow handling of relatively small volumes of food, which probably passed once only through a complex alimentary tract.  相似文献   

6.
1. Ontogenetic shifts in prey choice and predator behaviour can affect food‐web structure. Therefore, it is important to establish if the diet and feeding activity differ between life‐stages of the same species. This hypothesis was tested for second, third, fourth and fifth larval instars of Rhyacophila dorsalis by comparing their diel activity and feeding patterns. Second to fifth instars collected from two streams were used either for gut analyses or for observations of their activity and feeding patterns in three stream tanks. Food was provided in excess; being organisms living in bryophytes on top of a large stone in each tank, augmented by different‐sized larvae of Ephemeroptera, Simuliidae and Chironomidae. As few first instars for gut analyses were found in the field, the diet of first instars reared in the laboratory was also studied. 2. Larvae for gut analyses were taken 1 h before dusk or dawn (n = 50 larvae per instar for each day or night sample). First and second instars fed on the smaller food items with no significant day‐night differences in diet. Gut contents indicated a progressive trend from feeding chiefly at night in third instars to almost exclusively at night in fifth instars. Fourth and fifth instars fed on the larger food items, whilst the diet of the third instar larvae overlapped with that of both the earlier and later instars. 3. Diel activity patterns of single larvae differed between instars but not within each instar (n = 20 larvae per instar). Second instars were active throughout the 24 h, with peaks at dusk, around midnight, dawn and around midday. A similar pattern was shown by third instars but the peak of activity at midday was less than the other three peaks. Prey were captured only during these peaks for both instars. Fourth and fifth instars were most active, and fed only, at night. They used an ambush strategy to capture more active prey at dusk and dawn (e.g. Baetis, Gammarus), and a searching strategy to capture more sedentary prey during the night (e.g. chironomids, simuliids). These experiments provided support for the hypothesis under test. If competition and/or interference occur between instars, then it could be reduced between earlier and later instars because of differences in their diet and diel pattern of feeding activity.  相似文献   

7.
SUMMARY 1. A set of thirty-six permanently installed standpipc traps was used over 2 years to sample caddis larvae at various depths in the gravel bed of an Austrian brook. From a total of 805 specimens caught, the most abundant species were Sericostoma sp. (Sericostomatidae), and the three limnephilids Potamophylax cingulatus Steph., Allgamus auricollis Pictet and Allogamus uncatus Brauer.
2. Sericostoma sp. and Ecclisopteryx guttulata Pictet were collected down to a seditnent depth of l m. In Sericostoma sp., a burrowing species, tiny larvae were found in sediments at 20–60 em, where most of the life cycle is spent; fully grown larvae were mostly collected at a depth of 0–20 em. All instars of Potamophylax cingulatus, Allogamus auricollis and Allogamus uncatus larvae were most abundant at the sediment surface.
3. The horizontal distribution of the most abundant species was studied at the 20 cm depth stratum. Larvae were most abundant in midstream areas.
4. Factors probably responsible for the observed spatial distribution pattern are briefly diseussed.  相似文献   

8.
Abstract.  1. Many moth and butterfly larvae are gregarious early in development, but become solitary in late instars. This ontogenetic variation in behaviour is probably the result of temporal changes in the costs and benefits associated with gregariousness. This study provides observational and experimental evidence that, in one particular moth species, a series of different ecological factors influence larval behaviour at different times during development.
2. Field observations show that young caterpillars of the limocodid Doratifera casta form large aggregations while foraging, but that mature larvae are largely solitary.
3. A field experiment revealed that individual first to third instar larvae in larger groups develop more rapidly, but that group size had no detectable influence on survival. The developmental advantage associated with gregariousness is affected by host plant species, but not by predator exclusion, suggesting that group living in these cryptic early instar larvae promotes feeding facilitation, but does not provide individuals with protection from natural enemies.
4. Laboratory experiments revealed that aposematic fourth instar caterpillars in large groups were less likely to be attacked by a generalist insect predator than those in small groups.
5. Field observations provided no evidence that group living affects body temperature, suggesting that microclimatic factors do not favour gregariousness in this species.
6. It is concluded that gregariousness in D. casta confers at least two different advantages on larvae at different stages early in development, but that these advantages disappear, or are outweighed by costs associated with intraspecific competition, in final instars.  相似文献   

9.
SUMMARY. 1. In a laboratory experiment, larvae of Simulium noelleri were fed on polystyrene latex microspheres of a range of diameters from 5 to 100 μm.
2. Examination of the particle size distribution in the water used in the experiment showed those <13μm to be the most numerous (87% of all particles present). Particles of this size made up 57±2% (mean ±SE)of the total of those in the gut of larvae.
3. Comparison of particle composition in the gut contents and the water of the experiment, using Jacob's index of electivity, showed that larvae of all sizes filtered proportionally fewer of the particles <13 μm and more of those >13μm.
4. As larvae increased in size they became better able to filter the largest particles present (>52μm in diameter) and less well able to filter the smallest particles (<13μm in diameter).
5. Gut retention time was longer in larger larvae.
6. The biology of S. noelleri , which inhabits lake outlets in high population densities, is considered in the light of these findings.  相似文献   

10.
First-, third-, and fifth-instar Epiphyas postvittana (Walker) were exposed to a range of lufenuron concentrations (0-200 ppm) incorporated into synthetic diet and their subsequent development and mortality responses were determined. For all instars the greatest change in mortality response occurred over lufenuron concentrations < or = 3 ppm. However, third and fifth instars displayed an increase in mortality earlier than first instars, and were more sensitive to the lower lufenuron concentrations in this range. Only first and third instars subjected to < or = 2.5 ppm lufenuron survived the 26-d exposure trial. No larvae first exposed to lufenuron as first or third instars survived to pupation if ingesting concentrations of > or = 1 and > or = 3 ppm, respectively. Consumption of lower lufenuron concentrations by these larvae delayed pupation and resulted in pupal deformity. In contrast, fifth instars subjected to 100 ppm were capable of surviving the 26-d trial period and displayed a slower progressive reduction in survival to pupation with increase in lufenuron concentration. Also in contrast to more immature stages, fifth instars exposed to lufenuron developed more rapidly to pupation than larvae not exposed to the insect growth regulator (IGR), and all resulting pupae were normal. Third instars were exposed to sublethal lufenuron concentrations (0-3 ppm) for 4 d and the fourth-instar survivors subjected to a controlled atmosphere cold storage treatment (2% O2, 2% CO2, 0.6 degree C). Larvae ingesting diet containing 0.5 ppm (and to a lesser extent 1 ppm) lufenuron required longer exposure to the postharvest treatment to achieve > or = 95% mortality than larvae not ingesting the IGR. However, the analogous mortality response of larvae exposed to 3 ppm lufenuron was comparable to the control.  相似文献   

11.
Gypsy moth (Lymantria dispar (L.) (Lepidoptera: Lymantriidae)) larvae were reared from hatch on 1.25% N or 3.5% N artificial diet (previous diet) and switched reciprocally to the other diet (current diet) after molting into the second, third, fourth, or fifth instar. The nitrogen concentration of food consumed during previous instars had a strong residual effect on the growth rate in subsequent instars when a diet switch was made during instars two through four, but did not affect growth rate of fifth-instar larvae despite effects on food consumption and utilization. In early instars, larvae reared on 1.25% N artificial diet and then switched to 3.75% N diet had lower mass-adjusted growth rates than larvae continuously reared on 3.75% N diet. Conversely, larvae reared on 3.75% N diet and switched to 1.25% N had higher mass-adjusted growth rates than larvae reared continuously on 1.25% N diet. Relative to larvae previously reared on 1.25% N diet, fifth-instar male larvae previously reared on 3.75% N diet had slightly lower consumption rates, higher net growth efficiency (ECD), and higher gross growth efficiency (ECI). Larvae previously reared on 3.75% N diet tended to have lower food assimilation efficiency (AD) and lower nitrogen assimilation efficiency (AD(N)). Although both previous and current diet nitrogen concentration strongly affected larval growth and food utilization, the interaction term between these was not significant for any response variables except ECD and ECI. Because the interaction term reflects the effect of switching per se, the results indicate that there was a metabolic cost associated with switching, but no inherent net cost or benefit of diet-switching to growth.  相似文献   

12.
1. Many parasitoids can develop successfully in different stages of the same host but the costs of parasitism may vary between the stages. The stage of host attacked has generally been determined when there is no choice, giving a misleading impression of host selection or preference.
2. The rate of parasitism by a solitary endoparasitoid, Venturia canescens , of each larval stage of the Indian meal moth, Plodia interpunctella , was examined with and without a host refuge from parasitism. In addition, when given a choice of host stages, with and without a refuge, the influence of parasitoid age on host selection was examined.
3. Wasps were able to parasitize all except the first instar, but second instars experienced significantly reduced parasitism, in both refuge treatments, compared with third to fifth instars. Whilst parasitoid emergence was always significantly less when all host stages had a refuge, the reduction was only marginally significant when second instars were attacked.
4. When given a choice of second- and fifth-instar larvae, wasps consistently parasitized more fifth instars, both with and without a refuge. Moreover, significantly fewer second-instar larvae were parasitized in the presence of fifth instars than when presented alone to the wasps. This pattern of parasitism was unaffected by the increasing age of the parasitoids.
5. Host selection by V. canescens is discussed in terms of host–parasitoid population dynamics and structure.  相似文献   

13.
Adult females of the larval parasitoidCotesia glomerata (L.) respond to chemical cues associated with feeding damage inflicted on cabbage plants by its host,Pieris brassicae (L.). The use of these infochemicals by the parasitoid during selection of the most suitable host instar was investigated. The parasitoid can successfully parasitize first-instar host larvae, while contacts with fifth-instar larvae are very risky since these caterpillars react to parasitization attempts by biting, spitting, and hitting, resulting in a high probability of the parasitoid being seriously injured or killed. Observations of the locomotor behavior of individual wasps on leaves with feeding damage inflicted by the first and the fifth larval instars and on host silk and frass showed that several cues affect the duration of searching by the parasitoids after reaching a leaf: cues on the margin of the feeding damage and cues in the host frass and silk. Whole frass, silk, and hexane extracts of frass obtained from first-instar elicited parasitoid's searching behavior significantly longer than frass, silk, and hexane extract of frass from the fifth instar. The results demonstrate thatC. glomerata can discriminate between first instars, which are more suitable hosts, and fifth instars ofP. brassicae without contacting the caterpillars, by exploiting instar-related cues.  相似文献   

14.
The diel drift patterns of Chironomidae larvae were investigated in a seventh order section of the Warta River (Central Poland) over two diel cycles during May 1989. Three nets (mesh size 400 m) were installed in a cross section of the Warta River.The estimated drift density was low, but was comparable to that calculated for other large rivers. Spatio-temporal fluctuations in abundance and composition of macroinvertebrate drift, including Chironomidae, were observed with the highest density of drifting macrobenthos recorded near the depositional bank of this river. The ratio benthosdrift indicated differing propensities for of the older instars of a given chironomid taxon to drift. Orthocladiinae larvae were the most abundant subfamily of Chironomidae in drift but not in benthos, reaching up to 73% of the total drifting chironomid larvae. More taxa but fewer individuals (about 20% of the chironomid larvae collected) belonged to the tribe Chironomini, the dominant group in benthos.A major part of chironomid drift collection may represent behavioural drift because the net mesh size used in the Warta River was insufficient to catch the earliest instars (distributional drift). Both at the family and subfamily level chironomid larvae exhibited a distinct nocturnal drift periodicity. Nocturnal periodicity was documented for the dominant species, but due to the low density of many chironomid species, it was impossible to determine their diel drift pattern. Some Chironomidae appeared to be aperiodic.  相似文献   

15.
SUMMARY. 1. The life history, horizontal distribution at the sediment surface and the effect of water flow on the microdistribution of Allogamus auricollis (Pictet, 1834), a case-bearing caddisfly, was investigated in a mountain brook near Lunz, Lower Austria.
2. The average head-width increment per moult was proportionately constant at c . 48%; therefore Dyar's rule was applicable.
3. Allogamus auricollis has a 1-year life cycle with first and second instars most abundant in October. It overwinters primarily as third and fourth instars; pupae were observed in August.
4. Horizontal distribution patterns were investigated by means of bimonthly samples taken along the stream profile. All instars were most abundant near the banks: 86.5% of the total catch 1987–88 were collected 0–1.5 m from the banks.
5. Current speeds were measured at the sites of 2191 larvae (including all instars) and eighty-six pupae. Larvae were most abundant at current speeds of 0–5 cm s−1 (i.e. 86.6% of the total catch 1987–88).
6. Laboratory data on different stages of resistance to drift in A. auricollis (Waringer, 1989) were tested for their application to field conditions. 90% of the total catch 1987–88 preferred areas at the substrate surface where they could remain fully retracted within their cases, unattached, even when the large lateral case surface area was directed towards the water flow. This was also true at times of high discharge where the size of these areas was considerably reduced.  相似文献   

16.
1.  1. It has been accepted that aquatic hyphomycetes colonising submerged leaves increase the nutritional value of leaf detritus and suggested that fungal biomass plays a greater role in the growth of shredders than leaf tissue itself. However, it is not clear what proportion of the nutritional needs of shredders is met by fungal biomass.
2.  We fed Pycnopsyche gentilis larvae with tulip poplar ( Liriodendron tulipifera ) leaf discs colonised by the aquatic hyphomycete, Anguillospora filiformis , which had been radiolabelled to quantify the contribution of fungal carbon to the growth of the shredder at different larval developmental stages. Instantaneous growth rates of larvae on this diet were also estimated.
3.  When provided with fungal-colonised leaves (14–16% fungal biomass), the third and the fifth instar larvae of P. gentilis grew at the rates of 0.061 and 0.034 day−1, respectively, but on a diet of sterile leaves, both larval instars lost weight. The incorporation rates of fungal carbon were 31.6 μg C mg−1 AFDM day−1, accounting for 100% of the daily growth rate of the third instar larvae and 8.6 μg C mg−1 AFDM day−1, accounting for 50% of the daily growth rate of the fifth instar larvae.
4.  These results suggest that leaf material colonised by A. filiformis is a high quality food resource for P. gentilis larvae, and that fungal biomass can contribute significantly to the growth of these larvae. Differences in feeding behaviour and digestive physiology may explain the significantly greater assimilation of fungal biomass by the earlier instar than the final instar. To satisfy their nutritional needs the fifth instar larvae would have to assimilate detrital mass that may have been modified by fungal exoenzymes.  相似文献   

17.
1. Diel diet and vertical distribution patterns of the larval instars of Chaoborus edulis were studied in deep water near the central part of Lake Malawi, Africa.
2. First instar larvae contained very little food in their crops and probably depended on reserves from the egg. Second, third and fourth instars fed on zooplankton and were size-selective in their feeding. The mean size of prey eaten by the three instars was significantly different from each other, with larger instars feeding on larger prey. Smallest available prey was selected against and the upper size of prey was probably constrained by larval gape. Nauplii were not found in any of several thousand larvae examined. Phytoplankton did not form a significant part of the diet.
3. There was a progressive and related increase in diel periodicity in feeding and vertical migrations of successive instar stages. Fourth instars migrated particularly large distances. Such migrations removed them from their zooplankton food supply but avoided predators. A refuge from predators is probably found in or near the permanent zero oxygen boundary, at depths greater than 200 m.  相似文献   

18.
1. Larvae of Simulium noelleri formed dense aggregations (>60 larvae cm?2) at a lake outlet where water passed in a very thin film vertically over wooden planks. Despite the high densities there was sufficient space between larvae to allow water to flow within an aggregation as well as over its surface. 2. Small larvae, occluded within an aggregation, had a faster midgut throughput rate than larger larvae. Both had rates that were similar to those recorded in the literature for a range of habitats and species. The same relationship of throughput rate and larval size was maintained from upstream to downstream across 20cm of an aggregation. 3. Material passed through the midgut of larvae of a given size at a constant rate, indicating that assimilation efficiency of the whole gut contents was low. 4. By colour-banding larval gut contents with fluorescent dye it was possible to demonstrate that faecal pellets are a component of the larval diet in the dense aggregations, especially of small larvae. 5. The abundance of four easily identifiable components of the lake seston were measured from water samples above, and below, a larval aggregation. Particles with a mean diameter of 40 μm, or greater, showed significant reductions in numbers over a stream length of 6cm. Particles of smaller size showed reductions but these were not significant.  相似文献   

19.
The effect of Dipel 4L in artificial diet on feeding behavior, occurrence on a specific diet, and growth of corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), was assessed in short-term tests. Third-, fourth-, and fifth-stage laboratory-reared and feral corn earworm larvae were evaluated. Arenas used for each assay included a non-Dipel diet, Dipel-containing diet, and a combination of the two diets. Larval activity was observed immediately after exposure to diet and at 6 and 18 h for third instars and at 6, 8, and 24 h for fourth and fifth instars, respectively. Feral and laboratory-reared third, fourth, and feral fifth instars avoided Dipel-treated diet when more suitable food was available. Third and fourth instars consistently preferred non-Dipel-containing diet when presented a choice of foods. Corn earworm growth was delayed when larvae were subjected to Dipel-treated diet in choice and no-choice assays compared with larvae provided untreated diet. Larvae presented a choice of diets grew more rapidly than those presented Dipel-treated diets in no choice arenas. Larval feeding frequency and weight gain were superior when larvae were supplied untreated diet than when restricted solely to a Dipel-treated diet. Larvae presented a choice of diets spent more time feeding and fed more frequently on untreated diet than Dipel-treated food. These data indicate that corn earworm presented a choice of Bacillus thuringiensis (Bt) and non-Bt diets may have an increased probability of completing development compared with those restricted to Bt-laced sources.  相似文献   

20.
1. Females of Chlosyne lacinia (Geyer) (Lepidoptera: Nymphalidae, Melitaenae), the bordered patch butterfly, clump eggs in a few large clusters on their host plant, Helianthus annuus. Resulting larvae form sibling aggregations to at least the third instar.
2. The effect of group size on survival and development of C. lacinia larvae was tested experimentally in the field. Larvae developed faster and survived better in larger groups.
3. The effects of various predator guilds (ground-dwelling arthropods, aerial arthropods and avian predators) on survival of larvae was then tested while controlling group size. Ground-dwelling arthropods, mainly fire ants Solenopsis xyloni , reduced larval survival greatly but other solitary invertebrate and avian predators did not alter survival. Group defences and aposematism of C. lacinia larvae are probably ineffective against predatory ants that attack en masse and recruit other colony members.
4. In laboratory experiments, two possible mechanisms underlying faster development of larvae in larger groups were tested: (i) overcoming the physical toughness of host plant leaves, and (ii) social stimulus to feed. Results support the physical toughness hypothesis but not the social stimulus hypothesis.
5. Feeding in large groups by C. lacinia larvae confers multiple advantages, including protection from solitary predators and increased feeding efficiency because grouped, early-instar larvae can initiate feeding wounds on tough sunflower leaves. These advantages of larval gregariousness, coupled with reduced desiccation at the egg stage, apparently outweigh disadvantages of aggregation, such as interference and exploitative competition among larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号