首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Self-assembly of actin-myosin filamentous complexes was assayed by polymerizing rabbit G-ADP actin on formed filaments of lobster myosin. The resulting contractile units indicate a 12-member actin orbital rather than the six-member orbital obtained previously using rabbit myosin and actin. Furthermore, the pattern of actin distribution surrounding the myosin filament is similar to that of the lobster tonic muscle sarcomere rather than the trigonal actin position characteristic of vertebrate muscle. The results show that the pattern and mode of actin complexing is determined by the specific myosin and the arrangement of the cross-bridges on the organized filament.  相似文献   

2.
Blebbistatin is a small-molecule, high-affinity, noncompetitive inhibitor of myosin II. We have used negative staining electron microscopy to study the effects of blebbistatin on the organization of the myosin heads on muscle thick filaments. Loss of ADP and Pi from the heads causes thick filaments to lose their helical ordering. In the presence of 100 μM blebbistatin, disordering was at least 10 times slower. In the M·ADP state, myosin heads are also disordered. When blebbistatin was added to M·ADP thick filaments, helical ordering was restored. However, blebbistatin did not improve the order of thick filaments lacking bound nucleotide. Addition of calcium to relaxed muscle homogenates induced thick-thin filament interaction and filament sliding. In the presence of blebbistatin, filament interaction was inhibited. These structural observations support the conclusion, based on biochemical studies, that blebbistatin inhibits myosin ATPase and actin interaction by stabilizing the closed switch 2 structure of the myosin head. These properties make blebbistatin a useful tool in structural and functional studies of cell motility and muscle contraction.  相似文献   

3.
Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.  相似文献   

4.
During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin.  相似文献   

5.
The interaction between myosin and actin in striated muscle tissue is regulated by Ca2+ via thin filament regulatory proteins. Skeletal muscle possesses a whole pattern of myosin and tropomyosin isoforms. The regulatory effect of tropomyosin on actin-myosin interaction was investigated by measuring the sliding velocity of both actin and actin-tropomyosin filaments over fast and slow skeletal myosins using the in vitro motility assay. The actin-tropomyosin filaments were reconstructed with tropomyosin isoforms from striated muscle tissue. It was found that tropomyosins with different content of α-, β-, and γ-chains added to actin filaments affect the sliding velocity of filaments in different ways. On the other hand, the sliding velocity of filaments with the same content of α-, β-, and Γ-chains depends on myosin isoforms of striated muscle. The reciprocal effects of myosin and tropomyosin on actin-myosin interaction in striated muscle may play a significant role in maintenance of effective work of striated muscle both during ontogenesis and under pathological conditions.  相似文献   

6.
The force generated between actin and myosin acts predominantly along the direction of the actin filament, resulting in relative sliding of the thick and thin filaments in muscle or transport of myosin cargos along actin tracks. Previous studies have also detected lateral forces or torques that are generated between actin and myosin, but the origin and biological role of these sideways forces is not known. Here we adapt an actin gliding filament assay to measure the rotation of an actin filament about its axis (“twirling”) as it is translocated by myosin. We quantify the rotation by determining the orientation of sparsely incorporated rhodamine-labeled actin monomers, using polarized total internal reflection microscopy. To determine the handedness of the filament rotation, linear incident polarizations in between the standard s- and p-polarizations were generated, decreasing the ambiguity of our probe orientation measurement fourfold. We found that whole myosin II and myosin V both twirl actin with a relatively long (∼1 μm), left-handed pitch that is insensitive to myosin concentration, filament length, and filament velocity.  相似文献   

7.
The role played by Ca2+ in the stability of cytoplasmic actin and myosin filaments was investigated ultrastructurally with negatively stained isolated cytoplasm from Chaos carolinensis. Cytoplasm was incubated in solutions containing 5, 10, 15 and 25 mM EGTA for periods of time varying from 2 to 20 min. As either the EGTA concentration or duration of incubation was increased, the extent of myosin and actin filament depolymerization increased. The actin filaments depolymerized except where they were stabilized by interaction with myosin. With longer incubation times or higher EGTA concentrations complete depolymerization of the actin filaments could be accomplished. Myosin aggregates also disassembled and became shorter, while monomeric myosin labelled adjacent thin filaments to form arrowhead complexes resembling myosin enriched actomyosin [1]. These actomyosin complexes were relatively stable at low Ca2+ concentrations. In addition, the complexes showed a characteristic 35 nm periodicity and were dissociable in the presence of Mg2+-ATP. The actin containing filaments were more labile at low Ca2+ concentrations than the myosin aggregates. These results suggest that in cells capable of regulating their Ca2+ concentrations efficiently, filament polymerization-depolymerization could play a role in the control of cytoplasmic streaming.  相似文献   

8.
In an effort to differentiate between the sliding filament theory for muscle contraction and alternative views which propose attachment between actin and myosin filaments at or across the H zone, rabbit psoas myofibrils were irradiated in various areas of the sarcomere with an ultraviolet microbeam. Irradiation of the I band appears to destroy the actin filaments; in vitro irradiation of F actin causes an irreversible depolymerization of the protein. Irradiation of the A band disorients the myosin but causes no apparent loss of dry mass. These effects are maximal at the wavelength of maximum absorption of the proteins involved. Actin filaments, released at the Z line of a sarcomere, are seen to slide into the A band on addition of ATP. Irradiation of a full A band prevents contraction, whereas irradiation of two-thirds of the A band, leaving a lateral edge intact, permits contraction at the non-irradiated edge. Thus contraction can occur in what is in essence only one-third of a sarcomere, eliminating any necessity for postulated H zone connections. These observations are in complete accord with the classical sliding filament theory but incompatible with either the contralateral filament hypothesis or the actin folding model for muscle contraction.  相似文献   

9.
Cooperative interaction between myosin and actin filaments has been detected by a number of different methods, and has been suggested to have some role in force generation by the actomyosin motor. In this study, we observed the binding of myosin to actin filaments directly using fluorescence microscopy to analyze the mechanism of the cooperative interaction in more detail. For this purpose, we prepared fluorescently labeled heavy meromyosin (HMM) of rabbit skeletal muscle myosin and Dictyostelium myosin II. Both types of HMMs formed fluorescent clusters along actin filaments when added at substoichiometric amounts. Quantitative analysis of the fluorescence intensity of the HMM clusters revealed that there are two distinct types of cooperative binding. The stronger form was observed along Ca2+-actin filaments with substoichiometric amounts of bound phalloidin, in which the density of HMM molecules in the clusters was comparable to full decoration. The novel, weaker form was observed along Mg2+-actin filaments with and without stoichiometric amounts of phalloidin. HMM density in the clusters of the weaker form was several-fold lower than full decoration. The weak cooperative binding required sub-micromolar ATP, and did not occur in the absence of nucleotides or in the presence of ADP and ADP-Vi. The G680V mutant of Dictyostelium HMM, which over-occupies the ADP-Pi bound state in the presence of actin filaments and ATP, also formed clusters along Mg2+-actin filaments, suggesting that the weak cooperative binding of HMM to actin filaments occurs or initiates at an intermediate state of the actomyosin-ADP-Pi complex other than that attained by adding ADP-Vi.  相似文献   

10.
Interaction of myosin with actin in striated muscle is controlled by Ca2+ via thin filament associated proteins: troponin and tropomyosin. In cardiac muscle there is a whole pattern of myosin and tropomyosin isoforms. The aim of the current work is to study regulatory effect of tropomyosin on sliding velocity of actin filaments in the in vitro motility assay over cardiac isomyosins. It was found that tropomyosins of different content of α- and β-chains being added to actin filament effects the sliding velocity of filaments in different ways. On the other hand the velocity of filaments with the same tropomyosins depends on both heavy and light chains isoforms of cardiac myosin.  相似文献   

11.
A Nebulin Ruler Does Not Dictate Thin Filament Lengths   总被引:1,自引:0,他引:1  
To generate force, striated muscle requires overlap between uniform-length actin and myosin filaments. The hypothesis that a nebulin ruler mechanism specifies thin filament lengths by targeting where tropomodulin (Tmod) caps the slow-growing, pointed end has not been rigorously tested. Using fluorescent microscopy and quantitative image analysis, we found that nebulin extended 1.01-1.03 μm from the Z-line, but Tmod localized 1.13-1.31 μm from the Z-line, in seven different rabbit skeletal muscles. Because nebulin does not extend to the thin filament pointed ends, it can neither target Tmod capping nor specify thin filament lengths. We found instead a strong correspondence between thin filament lengths and titin isoform sizes for each muscle. Our results suggest the existence of a mechanism whereby nebulin specifies the minimum thin filament length and sarcomere length regulates and coordinates pointed-end dynamics to maintain the relative overlap of the thin and thick filaments during myofibril assembly.  相似文献   

12.

Background

Myofibrillogenesis requires the correct folding and assembly of sarcomeric proteins into highly organized sarcomeres. Heat shock protein 90α1 (Hsp90α1) has been implicated as a myosin chaperone that plays a key role in myofibrillogenesis. Knockdown or mutation of hsp90α1 resulted in complete disorganization of thick and thin filaments and M- and Z-line structures. It is not clear whether the disorganization of these sarcomeric structures is due to a direct effect from loss of Hsp90α1 function or indirectly through the disorganization of myosin thick filaments.

Methodology/Principal Findings

In this study, we carried out a loss-of-function analysis of myosin thick filaments via gene-specific knockdown or using a myosin ATPase inhibitor BTS (N-benzyl-p-toluene sulphonamide) in zebrafish embryos. We demonstrated that knockdown of myosin heavy chain 1 (myhc1) resulted in sarcomeric defects in the thick and thin filaments and defective alignment of Z-lines. Similarly, treating zebrafish embryos with BTS disrupted thick and thin filament organization, with little effect on the M- and Z-lines. In contrast, loss of Hsp90α1 function completely disrupted all sarcomeric structures including both thick and thin filaments as well as the M- and Z-lines.

Conclusion/Significance

Together, these studies indicate that the hsp90α1 mutant phenotype is not simply due to disruption of myosin folding and assembly, suggesting that Hsp90α1 may play a role in the assembly and organization of other sarcomeric structures.  相似文献   

13.
Myosin content and filament structure in smooth and striated muscle   总被引:16,自引:0,他引:16  
Fibres from four different muscles (rabbit psoas, guinea pig taenia coli, Lethocerus flight and leg) were glycerol-extracted, homogenized and dissolved in a sodium dodecyl sulphate solution. The relative mass of the myosin heavy chain and actin polypeptides present in these extracts was measured by polyacrylamide gel electrophoresis. The ratio was found to be consistent for each muscle and to differ widely between muscles. The results were used to calculate the number of myosin molecules per subunit repeat along the thick filaments of the striated muscles and ribbon-like filaments, and so to test a theory of filament structure.  相似文献   

14.
The solubility of rabbit skeletal and lobster abdominal muscle myosin has been studied in monovalent salt solutions as a function of pH (over the range 4.75 to 8.5) and ionic strength (50-500 mM). Rabbit skeletal muscle myosin was found to precipitate over a narrower pH range than the lobster abdominal muscle myosin but at equivalent pH values and ionic strengths the former exhibited greater solubility. Comparison of the solubility of rabbit myosin, per se with that of light meromyosin and lobster myosin with its equivalent proteolytically produced fragment (fraction B1) showed that both rod fragments were more soluble than their parent molecules. Under conditions of low solubility (low ionic strength and pH) the quantitiy of protein in solution remained essentially constant with increasing total protein, thus suggesting that the aggregation phenomenon is of a phase transition type. Examination of the aggregates by electron microscopy revealed that rabbit myosin formed classical, elongate, spindle-shaped filaments similar to those previously observed by others. In contrast lobster myosin only formed short, dumbbell-shaped filaments 0.2-0.3 mum long. Consideration of the pH ranges over which aggregation occurred suggests that protonation of histidine residues may be involved in rabbit myosin filament formation while for lobster myosin, aggregation may involve protonation of epsilon-amino or guanidino groups. The possible relationship between the distribution of these groups along the rod portion of the myosin molecule and the formation of elongate filaments has been explored.  相似文献   

15.
Calponin-related proteins are widely distributed among eukaryotes and involved in signaling and cytoskeletal regulation. Calponin-like (CLIK) repeat is an actin-binding motif found in the C-termini of vertebrate calponins. Although CLIK repeats stabilize actin filaments, other functions of these actin-binding motifs are unknown. The Caenorhabditis elegans unc-87 gene encodes actin-binding proteins with seven CLIK repeats. UNC-87 stabilizes actin filaments and is essential for maintenance of sarcomeric actin filaments in striated muscle. Here we show that two UNC-87 isoforms, UNC-87A and UNC-87B, are expressed in muscle and nonmuscle cells in a tissue-specific manner by two independent promoters and exhibit quantitatively different effects on both actin and myosin. Both UNC-87A and UNC-87B have seven CLIK repeats, but UNC-87A has an extra N-terminal extension of ∼190 amino acids. Both UNC-87 isoforms bind to actin filaments and myosin to induce ATP-resistant actomyosin bundles and inhibit actomyosin motility. UNC-87A with an N-terminal extension binds to actin and myosin more strongly than UNC-87B. UNC-87B is associated with actin filaments in nonstriated muscle in the somatic gonad, and an unc-87 mutation causes its excessive contraction, which is dependent on myosin. These results strongly suggest that proteins with CLIK repeats function as a negative regulator of actomyosin contractility.  相似文献   

16.
A transient increase in Ca2+ concentration in sarcomeres is essential for their proper function. Ca2+ drives striated muscle contraction via binding to the troponin complex of the thin filament to activate its interaction with the myosin thick filament. In addition to the troponin complex, the myosin essential light chain and myosin‐binding protein C were also found to be Ca2+ sensitive. However, the effects of Ca2+ on the function of the tropomodulin family proteins involved in regulating thin filament formation have not yet been studied. Leiomodin, a member of the tropomodulin family, is an actin nucleator and thin filament elongator. Using pyrene‐actin polymerization assay and transmission electron microscopy, we show that the actin nucleation activity of leiomodin is attenuated by Ca2+. Using circular dichroism and nuclear magnetic resonance spectroscopy, we demonstrate that the mostly disordered, negatively charged region of leiomodin located between its first two actin‐binding sites binds Ca2+. We propose that Ca2+ binding to leiomodin results in the attenuation of its nucleation activity. Our data provide further evidence regarding the role of Ca2+ as an ultimate regulator of the ensemble of sarcomeric proteins essential for muscle function.Summary StatementCa2+ fluctuations in striated muscle sarcomeres modulate contractile activity via binding to several distinct families of sarcomeric proteins. The effects of Ca2+ on the activity of leiomodin—an actin nucleator and thin filament length regulator—have remained unknown. In this study, we demonstrate that Ca2+ binds directly to leiomodin and attenuates its actin nucleating activity. Our data emphasizes the ultimate role of Ca2+ in the regulation of the sarcomeric protein interactions.  相似文献   

17.
Actin filament assembly in nonmuscle cells is regulated by the actin polymerization machinery, including the Arp2/3 complex and formins. However, little is known about the regulation of actin assembly in muscle cells, where straight actin filaments are organized into the contractile unit sarcomere. Here, we show that Fhod3, a myocardial formin that localizes to thin actin filaments in a striated pattern, regulates sarcomere organization in cardiomyocytes. RNA interference-mediated depletion of Fhod3 results in a marked reduction in filamentous actin and disruption of the sarcomeric structure. These defects are rescued by expression of wild-type Fhod3 but not by that of mutant proteins carrying amino acid substitution for conserved residues for actin assembly. These findings suggest that actin dynamics regulated by Fhod3 are critical for sarcomere organization in striated muscle cells.In striated muscle, thin actin filaments and thick filaments of myosin are highly organized to form myofibrils (1) (Fig. 1A). During myofibrillogenesis, actin cytoskeleton undergoes dynamic remodeling to produce uniform lengths of straight filaments packaged in the sarcomere, a contractile unit of myofibrils (24). In nascent sarcomeres, a filamentous actin-containing structure, referred to as the Z-body or I-Z-I structure, emerges as a precursor of the Z-line that anchors actin filaments. Subsequent alignment of the precursors leads to formation of a striated pattern of the Z-line, and myosin filaments are incorporated between Z-lines. Finally, the M-line that serves as an anchoring site for myosin filaments becomes visible; the appearance is accompanied by alignment of the unanchored end of actin filaments (5). Thus, the mature distribution pattern of actin filaments is constructed at the final step in myofibril assembly, indicating that actin filaments continue to develop throughout myofibrillogenesis. However, the regulation of actin dynamics in this process has remained poorly understood. In nonmuscle cells, organization of actin cytoskeleton is achieved by two major actin nucleating-polymerizing systems, formins and the Arp2/3 complex, with the former producing long straight actin filaments and the latter producing branched actin network (6, 7). Because an unbranched straight actin filament is the major form in striated muscle cells, it is possible that a formin family protein serves as the key regulator of actin dynamics in myofibrils.Open in a separate windowFIGURE 1.Localization of Fhod3 in cultured rat cardiomyocytes. A, shown is a representation of the sarcomere structure (upper panel) and relative localization of Fhod3 and other sarcomeric proteins from B–D (lower panel). B–D, neonatal rat cardiomyocytes were subjected to immunofluorescent double staining for endogenous Fhod3 (red) and α-actinin (green) (B), myomesin (green) (C), or phalloidin (green) (D). For Fhod3 staining, the anti-Fhod3-(650–802) polyclonal antibodies were used. Scale bar, 10 μm.Formins are characterized by the presence of two conserved regions, the formin homology 1 and 2 domains (FH1 and FH2 domains, respectively)2 (8, 9). The FH2 domain associates with the barbed end of an actin filament and promotes actin nucleation and polymerization. The FH2 domain continues to associate with the barbed end during polymerization; this processive association protects the growing barbed end from capping proteins that inhibit actin elongation. The FH1 domain, located N-terminally to the FH2 domain, accelerates the FH2-mediated actin elongation via recruiting profilin complexed with an actin monomer. Through cooperation of the FH1 and FH2 domains, formins produce long straight actin filaments even in the presence of capping proteins. Here, we focused on the role of the mammalian formin Fhod3 (previously designated as Fhos2L), which is expressed predominantly in the heart (10), in actin assembly in myofibrils.  相似文献   

18.
The sarcomeres of skeletal and cardiac muscle are highly structured protein arrays, consisting of thick and thin filaments aligned precisely to one another and to their surrounding matrix. The contractile mechanisms of sarcomeres are generally well understood, but how the patterning of sarcomeres is initiated during early skeletal muscle and cardiac development remains uncertain. Two of the most widely accepted hypotheses for this process include the “molecular ruler” model, in which the massive protein titin defines the length of the sarcomere and provides a scaffold along which the myosin thick filament is assembled, and the “premyofibril” model, which proposes that thick filament formation does not require titin, but that a “premyofibril” consisting of non-muscle myosin, α-actinin and cytoskeletal actin is used as a template. Each model posits a different order of necessity of the various components, but these have been difficult to test in vivo. Zebrafish motility mutants with developmental defects in sarcomere patterning are useful for the elucidation of such mechanisms, and here we report the analysis of the herzschlag mutant, which shows deficits in both cardiac and skeletal muscle. The herzschlag mutant produces a truncated titin protein, lacking the C-terminal rod domain that is proposed to act as a thick filament scaffold, yet muscle patterning is still initiated, with grossly normal thick and thin filament assembly. Only after embryonic muscle contraction begins is breakdown of sarcomeric myosin patterning observed, consistent with the previously noted role of titin in maintaining the contractile integrity of mature sarcomeres. This conflicts with the “molecular ruler” model of early sarcomere patterning and supports a titin-independent model of thick filament organization during sarcomerogenesis. These findings are also consistent with the symptoms of human titin myopathies that exhibit a late onset, such as tibial muscular dystrophy.  相似文献   

19.
Electron microscopy has shown that cross-bridges (CBs) are formed at the target zone that is periodically distributed on the thin filament in striated muscle. Here, by manipulating a single bead-tailed actin filament with optical tweezers, we measured the unbinding events of rigor CBs one by one on the surface of the A-band in rabbit skeletal myofibrils. We found that the spacings between adjacent CBs were not always the same, and instead were 36, 72, or 108 nm. Tropomyosin and troponin did not affect the CB spacing except for a relative increase in the appearance of longer spacing in the presence of Ca2+. In addition, in an in vitro assay where myosin molecules were randomly distributed, were obtained the same spacing, i.e., a multiple of 36 nm. These results indicate that the one-dimensional distribution of CBs matches with the 36-nm half pitch of a long helical structure of actin filaments. A stereospecific model composed of three actin protomers per target zone was shown to explain the experimental results. Additionally, the unbinding force (i.e., the binding affinity) of CBs for the reconstituted thin filaments was found to be larger and smaller relative to that for actin filaments with and without Ca2+, respectively.  相似文献   

20.
Abstract. A light and electron immunohistochemical study was carried out on the body wall muscles of the chaetognath Sagitta friderici for the presence of a variety of contractile proteins (myosin, paramyosin, actin), regulatory proteins (tropomyosin, troponin), and structural proteins (α‐actinin, desmin, vimentin). The primary muscle (~80% of body wall volume) showed the characteristic structure of transversely striated muscles, and was comparable to that of insect asynchronous flight muscles. In addition, the body wall had a secondary muscle with a peculiar structure, displaying two sarcomere types (S1 and S2), which alternated along the myofibrils. S1 sarcomeres were similar to those in the slow striated fibers of many invertebrates. In contrast, S2 sarcomeres did not show a regular sarcomeric pattern, but instead exhibited parallel arrays of 2 filament types. The thickest filaments (~10–15 nm) were arranged to form lamellar structures, surrounded by the thinnest filaments (~6 nm). Immunoreactions to desmin and vimentin were negative in both muscle types. The primary muscle exhibited the classical distribution of muscle proteins: actin, tropomyosin, and troponin were detected along the thin filaments, whereas myosin and paramyosin were localized along the thick filaments; immunolabeling of α‐actinin was found at Z‐bands. Immunoreactions in the S1 sarcomeres of the secondary muscle were very similar to those found in the primary muscle. Interestingly, the S2 sarcomeres of this muscle were labeled with actin and tropomyosin antibodies, and presented no immunore‐actions to both myosin and paramyosin. α‐Actinin in the secondary muscle was only detected at the Z‐lines that separate S1 from S2. These findings suggest that S2 are not true sarcomeres. Although they contain actin and tropomyosin in their thinnest filaments, their thickest filaments do not show myosin or paramyosin, as the striated muscle thick myofilaments do. These peculiar S2 thick filaments might be an uncommon type of intermediate filament, which were labeled neither with desmin or vimentin antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号