首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusion of the three fluorescent probes dichlorofluorescein, carboxyfluorescein, and Lucifer Yellow within the septate median giant axon of the earthworm was monitored using fluorometric methods. A diffusion model was derived that allowed computation of the apparent axoplasmic diffusion coefficient, junctional membrane permeability (septal membranes), and plasma membrane permeability for each probe. Dichlorofluorescein and carboxyfluorescein have similar apparent axoplasmic diffusion coefficients, which were reduced by a factor of eight relative to that predicted from the Einstein-Stokes equation. Nonspecific reversible binding appears to be the major cause of the retarded diffusion coefficients. Junctional membrane permeability for dichlorofluorescein was 4.7 to 73-fold greater than that for carboxyfluorescein. This difference could not be explained on the basis of molecular size but can be explained by the difference in charge between the two molecules. Diffusion coefficients and junctional membrane permeabilities remained constant with time for both dyes. The diffusion of Lucifer Yellow within the axoplasm and permeability through the junctional membranes did not remain constant with time but declined. From this it was inferred that Lucifer Yellow experienced a slow, irreversible binding to axoplasmic elements. All three probes had finite plasma membrane permeabilities.  相似文献   

2.
It is generally thought that nexuses constitute low-resistance pathways between cell interiors in epithelial, neural, muscular, and even connective tissues. However, there are no reliable estimates of the specific resistance of a nexus. The reason for this is that in most cases the surfaces of nexuses between cells are geometrically complex and therefore it has been very hard to accurately estimate nexal areas. However, the septa of the median giant axon have a relatively simple shape. Moreover, in this preparation, it is possible to make a measuring current flow parallel to the axon axis so that from the voltage difference appearing between intracellular electrodes during current flow, the specific septal membrane resistance could be calculated. The average specific nexal resistance obtained was 5.9 ω cm(2) if one assumes that 100 percent of the septum is nexus. The steady state I-V curve for the septum is linear (+/- 10 mV). Placement of electrodes was validated by septa even though the septa were found to be permeable to fluorescein and TEA. Exposure of the axon to hypertonic saline impedes the movement of fluorescein across the septa. By analogy with other tissues it is concluded that hypertonic solutions disrupt nexuses.

A mathematical model was derived which predicts the steady- state transmembrane potential vs. distance from a point source of intracellular current. When the specific nexal membrane resistance is 5.9 ω cm(2), the prediction closely approximates the fall of transmembrane potential vs. distance in an ordinary infinite cable. This is commensurate with the electrophysiological behavior of this multicellular “axon.”

  相似文献   

3.
The effects of a series of thiadicarbocyanine dyes, diSCn(5), in altering the electrical properties of lipid bilayer membranes have been studied as a function of the membrane's intrinsic surface-charge density, the aqueous ionic strength, and the length (n) of the hydrocarbon side chains on the dye. Zero-current conductances, transmembrane potentials, and conductance-voltage relationships induced by these dyes were measured. All dyes studied altered membrane permeability properties; however these alterations were much larger at lower (e.g. 10(-3) M) than at higher (e.g. 10(-1) M) ionic strengths. The data suggest that such perturbations would not be troublesome for most biological preparations in which these dyes have been studied. The mechanisms by which these dyes alter membrane permeabilities vary in going from short-chained to long-chained dyes, the former forming voltage-gated, ion-permeant pores and the latter acting predominantly as anion carriers (forming 2:1 dye-anion complexes). In the case of diSC3(5), the predominant mechanism of altering membrane permeabilities changes in going from neutral to negatively charged membranes and also depends upon aqueous ionic strength and dye concentration.  相似文献   

4.
The leech photoreceptor forms a unicellular epithelium: every cell surrounds an extracellular “vacuole” that is connected to the remaining extracellular space via narrow clefts containing pleated septate junctions. We analyzed the complete structural layout of all septa within the junctional complex in elastic brightfield stereo electron micrographs of semithin serial sections from photoreceptors infiltrated with colloidal lanthanum. The septa form tortuous interseptal corridors that are spatially continuous, and open ended basally and apically. Individual septa seem to be impermeable to lanthanum; interseptal corridors form the only diffusional pathway for this ion. The junctions form no diffusion barrier for the electron-dense tracer Ba2+, but they hinder the diffusion of various hydrophilic fluorescent dyes as demonstrated by confocal laser scanning microscopy (CLSM) of live cells. Even those dyes that penetrate gap junctions do not diffuse beyond the septate junctions. The aqueous diffusion pathway within the septal corridors is, therefore, less permeable than the gap-junctional pore. Our morphological results combined with published electrophysiological data suggest that the septa themselves are not completely tight for small physiologically relevant ions. We also examined, by CLSM, whether the septate junctions create a permeability barrier for the lateral diffusion of fluorescent lipophilic dyes incorporated into the peripheral membrane domain. AFC16, claimed to remain in the outer membrane leaflet, does not diffuse beyond the junctional region, whereas DiIC16, claimed to flip-flop, does. Thus, pleated septate junctions, like vertebrate tight junctions, contribute to the maintenance of cell polarity.  相似文献   

5.
The relationship between polyene antibiotic binding to red cells and their membrane permeabilization was studied using two 14C-labelled amphotericin B (AmB) derivatives: N-fructosyl AmB and N-acetyl methyl ester AmB. The binding kinetics of both derivatives were determined on whole red cells and ghosts. The resulting experimental points were well fitted by monoexponential functions, and the characteristic t1/2 for both derivatives were calculated from these functions. At 2 X 10(-5) M, the half time t1/2 for N-acetyl methyl ester AmB (30.2 min) which forms aqueous aggregates was longer than the t1/2 for the more soluble species N-fructosyl AmB (4.5 min). At lower concentrations (10(-7) M), the t1/2 for N-acetyl methyl ester AmB (6.3 min) in a more solubilized form was close to that of N-fructosyl AmB (7.9 min). These results suggest that only solubilized species bound to red cell membranes and that disaggregation of aggregates is the limiting step in the binding process. The permeabilization of red cell membranes by N-fructosyl AmB, measured as intracellular K+ leak, was not instantaneous and at 10 degrees C external K+ was only detected 20 min after antibiotic addition. In contrast, binding occurs without lag time. Consequently, different mecanisms underlie binding and K+ permeability inducement. Absorption spectroscopy data showed that bound antibiotic is located in the hydrophobic membrane interior and that this penetration of the membrane by AmB derivatives occurs without lag time. Consequently, the lag time occurring for K+ permeability inducement would be due to some steps subsequent to binding and probably located in the hydrophobic membrane interior. This statement is further supported by the observation that the lag time is sensitive to changes in membrane fluidity as shown here by the break between 20 and 30 degrees C in the slope of the Arrhenius plot for the lag time, coinciding with the phase transition in red cell membranes.  相似文献   

6.
F Met-Leu-[3H]Phe and f Nle-Leu-[3H]Phe binding to rabbit peritoneal neutrophils and purified membranes were measured at 4 degrees C silicone oil centrifugation assays, and the results were analyzed by the LIGAND computer program, which permits analysis of ligand binding to multiple classes of binding sites. LIGAND analysis of peptide binding to intact neutrophil indicated that both f Met-Leu-[3H]Phe and f Nle-Leu-[3H]Phe detected two population of binding sites. The apparent Kd values for f Met-Leu-[3H]Phe binding were 1.6 +/- 1.0 X 10(-9) M and 2.2 +/- 0.9 X 10(-8) M, respectively, and 3.1 +/- 0.2 X 10(-9) M and 1.2 +/- 0.6 X 10(-7) M for f Nle-Leu-[3H]Phe. Furthermore, the higher affinity sites detected on whole cells comprised approximately 15 to 30% of the total sites. Two populations of binding sites were also detected on purified neutrophil plasma membranes by both radiolabeled chemotactic peptides. LIGAND analysis of peptide binding to purified membranes yielded apparent Kd values of 5.0 +/- 2.5 X 10(-10) M and 4.8 +/- 0.6 X 10(-8) M for f Met-Leu-[3H]Phe binding, and 4.7 +/- 4.2 X 10(-10) M and 3.0 +/- 1.3 X 10(-8) M for f Nle-Leu-[3H]Phe. The percentage of higher affinity sites detected by f Met-Leu-[3H]Phe and f Nle-Leu-[3H]Phe on purified membranes were 1 to 5% of the total sites detected. These data are consistent either with the existence of two independent binding sites for formylpeptides on rabbit neutrophils or receptor negative cooperativity.  相似文献   

7.
We have previously shown that the antireceptor antibody alpha IR-3 inhibits binding of 125I-somatomedin-C/insulin-like growth factor I (Sm-C/IGF-I) to the 130-kDa alpha subunit of the type I receptor in human placental membranes, but does not block 125I-insulin-like growth factor II (IGF-II) binding to a similar 130-kDa complex in these membranes. To determine whether the 130-kDa 125I-IGF-II binding complex represents a homologous receptor or whether 125I-IGF-II binds to the type I receptor at a site that is not blocked by alpha IR-3, type I receptors were purified by affinity chromatography on Sepharose linked alpha IR-3. The purified receptors bound both 125I-Sm-C/IGF-I and 125I-IGF-II avidly (KD = 2.0 X 10(-10) M and 3.0 X 10(-10) M, respectively). The maximal inhibition of 125I-Sm-C/IGF-I binding by the antibody, however, was 62% while only 15% of 125I-IGF-II binding was inhibited by alpha IR-3. In the presence of 500 nM alpha IR-3, Sm-C/IGF-I bound with lower affinity (KD = 6.5 X 10(-10) M) than IGF-II (KD = 4.5 X 10(-10) M) and IGF-II was the more potent inhibitor of 125I-Sm-C/IGF-I binding. These findings suggest that the type I receptor contains two different binding sites. The site designated IA has highest affinity for Sm-C/IGF-I and is blocked by alpha IR-3. Site IB has higher affinity for IGF-II than for Sm-C/IGF-I and is not blocked by alpha IR-3.  相似文献   

8.
A simple centrifugation technique has been developed to study the interaction of human coagulation Factors IXa and X with phospholipid membranes. In the presence of Ca2+, equimolar phosphatidylserine/phosphatidylcholine membranes form tight complexes with Factor X (KD = 2.8 X 10(-8) M); the KD is independent of the phospholipid concentration. Binding sites are available for about 2 mmol of Factor X/mol of phospholipid. Factor IXa has a slightly higher affinity for the phospholipid membrane (KD = 1.2 X 10(-8)M), and competes with Factor X for binding. The experimentally observed competition between Factor X and Factor IXa is in agreement with a model that describes the binding of two distinct ligands to a single class of independent binding sites.  相似文献   

9.
The specific binding of 125I-human choriogonadotropin (hCG) to plasma membranes, nuclear membranes, lysosomes, rough endoplasmic reticulum, heavy golgi, and medium and light golgi of bovine corpora lutea was dependent on the amount of protein, 125I-hCG concentration and incubation time. The bound hormone in all the organelles was able to rebind to fresh corresponding organelles. Scatchard analysis revealed a homogenous population of gonadotropin binding sites in plasma membrane, rough endoplasmic reticulum, heavy golgi, and medium and light golgi, whose binding affinities (Kd = 8.6-11.0 X 10(-11) M) were similar but whose number of available gonadotropin binding sites varied. Scatchard analyses of nuclear membranes and lysosome binding, on the other hand, were heterogenous (Nuclear membranes, 11 and 23 X 10(-11) M lysosomes, 3.4 and 130 X 10(-11) M). The rate constants for association (5.9 to 12.1 X 10(6) M-1 S-1) and dissociation (7.4 to 9.0 X 10(-4) S-1) were similar among different subcellular organelles except for nuclear membranes and lysosomes, where rate constants for association were significantly lower. The ligand binding specificity, lower effectiveness of human luteinizing hormone as compared to hCG in competition, the optimal pH, the lack of ionic requirements for binding, and the molecular size of 125I-hCG-gonadotropin binding site complexes solubilized from various intracellular organelles were similar to those observed for plasma membranes. Numerous differences were also observed between intracellular organelles and plasma membranes as well as among intracellular organelles themselves with respect to binding losses due to exposure to low and high pH values, di- and monovalent cations, increasing preincubation temperatures, and a variety of enzymes and protein reagents. The possible reasons for these similarities as well as differences observed are discussed. The differences are viewed as an additional indication that contamination cannot solely explain the presence of gonadotropin binding sites in various intracellular organelles.  相似文献   

10.
The binding of 125I-labeled human growth hormone (hGH) to liver membranes from several different species was studied to determine the lactogenic or somatotropic hormone nature of the receptors. Liver membranes from several species of the class of Mammalia bound significant quantities of 125I-hGH. Goat, sheep, rat, mouse, and rabbit liver membranes exhibited the highest binding with cow, pig, human, and hamster liver membranes exhibiting severalfold less binding. The binding of the dog and cat liver membranes exhibited relatively high nonspecific binding. Fish and chicken liver membranes did not bind appreciable quantities of 125I-hGH. In all species except for dog and cat in which 125I-hGH bound to the membranes, hGH was the most effective competitor for binding. The mean ID50 for hGH and all membranes was 2.4 X 10(-9) M. Human liver membranes exhibited the smallest ID50, 4.9 X 10(-10) M. In sheep liver membranes, bovine growth hormone (bGH) was equipotent to hGH in competing for 125I-hGH binding. bGH also demonstrated significant competition for 125I-hGH binding in pig and cow membranes. Ovine prolactin (oPrl) exhibited significant competition for 125I-hGH only in rodent membranes. The ID50 for oPrl was 3- to 10-fold greater than for hGH in the rat, hamster, and mouse liver membranes. The ID50 for oPrl in the sheep liver membranes was 13-fold greater than that of hGH. We conclude the following: (1) There appears to be a species specificity of hGH binding that may be phylogenetically significant and may result from variations in the structure of the hormone or the receptor. (2) The competitive binding properties of hGH are fairly consistent within phylogenetic orders. (3) The simple designation of lactogenic or somatotropic for hormones and receptors is insufficient to characterize the binding properties of this group of hormones.  相似文献   

11.
The effect of calcium ion on 3,5,3'-triiodothyronine (T3) binding to rat kidney outer mitochondrial membranes was examined in vitro. The outer mitochondrial membranes were prepared by using a discontinuous sucrose density gradient centrifugation. The membrane fraction, which is enriched with monoamine oxidase activity, contained specific binding sites for T3. Scatchard analysis of T3 binding to outer mitochondrial membranes gave an association constant (Ka) of 0.53 X 10(10)M-1. The binding of [125I]-T3 to the membranes was inhibited by the addition of CaCl2(0.25 X 10(-4)--2.5 X 10(-3)M). 50% inhibition was obtained by 0.75 X 10(-4)M CaCl2 in the presence of 0.1 mM EGTA. When outer mitochondrial membranes were solubilized with Triton X-100, four main T3 binding activities were isolated by a gel filtration study. On the other hand, the binding of [125I]-T3 to the solubilized T3 receptors derived from outer mitochondrial membranes was not strongly inhibited by calcium. When outer mitochondrial membranes were preincubated in the presence of 1 mM calcium, the number of T3 binding sites in the membranes was decreased, and this was associated with an increase in the number of T3 binding sites in the supernatants of the incubation mixture. Scatchard analysis showed that the number of T3 binding sites in the membranes is decreased by calcium ion without any change in the association constant. In studies with gel filtration of receptors which are released by Ca2+ from outer mitochondrial membranes, three main T3 binding activities were isolated. Mg2+, Mn2+, Zn2+ and Cu2+ did not affect T3 binding to outer mitochondrial membranes. The results indicate that calcium ion regulates T3 binding to the outer mitochondrial membrane through the release of T3 receptors from the membranes.  相似文献   

12.
R P Millar  A Garritsen  E Hazum 《Peptides》1982,3(5):789-792
Gonadotropin-releasing hormone (GnRH) binding sites in intact Leydig cells and in membrane preparations were investigated using 125I-labeled GnRH agonist and antagonist. Binding was saturable and involved a single class of high affinity sites. Intact Leydig cells and a membrane preparation had a higher affinity for GnRH agonist (Kd 3.0 +/- 1.7 X 10(-10) M) than for GnRH antagonist (Kd 10.0 +/- 1.8 X 10(-10) M). With anterior pituitary membranes the Kd was 2.8 +/- 0.7 X 10(-10) M for the agonist and 2.4 +/- 1.4 X 10(-10) M for the antagonist. The Kd for GnRH was similar for Leydig cells and the anterior pituitary. Chymotrypsin and trypsin digestion decreased receptor binding, but neuraminidase increased Leydig cell binding in contrast to the decrease in binding observed with pituitary receptors. The results suggest that the Leydig cell GnRH binding sites may differ from the pituitary receptor which may be related to structural differences in GnRH-like peptides recently described in extracts of rat testis.  相似文献   

13.
trans-2,5-Bis(3,4,5-trimethoxyphenyl)tetrahydrofuran (L-652,731) is found to be a potent and orally active platelet activating factor (PAF)-specific and competitive receptor antagonist. It potently inhibits [3H]PAF (1 nM) binding to receptor sites on rabbit platelet membranes with an ED50 of 2 X 10(-8) M under the assay condition without the addition of mono- or divalent cations. In a comparative study, it is more potent than CV-3988, kadsurenone, and ginkgolide B as a receptor antagonist. The equilibrium dissociation constants (KB) of L-652,731 obtained either from the inhibition of receptor binding or from the inhibition of PAF-induced aggregation of gel-filtered rabbit platelet are 2.7 X 10(-8) and 2.1 X 10(-8) M, respectively. The agreement of these KB determinations based on receptor and cellular function suggests that L-652,731 does not inhibit other steps following PAF-receptor binding. L-652,731 does not antagonize the binding of several radioligands to their respective receptor. It shows no inhibitory effect on platelet aggregation induced by other aggregating agents including thrombin, collagen, A-23187, arachidonic acid, epinephrine, and ADP. L-652,731 is orally active; it inhibits PAF-induced rat cutaneous vascular permeability with an ED50 of 30 mg/kg orally. Significant inhibitory results of L-652,731 suggest that PAF may be partially involved in cutaneous vascular permeability induced by histamine and bradykinin.  相似文献   

14.
Fibrinogen binding to platelet plasma membranes, which is a prerequisite for platelet aggregation, was determined by incubating 125I-labeled fibrinogen with isolated membranes and measuring the amount of radioactivity sedimenting with the membranes through 15% sucrose. Fibrinogen binding was optimal at 10(-3) M Ca2+. Scatchard analyses of the fibrinogen binding showed that the membrane capacity for fibrinogen was 1.6 X 10(-12) mol/mg of membrane protein, with a dissociation constant (Kd) = 1.2 X 10(-8) M. When Ca2+ levels were manipulated by the addition of varying amounts of EGTA at a fixed Mg2+ concentration of 3 X 10(-3) M, specific binding of fibrinogen to platelet membranes occurred only at Ca2+ concentrations greater than or equal to 10(-6) M. Membranes isolated from platelets of an individual with Glanzmann's thrombasthenia bound only 12% as much fibrinogen as control platelets. The data in the present study suggest that there are two divalent cation binding sites that must be occupied for fibrinogen to bind: one site is specific for calcium and is saturated at 10(-6) M Ca2+; the other site is less specific and is saturated at a 10(-3) M concentration of either Ca2+ or Mg2+. Fibrinogen binding to intact platelets and, consequently, platelet aggregation only required 10(-3) M extracellular divalent cation and was not specific for Ca2+. These data indicate that the cytoplasm is a potential source for the requirement of 10(-6) M Ca2+, and that changes in the intracellular concentration of Ca2+ may cause the expression of fibrinogen receptors during ADP-induced platelet activation.  相似文献   

15.
Calcium binding to adipocyte plasma membranes has been assessed by equilibrium dialysis and by membrane filtration techniques. Calcium binding was specific and saturable, displaying two distinct classes of binding sites. The affinity constants and maximum binding capacities in the presence of 0.1 M KCl were 4.5 X 10(4) M-1 and 1.8 nmol/mg of protein and 2.0 X 10(3) M-1 and 13.7 nmol/mg for the high and low affinity sites, respectively. Bound calcium was totally dissociated in the presence of excess calcium within 11.0 min in two distinct phases corresponding to the two classes of sites. Association and dissociation rate constants for the high affinity sites were 7.7 X 10(2) M-1S-1 and 9.2 X 10(-3S-1 respectively. Free energy changes at 24 degrees were +6.4 kcal mol-1 for the high affinity sites and +4.5 kcal mol-1 for the low affinity sites. The high affinity sites demonstrated a pH optimum of 7.0 whereas the binding to the low affinity sites progressively increased between pH 6.0 and 9.0. Low concentrations of MgCl2 (less than 300 muM) enhanced calcium binding slightly, whereas high concentrations of KCl and MgCl2 were noncompetitive inhibitors of calcium binding. Procaine and ruthenium red had no effect on calcium binding and lanthanum was a poor inhibitor of calcium binding. This represents the first report of calcium binding to adipocyte plasma membranes and the first kinetic analysis of calcium binding to biological membranes. The specificity of this calcium-binding system in adipocyte plasma membranes suggests its importance in cellular bioregulation.  相似文献   

16.
The binding of 125I-labelled human growth hormone to the 100000g microsomal membrane fraction prepared from the livers of normal female rats was dependent on time, temperature, pH, membrane concentration and concentration of 125I-labelled human growth hormone. At 22 degrees C binding reached a steady state after 16h, with the mean maximal specific binding being 20% of the tracer initially added. Dissociation of 125I-labelled human growth hormone from the membranes, after addition of excess of unlabelled hormone, was relatively slow with a half-time greater than 24h. Only minor degradation of the 125I-labelled human growth hormone was observed during incubation with membranes for 16 or 25h at 22 degrees C. Similarly, no significant change in the ability of membranes to bind human growth hormone was evident after preincubation of the membranes for 16 or 25h. Specificity studies showed that up to 90% of the 125I-labelled human growth hormone bound could be displaced by 1 mug of unlabelled hormone. Ovine prolactin also showed considerable competition for the binding site. Non-primate growth-hormone preparations (ovine, bovine, porcine and rat) and non-related hormones (insulin, thyrotropin, lutropin and follitropin) all showed negligible competition. Scatchard analysis of the binding data was consistent with two classes of binding site with binding affinities of 0.64 X 10(10) +/- 0.2 X 10(10)M-1 and 0.03 X 10(10) +/- 0.007 X 10(10)M-1 and corresponding binding capacities of 98.4 +/- 10 fmol/mg of protein and 314.6 +/- 46.3 fmol/mg of protein. These studies provide data which, in general, are consistent with the criteria required for hormone-receptor interaction. However, proof of the thesis that the human-growth-hormone-binding sites in female rat liver represent physiological receptors must await the demonstration of a correlation between hormone binding and a biological response.  相似文献   

17.
Specific, high affinity, saturable receptors for epidermal growth factor (EGF) have been demonstrated both on porcine and on human thyroid membranes. The binding affinities of porcine (Ka 3.0 X 10(-9) M) and human thyroid EGF receptors (Ka 1.75 X 10(-9) M) are very similar. TSH does not inhibit the binding of 125I-EGF to either membrane. These results suggest the possibility that EGF may be involved in the regulation of human as well as porcine thyroid follicular cell growth and function.  相似文献   

18.
The number of binding sites for L-triiodothyronine in rat erythrocyte membranes was increased 2-fold by incubation at 37 degrees C for 60 min. An increase of approximately 3-fold was found when the incubation was carried out at 50 degrees C. The proteinase inhibitor phenylmethylsulfonyl fluoride abolished the effect. Similar increments in the number of binding sites were obtained by treatment of the membranes with proteinases. The Kd values (0.09 X 10(-10) M and 3.6 X 10(-10) M for the high-affinity and the low-affinity binding sites, respectively) remained unchanged after the treatment, as did the free-SH group requirements, storage stability and stereospecificity. Our results suggest that endogenous proteolytic activity could be involved in the increase of the number of membrane latent sites for L-triiodothyronine.  相似文献   

19.
Monoiodinated radioligands of the homologous 36-amino acid peptides, neuropeptide Y (NPY) and peptide YY, were prepared by reverse phase high performance liquid chromatography with isocratic elution. [125I-Tyr1]- and [125I-Tyr36]monoiodoNPY bound equally well to a single class of high affinity binding sites on synaptosomal membranes prepared from porcine hippocampus (Kd = 1.0 X 10(-10) M) whereas iodine substitution in Tyr27, for example, partly interfered with the receptor binding. The receptors on the hippocampal membranes did not distinguish between neuropeptide Y and peptide YY either in their monoiodinated or in their unlabeled forms. Six out of twelve human neuroblastoma cell lines had high affinity binding sites for monoiodinated NPY ranging from 2 to 145 X 10(3) sites per cell. The NPY binding to three of the cell lines, SMS-MSN, SMS-KAN, and CHP-234 was of relatively high affinity (Kd = 1.3 to 6.1 X 10(-10) M), and, as in the hippocampal membranes, the long C-terminal fragment, NPY(13-36)peptide was also a relatively potent ligand for these receptors. Two other neuroblastoma cell lines, MC-IXC and CHP-212, expressed NPY receptors characterized by a lower affinity (Kd = 4.8 and 24.6 X 10(-9) M) and negligible cross-reactivity with the C-terminal fragment. It is concluded that monoiodinated radioligands of the tyrosine-rich neuropeptide Y can be prepared and that receptors for these ligands in two apparently different subtypes are found on a series of human neuroblastoma cell lines.  相似文献   

20.
An arylazide enkephalin derivative, [D-Ala2,Met5]enkephalin-Tyr-N-(2-nitro-4-azidophenyl) ethylenediamine (ETN), has been synthesized. In the dark, it inhibited the binding of [3H]enkephalinamide to enkephalin receptor-rich NG-108 cell membranes with an I50 = 2.2 X 10(-8) M or KI = 7 X 10(-9) M, assuming competitive inhibition. Photolysis of membranes in the presence of ETN caused irreversible inactivation of the enkephalin receptor, but inactivation was prevented by the addition of enkephalin, the half-effective concentration being 3 x 10(-9) M. ETN appears to be an effective photoaffinity label for the enkephalin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号