首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrafast transient absorption spectroscopy was used to probe excitation energy transfer and trapping at 77 K in the photosystem I (PSI) core antenna from the cyanobacterium Synechocystis sp. PCC 6803. Excitation of the bulk antenna at 670 and 680 nm induces a subpicosecond energy transfer process that populates the Chl a spectral form at 685--687 nm within few transfer steps (300--400 fs). On a picosecond time scale equilibration with the longest-wavelength absorbing pigments occurs within 4-6 ps, slightly slower than at room temperature. At low temperatures in the absence of uphill energy transfer the energy equilibration processes involve low-energy shifted chlorophyll spectral forms of the bulk antenna participating in a 30--50-ps process of photochemical trapping of the excitation by P(700). These spectral forms might originate from clustered pigments in the core antenna and coupled chlorophylls of the reaction center. Part of the excitation is trapped on a pool of the longest-wavelength absorbing pigments serving as deep traps at 77 K. Transient hole burning of the ground-state absorption of the PSI with excitation at 710 and 720 nm indicates heterogeneity of the red pigment absorption band with two broad homogeneous transitions at 708 nm and 714 nm (full-width at half-maximum (fwhm) approximately 200--300 cm(-1)). The origin of these two bands is attributed to the presence of two chlorophyll dimers, while the appearance of the early time bleaching bands at 683 nm and 678 nm under excitation into the red side of the absorption spectrum (>690 nm) can be explained by borrowing of the dipole strength by the ground-state absorption of the chlorophyll a monomers from the excited-state absorption of the dimeric red pigments.  相似文献   

2.
3.
《BBA》1987,893(2):267-274
The D1-D2-cytochrome b-559 reaction center complex and the 47 kDa antenna chlorophyll protein isolated from spinach Photosystem II were characterized by means of low temperature absorption and fluorescence spectroscopy. The low temperature absorption spectrum of the D1-D2-cytochrome b-559 complex showed two bands in the Qy region located at 670 and 680 nm. On the basis of its absorption maximum and orientation the latter component may be attributed at least in part to P-680, the primary electron donor of Photosystem II. The 47 kDa antenna complex showed absorption bands at 660, 668 and 677 nm and a minor component at 690 nm. The latter transition appeared to be associated with the characteristic low temperature 695 nm fluorescence band of Photosystem II. The 695 nm emission band was absent in the D1-D2 complex, which indicates that it does not originate from the reaction center pheophytin, as earlier proposed. The transition dipole responsible for the main fluorescence at 684 nm from this complex had a parallel orientation with respect to the membrane plane in the native structure. The reaction center preparation contains two spectrally distinct carotenoids with different orientations.  相似文献   

4.
The CD spectrum of photosystem Ⅱ reaction center D1/D2/Cyt b559 complex showed a strong reverse band with positive peak at 680 nm and negative peak at 660 nm in the red absorption region (Qy band). After the D1/D2/Cyt b559 complex was illuminated by strong light, the CD signals of the complex decreased significantly in the red region in which the negative peak still existed but the positive one disappeared. The result suggested that the CD signal of photosystem Ⅱ reaction center D1/D2/Cyt b559 complex not only came from the primary donor, P680, but also from other pigments such as from accessory Chl a or Pheo a.  相似文献   

5.
A study of the absorption and fluorescence characteristics of the D1/D2/cytb-559 reaction centre complex of Photosystem II has been carried out by gaussian decomposition of absorption spectra both at room temperature and 72 K and of the room temperature fluorescence spectrum. A five component fit was found in which the absorption and fluorescence sub-bands could be connected by the Stepanov relation. The photobleaching and light-activated degradation in the dark of long wavelength pigments permitted a further characterisation of the absorption bands. The absorption (fluorescence) maxima of the five bands at room temperature are 660 nm (670 nm), 669 nm (675 nm), 675 nm (681 nm), 680 nm (683 nm), 681 nm (689 nm). A novel feature of this analysis is the presence of two approximately isoenergetic absorption bands near 680 nm at room temperature. The narrower one (FWHM=12.5 nm) is attributed to pheophytin while the broader band (FWHM=23 nm) is thought to be P680. The P680 band width is discussed in terms of homogeneous and site inhomogeous band broadening. The P680 fluorescence has a large Stokes shift (9 nm) and most fluorescence in the 690–700 nm range is associated with this chromophore.The three accessory pigment bands are broad (FWHM=17–24 nm) and the 660 nm gaussian is largely temperature insensitive thus indicating significant site inhomogeneous broadening.The very slight narrowing of the D1/D2/cytb-559 Qy absorption at crytogenic temperatures is discussed in terms of the coarse spectral inhomogeneity associated with the spectral forms and the apparently large site inhomogeneous broadening of short wavelength accessory pigments.  相似文献   

6.
A heterodimer, where zinc pyropheophorbide-a was linked with zinc pyropheophorbide-d through ethylene glycol diester, was prepared, as well as the corresponding homodimers. The synthetic dimers were complexed with methanol in benzene to give folded dimers by mutual Zn...O(Me)-H...O=C13(1) bonding. Such complexes had furthest red (Qy) absorption bands at longer wavelengths than the monomeric species. These red-shifts were ascribable to excitonic coupling of the Qy transition states in the chlorin pi-pi stacking conformer. In the heterodimeric system, a minor band was observed at the shorter wavelength side of the main Qy band. This observation can be explained by an additional contribution of Qy vibronic state to the exciton-coupled states. Based on the experimental results, a pair of chlorophyll(Chl)-d with Chl-a as well as a Chl-d homopair were proposed as dimers in reaction centers of Chl-d dominating cyanobacteria.  相似文献   

7.
In this work the spectroscopic properties of the special low-energy absorption bands of the outer antenna complexes of higher plant Photosystem I have been investigated by means of low-temperature absorption, fluorescence, and fluorescence line-narrowing experiments. It was found that the red-most absorption bands of Lhca3, Lhca4, and Lhca1-4 peak, respectively, at 704, 708, and 709 nm and are responsible for 725-, 733-, and 732-nm fluorescence emission bands. These bands are more red shifted compared to "normal" chlorophyll a (Chl a) bands present in light-harvesting complexes. The low-energy forms are characterized by a very large bandwidth (400-450 cm(-1)), which is the result of both large homogeneous and inhomogeneous broadening. The observed optical reorganization energy is untypical for Chl a and resembles more that of BChl a antenna systems. The large broadening and the changes in optical reorganization energy are explained by a mixing of an Lhca excitonic state with a charge transfer state. Such a charge transfer state can be stabilized by the polar residues around Chl 1025. It is shown that the optical reorganization energy is changing through the inhomogeneous distribution of the red-most absorption band, with the pigments contributing to the red part of the distribution showing higher values. A second red emission form in Lhca4 was detected at 705 nm and originates from a broad absorption band peaking at 690 nm. This fluorescence emission is present also in the Lhca4-N-47H mutant, which lacks the 733-nm emission band.  相似文献   

8.
CP47 is a pigment-protein complex in the core of photosystem II that tranfers excitation energy to the reaction center. Here we report on a spectroscopic investigation of the isolated CP47 complex. By deconvoluting the 77 K absorption and linear dichroism, red-most states at 683 and 690 nm have been identified with oscillator strengths corresponding to approximately 3 and approximately 1 chlorophyll, respectively. Both states contribute to the 4 K emission, and the Stark spectrum shows that they have a large value for the difference polarizability between their ground and excited states. From site-selective polarized triplet-minus-singlet spectra, an excitonic origin for the 683 nm state was found. The red shift of the 690 nm state is most probably due to strong hydrogen bonding to a protein ligand, as follows from the position of the stretch frequency of the chlorophyll 13(1) keto group (1633 cm(-)(1)) in the fluorescence line narrowing spectrum at 4 K upon red-most excitation. We discuss how the 683 and 690 nm states may be linked to specific chlorophylls in the crystal structure [Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) Nature 409, 739-743].  相似文献   

9.
The relative orientation of the pigments of reaction centers from Rhodopseudomonas sphaeroides has been studied by the photoselection technique. A high value (+0.45) of p=(delta AV--delta AH)/(delta AV + delta AH) is obtained when exciting and observing within the 870 nm band which is contradictory to the results of Mar and Gingras (Mar, T. and Gringras, G. (1976) Biochim. Biophys. Acta 440, 609-621) and Shuvalov et al. (Shuvalov, V.A., Asadov, A.A. and Krakhmaleva, I.N. (1977) FEBS Lett. 16, 240-245). It is shown that the low values of p obtained by both groups were erroneous due to excitation conditions. Analysis of the polarization of light-induced changes when exciting with polarized light in single transitions (spheroiden band and bacteriopheophytin Qx bands) enable us to propose a possible arrangement of the pigments within the reaction center. It is concluded that the 870 nm band corresponds to a single transition and is one of the two bands of the primary electron donor (P-870). The second band of the bacteriochlorophyll dimer is centered at 805 nm. The Qx transitions of the molecules constituting the bacteriochlorophyll dimer are nearly parallel (angle less than 25 degrees). The two bacteriopheophytin molecules present slightly different absorption spectra in the near infra-red. Both bacteriopheophytin absorption bands are subject to a small shift under illumination. The angle between the Qy bacteriopheophytin transitions is 55 degrees or 125 degrees. Both Qy transitions are nearly perpendicular to the 870 nm absorption band. Finally, the carotenoid molecules makes an angle greater than 70 degrees with the 870 nm band and the other bacteriochlorophyll molecules.  相似文献   

10.
光系统Ⅱ(PSⅡ)反应中心D_1D_2’cyt b_(559)复合物在强光照射下色素分子受到破坏,导致在红区(Q_y带)的吸光度值及CD信号的下降,而且在光照后的暗放置过程中这种变化继续进行,吸收差光谱的峰位在680nm处,说明受破坏的很可能是原初电子供体P680.在光照后的暗放置过程中,该反应中心复合物的荧先强度继续升高,而且峰位蓝移.所有这些结果表明,在光照的过程中,PSⅡ反应中心D_1/D_2/cytb_(559)复合物很可能有一个相对稳定的反应中间体形成,从而造成在暗放置过程中该反应中心继续受到破坏,也就是说,PSⅡ反应中心D_1/D_2/cytb_(559)复合物的光破坏不是一步反应,而是一个多步反应.  相似文献   

11.
The average, corrected attenuance spectra for both spectral forms of phytochrome in a mature leaf were calculated. Optical masking by chlorophyll together with the detour effect (optical path lengthening effect) due to multiple light scattering led to large changes in both the Qy band shape and wavelength position and the effective intensity of the weak vibrational bands increases. The Pfr/Pr oscillator-strength-ratio between 400-750 nm (0.93 in vitro), becomes 1.63 in a leaf. Thus the dominant absorption form is Pfr. These two values permit calculation of the phytochrome photoequilibrium under conditions of "daylight" illumination both in vitro and in folia. These values are 0.6 and 0.38 respectively. Previous literature estimates for the situation in vitro, based on the 660/730 nm absorption ratio, yielded values close to 0.6. It is demonstrated that this large decrease in the phytochrome photoequilibrium in a leaf has the effect of translating this parameter to a position on the dose (red/far-red light ratio)-response (Pfr/Ptot) plot towards greater sensitivity to changes in the environmental red/far-red ratio. The increased sensitivity factor is almost five-fold for the "daylight" environment and is even greater for the various "shade-light" environments. The approximate time taken to attain photoequilibrium (1/e lifetime) has also been calculated for phytochrome in a leaf in different light environments. For the "daylight" environment the photoequilibration time is approximately 5 s, which increases into the 20-80 s interval under different degrees of "shade light". Thus, despite the strong optical masking by chlorophyll in a mature leaf, the phytochrome photoequilibrium is attained quite rapidly on a physiological time scale.  相似文献   

12.
One- and two-color absorption difference profiles were obtained for BChl a in 1-propanol with approximately 50-fs resolution, using a self-mode-locked Ti:sapphire laser system. Time evolution in the BChl a absorption difference spectrum produces nonexponential photobleaching/stimulated emission (PB/SE) decay kinetics in 800-nm one-color experiments. Nonexponential PB/SE rise behavior occurs for some combinations of pump and probe wavelengths in two-color experiments. Optimized parameters from triexponential fits to the absorption difference profiles depend markedly on the fitting time window; they typically include a minor component with lifetime in the hundreds of fs. Much of the latter component is due to vibrational relaxation and/or intramolecular vibrational redistribution, rather than solvent dielectric relaxation. Measurements of the pump-probe anisotropy indicate that the electronic transition moment for the broad Qy excited state absorption band that overlaps the Qy steady-state absorption spectrum makes an angle of at most 20 degrees from that of the ground-->Qy state transition. No coherent oscillations are observed at early times. Our results bear directly on the interpretation of fs pump-probe experiments on BChl a-containing pigment-protein complexes.  相似文献   

13.
Preparation of a minimum PSII core complex from spinach is described, containing four Mn per reaction center (RC) and exhibiting high O2 evolving activity [approximately 4000 micromol of O2 (mg of chl)(-1) x h(-1)]. The complex consists of the CP47 and CP43 chlorophyll binding proteins, the RC D1/D2 pair, the cytochrome b559 subunits, and the Mn-stabilizing psbO (33 kDa) protein, all present in the same stoichiometric amounts found in the parent PSII membranes. Several small subunits are also present. The cyt b559 content is 1.0 per RC in core complexes and PSII membranes. The total chlorophyll content is 32 chl a and <1 chl b per RC, the lowest yet reported for any active PSII preparation. The core complex exhibits the characteristic EPR signals seen in the S2 state of higher plant PSII. A procedure for preparing low-temperature samples of very high optical quality is developed, allowing detailed optical studies in the S1 and S2 states of the system to be made. Optical absorption, CD, and MCD spectra reveal unprecedented detail, including a prominent, well-resolved feature at 683.5 nm (14630 cm(-1)) with a weaker partner at 187 cm(-1) to higher energy. On the basis of band intensity, CD, and MCD arguments, these features are identified as the exciton split components of P680 in an intact, active reaction center special pair. Comparisons are made with solubilized D1/D2/cyt b559 material and cyanobacterial PSII.  相似文献   

14.
Curve resolution into Gaussian components of the absorption spectra during the varying stages of the Shibata shift in dark grown, irradiated leaves of barley indicates that the chlorophyll a forms formed after irradiation consist of the same main components which have been reported to be present in all hitherto investigated plant materials (peak values in the red region 662, 670, 677 and 683 nm, respectively) but in varying proportions. The spectra during the Shibata shift proper can be satisfied by a mixture of two single components gradually changing their proportions, although a four component system gives a still better fit to the measured absorption curves. It is also shown that curves taken before and after the shift and added together in the appropriate proportions will match the absorption spectrum measured with peak at the isosbestic point (after ca. 15 min at room temperature).  相似文献   

15.
Spectral substructure and ultrafast excitation dynamics have been investigated in the chlorophyll (Chl) a and b Qy region of isolated plant light-harvesting complex II (LHC II). We demonstrate the feasibility of Nonlinear Polarization Spectroscopy in the frequency domain, a novel photosynthesis research laser spectroscopic technique, to determine not only ultrafast population relaxation (T1) and dephasing (T2) times, but also to reveal the complex spectral substructure in the Qy band as well as the mode(s) of absorption band broadening at room temperature (RT). The study gives further direct evidence for the existence of up to now hypothetical "Chl forms". Of particular interest is the differentiated participation of the Chl forms in energy transfer in trimeric and aggregated LHC II. Limits for T2 are given in the range of a few ten fs. Inhomogeneous broadening does not exceed the homogeneous widths of the subbands at RT. The implications of the results for the energy transfer mechanisms in the antenna are discussed.  相似文献   

16.
Using a specially developed phosporoscopic attachment to spectropolarimeter, light induced spectra of circular dichroism (CD) in region 600-750 nm were measured for a pigment protein complex of photosystem 1 (PC-1) isolated from pea chloroplast (chlorophyll : P700 = 40). Minor components at 672 and 678 nm are observed in light induced spectra besides the components of dimer splitting of P700 Qy transition at 691 and 698 nm. Haussian deconvolution of light induced CD spectra of P700 and low temperature CD spectrum of PC-1 indicates that minor components are due to forms of antenna chlorophylls Chl672 and Chl678, rotational strength of that is changed by 2-4% as a result of P700 oxidation. Long term incubation of PC-1 with Triton X-100 inhibits P700 and destroys longwave optically active chlorophyll forms. A strong relation between dichroic density of 693 nm band in CD spectrum of PC-1 and the value of light induced absorption change at 698 nm could be used to determine P700 concentration on the basis of CD spectrum of PC-1. Such a relation shows that Chl693 is an important component of photo-system 1 reaction center. It is suggested that P700 is not an isolated dimer but it is included in the local complex from 8-10 chlorophyll molecules (Chl672, Chl678, Chl686, Chl693).  相似文献   

17.
P Braun  B M Greenberg  A Scherz 《Biochemistry》1990,29(45):10376-10387
A D1-D2-cyt b559 complex with about four attached chlorophylls and two pheophytins has been isolated from photosystem II of the aquatic plant Spirodela oligorrhiza and used for studying the detergent-induced changes in spectroscopic properties and photochemical activity. Spectral analyses (absorption, CD, and fluorescence) of D1-D2-cyt b559 preparations that were incubated with different concentrations of the detergent Triton X-100 indicate two forms of the D1-D2-cyt b559 complexes. One of them is photochemically active and has an absorption maximum at 676 nm, weak fluorescence at 685 nm, and a strong CD signal. The other is photochemically inactive, with an absorption maximum at 670 nm, strong fluorescence at 679 nm, and much weaker CD. The relative concentrations of the two forms determine the overall spectra of the D1-D2-cyt b559 preparation and can be deduced from the wavelength of the lowest energy absorption band: preparations having maximum absorption at 674, 672, or 670.5 nm have approximately 20, 60, or 85% inactive complexes. The active form contains two chlorophylls with maximum absorption at 679 nm and CD signals at 679 (+) and 669 nm (-). These chlorophylls make a special pair that is identified as the primary electron donor P-680. The calculated separation between the centers of these two pigments (using an extended version of the exciton theory) is about 10 A, the pigments' molecular planes are tilted by about 20 degrees, and their N1-N3 axes are rotated by 150 degrees relative to each other. The other two chlorophylls and one of the two pheophytins in the D1-D2-cyt b559 complex have their maximum absorption at 672 nm, while the maximum absorption of the photochemically active pheophytin is probably at 672-676 nm. During incubation with Triton X-100, the photochemically active complex is transformed into an inactive form with first-order kinetics. In the inactive form the maximum absorption of the 679 nm absorbing Chls is blue-shifted to 669 nm. The first-order decay of the photochemical activity suggests that the isolated D1-D2-cyt b559 complex is stable as an aggregate but becomes unstable on dissociation into individual D1-D2-cyt b559 units.  相似文献   

18.
We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.  相似文献   

19.
A spectroscopic characterization of the chlorophyll a (Chl) molecule in the monomeric cytochrome b6f complex (Cytb6f) isolated from the cyanobacterium Synechocystis PCC6803 is presented. The fluorescence lifetime and quantum yield have been determined, and it is shown that Chl in Cytb6f has an excited-state lifetime that is 20 times smaller than that of Chl in methanol. This shortening of the Chl excited state lifetime is not caused by an increased rate of intersystem crossing. Most probably it is due to quenching by a nearby amino acid. It is suggested that this quenching is a mechanism for preventing the formation of Chl triplets, which can lead to the formation of harmful singlet oxygen. Using site-selected fluorescence spectroscopy, detailed information on vibrational frequencies in both the ground and Qy excited states has been obtained. The vibrational frequencies indicate that the Chl molecule has one axial ligand bound to its central magnesium and accepts a hydrogen bond to its 13(1)-keto carbonyl. The results show that the Chl binds to a well-defined pocket of the protein and experiences several close contacts with nearby amino acids. From the site-selected fluorescence spectra, it is further concluded that the electron-phonon coupling is moderately strong. Simulations of both the site-selected fluorescence spectra and the temperature dependence of absorption and fluorescence spectra are presented. These simulations indicate that the Huang-Rhys factor characterizing the electron-phonon coupling strength is between 0.6 and 0.9. The width of the Gaussian inhomogeneous distribution function is 210 +/- 10 cm-1.  相似文献   

20.
Second derivative spectroscopy, computer curve analysis and Stepanov's equation show that the absorbance and fluorescence spectra of primary electron donor in reaction center of Rhodopseudomonas sphaeroides are splitting each into two asymmetric Gaussian components. Their absorption maxima at -196 degrees are 880 and 896 nm and emission maxima-906 and 923 nm, respectively. The absorption spectrum of Bchl-800 splits in the near infrared region into two bands with maxima at 790 and 803 nm. These components are ascribed to an exciton coupling in the two dimers of bacteriochlorophyll in the reaction center. The Qy transition moments of the two bacteriochlorophyll molecules of primary electron donor make an angle of 110 degrees and the angle between two Qy transitions of the pigment in Bchl-800 dimer is 150 degrees. The distance between the centers of chromophores in the dimers is estimated to be 8-11 A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号