首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Bergmann's rule, the tendency for body size to be positively correlated with latitude, is widely accepted but the mechanisms behind the patterns are still debated. Bergmann's originally conceived mechanism was based on heat conservation; other proposed mechanisms invoke phylogeny, migration distance and resource seasonality. With the goal of examining these mechanisms, we quantified morphological variation across the breeding range of a Neotropical migratory songbird, the cerulean warbler (Dendroica cerulea). Location Deciduous forests of eastern North America. Methods We sampled nine cerulean warbler populations, spanning the species’ breeding range. We captured 156 males using targeted playback and model presentation, and included 127 adult males in our analyses of morphological variation. We used an information‐theoretical approach to identify climatic variables associated with geographical variation in body size. Results Cerulean warbler body size adheres to Bergmann's rule: individuals in northern populations are larger than those in southern populations. Variation in body size is best explained by variation in dry and wet‐bulb temperature and actual evapotranspiration. Main conclusions Adherence to Bergmann's rule by the cerulean warbler appears to be linked to thermodynamics (heat conservation in the north, evaporative cooling in the south) and resource seasonality. Multiple selection pressures can interact to generate a single axis of morphological geographical variation, and even subtle fluctuations in climatic variables can exert significant selection pressures. We suggest that the influence of selection pressures on migrants might be enhanced by migratory connectivity, providing further support for the important role played by this phenomenon in the ecology, evolution and population dynamics of migratory songbirds.  相似文献   

2.
The most studied ecogeographic rule is Bergmann's rule, but aspects of the original paper are often presented incorrectly even though Bergmann (1847) is explicitly cited. The goal of this paper is to 1) summarize the contents of Bergmann's paper, supported by direct translations, and 2) to discuss the main issues surrounding Bergmann's rule based on Bergmann's intentions and early definitions of the rule. Although Bergmann himself never formulated an explicit rule, based on Bergmann's (1847) intentions and early definitions of Bergmann's rule, Bergmann's rule is: “Within species and amongst closely related species of homeothermic animals a larger size is often achieved in colder climates than in warmer ones, which is linked to the temperature budget of these animals.” Bergmann (1847) assumed that the surface area of an animal is a measure for heat dissipation and an animal's volume a measure of its heat production. As body size increases, an animal's surface area increases less than its volume; however, modifications in morphology and behaviour will also influence the temperature budget. Bergmann hypothesized that when everything but size is equal, the smaller animals should live in warmer areas. This was supported by empirical data on > 300 bird species belonging to 86 genera. Recommendations for use of the term Bergmann's rule include 1) inclusion of a thermoregulatory mechanism, 2) application only to homoeothermic animals, 3) but to any taxonomic group, 4) tests of the rule should test the assumption that larger animals have to produce less heat to increase body temperatures, and 5) future authors should either go back to the original publication (Bergmann 1847) when referring to it or simply not cite it at all. Synthesis Based on Bergmann's (1847) intentions and early definitions, Bergmann's rule is: “Within species and amongst closely related species of homeothermic animals a larger size is often achieved in colder climates than in warmer ones, which is linked to the temperature budget of these animals.” Recommendations for use of the term Bergmann's rule include 1) inclusion of a thermoregulatory mechanism, 2) application only to homoeothermic animals, 3) and to any taxonomic group, 4) tests of the rule should examine whether larger animals have to produce less heat to increase body temperatures, and 5) authors should go back to the original publication (Bergmann 1847) when referring to it.  相似文献   

3.
4.
Geographic gradients in body size: a clarification of Bergmann's rule   总被引:8,自引:0,他引:8  
1997 marked the sesquicentenary of the publication by Carl Bergmann of the observation that, in general, large-bodied animal species tend to live further north than their small-bodied relatives. This has been dubbed Bergmann's rule in his honour. However, more than 150 years on, we appear to be little closer to a general understanding of the rule, or even to any consensus as to whether it exists. This is due in large part to confusion about the taxonomic level at which the rule is considered to operate, and to the conflation of pattern and mechanism. In this paper, we attempt to resolve this confusion by highlighting its sources, and by providing a definition of Bergmann's rule that is practical and useful, yet that retains the essential features of its original formulation. We conclude by briefly reviewing the mechanisms proposed to explain Bergmann's rule as we define it.  相似文献   

5.
6.
Bergmann's rule predicts a decrease in body size with increasing temperature and has much empirical support. Surprisingly, we know very little about whether "Bergmann size clines" are due to a genetic response or are a consequence of phenotypic plasticity. Here, we use data on body size (mass and tarsus length) from three long-term (1979-2008) study populations of great tits (Parus major) that experienced a temperature increase to examine mechanisms behind Bergmann's rule. We show that adult body mass decreased over the study period in all populations and that tarsus length increased in one population. Both body mass and tarsus length were heritable and under weak positive directional selection, predicting an increase, rather than a decrease, in body mass. There was no support for microevolutionary change, and thus the observed declines in body mass were likely a result of phenotypic plasticity. Interestingly, this plasticity was not in direct response to temperature changes but seemed to be due to changes in prey dynamics. Our results caution against interpreting recent phenotypic body size declines as adaptive evolutionary responses to temperature changes and highlight the importance of considering alternative environmental factors when testing size clines.  相似文献   

7.
Increasing our understanding of how evolutionary processes drive the genomic landscape of variation is fundamental to a better understanding of the genomic consequences of speciation. However, genome‐wide patterns of within‐ and between‐ species variation have not been fully investigated in most forest tree species despite their global ecological and economic importance. Here, we use whole‐genome resequencing data from four Populus species spanning the speciation continuum to reconstruct their demographic histories and investigate patterns of diversity and divergence within and between species. Using Populus trichocarpa as an outgroup species, we further infer the genealogical relationships and estimate the extent of ancient introgression among the three aspen species (Populus tremula, Populus davidiana and Populus tremuloides) throughout the genome. Our results show substantial variation in these patterns along the genomes with this variation being strongly predicted by local recombination rates and the density of functional elements. This implies that the interaction between recurrent selection and intrinsic genomic features has dramatically sculpted the genomic landscape over long periods of time. In addition, our findings provide evidence that, apart from background selection, recent positive selection and long‐term balancing selection have also been crucial components in shaping patterns of genome‐wide variation during the speciation process.  相似文献   

8.
Divergent selection is a key in the ecological theory of adaptive radiation. Most evidence on its causes and consequences relies on studies of pairs of populations or closely related taxa. However, adaptive radiation involves multiple taxa adapted to different environmental factors. We propose an operational definition of divergent selection to explore the continuum between divergent and convergent selection in multiple populations and taxa, and its links with environmental variation and phenotypic and taxonomic differentiation. We apply this approach to explore phenotypic differentiation of vegetative traits between 15 populations of four taxa of Iberian columbines (Gen. Aquilegia). Differences in soil rockiness impose divergent selection on inflorescence height and the number of flowers per inflorescence, likely affecting the processes of phenotypic and, in the case of inflorescence height, taxonomic diversification between taxa. Elevational variation imposes divergent selection on the number of leaves; however, the current pattern of divergent selection on this trait seems related to ecotypic differentiation within taxa but not to their taxonomic diversification.  相似文献   

9.
Bergmann's rule originally described a positive relationship between body size and latitude in warm‐blooded animals. Larger animals, with a smaller surface/volume ratio, are better enabled to conserve heat in cooler climates (thermoregulatory hypothesis). Studies on endothermic vertebrates have provided support for Bergmann's rule, whereas studies on ectotherms have yielded conflicting results. If the thermoregulatory hypothesis is correct, negative relationships between body size and temperature should occur in temporal in addition to geographical gradients. To explore this possibility, we analysed seasonal activity patterns in a bee fauna comprising 245 species. In agreement with our hypothesis of a different relationship for large (endothermic) and small (ectothermic) species, we found that species larger than 27.81 mg (dry weight) followed Bergmann's rule, whereas species below this threshold did not. Our results represent a temporal extension of Bergmann's rule and indicate that body size and thermal physiology play an important role in structuring community phenology.  相似文献   

10.
According to Bergmann's rule, individuals of a given species tend to be larger in colder (northern) climates. Traditional explanation points to the relatively lower surface‐to‐volume ratio in larger animals and, consequently, relatively lower costs of thermoregulation. We examined intraspecific covariation of body size with geographical location and climate in five species of Sorex shrews, animals that are among the smallest extant mammals. The condylobasal length of skull (CBL), compiled from literature data and measured on museum specimens, was used as an indicator of the overall body size of shrews. Surprisingly, in three out of five shrew species, the CBL was negatively correlated with latitude, and the same trend, although not statistically significant, was found in the fourth species. In general, shrews were smaller in colder areas, as evidenced by the positive correlations between the CBL and temperature. In two species, these positive correlations appeared when the effect of longitude was held constant in the partial correlation analysis. Characteristically, the strongest negative correlation with latitude and positive with temperatures was found in S. minutus, the smallest species under study. Shrews were in general larger in environments with high actual evapotranspiration. Body mass reviewed in S. araneus paralleled the pattern found in the CBL variation in this species, i.e. it decreased northward, both in summer‐ and winter‐caught animals. In addition, contrary to the widely accepted ? but not rigorously tested ? belief, body mass recession from summer to winter (the Dehnel Effect) did not correlate with latitude. We concluded that shrews followed the converse to Bergmann's rule, and hypothesize that part of their body size variation along the west‐east axis may be explained by character displacement. We also hypothesize that scarcity of food, especially in winter, is a major factor selecting for small body size in shrews in northern areas, as smaller individuals should require less food. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 78 , 365–381.  相似文献   

11.
12.
Variation in body weight of red deer in Norway was investigated along two climatic gradients: one with increasing latitude, and the other with proximity to the coast. Deer of all sex/age classes were significantly heavier in the northern parts of their range compared with the south and were also significantly heavier at inland localities compared with the coast. Body weights were negatively correlated with temperature and precipitation throughout the years. These clines in body weight apparently support Bergmann's rule, and may reflect selection for large size in cold environments. However, we interpret the results in the light of recent work on plant physiology which indicates higher quality forage at high latitudes, and in cooler and drier climates: conditions which are likely lo enhance growth in the north and inland. Evidence that individual deer which migrate inland, following the snow melt, are heavier is also presented and discussed in terms of an adaptive behaviour that maximises the intake of digestible energy and high quality nutrients.  相似文献   

13.
Telomere length is associated with cellular senescence, lifestyle and ageing. Short telomeres indicate poor health in humans and reduced life expectancy in several bird species, but little is known about telomeres in relation to phenotypic quality in wild animals. We investigated telomere lengths in erythrocytes of known-age common terns (Sterna hirundo), a migratory seabird, in relation to arrival date and reproductive performance. Cross-sectional data revealed that, independent of age, individuals with short telomeres performed better: they arrived and reproduced earlier in the season and had more chicks in the nest. The latter effect was stronger the older the brood and stronger in males, which do most of the chick provisioning. Longitudinal data confirmed this pattern: compared with birds that lost their brood, birds that raised chicks beyond the 10th nestling day experienced higher telomere attrition from one year to the next. However, more detailed analysis revealed that the least and most successful individuals lost the fewest base pairs compared with birds with intermediate success. Our results suggest that reproductive success is achieved at the expense of telomeres, but that individual heterogeneity in susceptibility to such detrimental effects is important, as indicated by low telomere loss in the most successful birds.  相似文献   

14.
One of the most widely recognized generalizations in biology is Bergmann's rule, the observation that, within species of birds and mammals, body size tends to be inversely related to ambient temperature. Recent studies indicate that turtles and salamanders also tend to follow Bergmann's rule, which hints that this species-level tendency originated early in tetrapod history. Furthermore, exceptions to Bergmann's rule are concentrated within squamate reptiles (lizards and snakes), suggesting that the tendency to express a Bergmann's rule cline may be heritable at the species level. We evaluated species-level heritability and early origination of Bergmann's rule by mapping size-latitude relationships for 352 species onto a tetrapod phylogeny. When the largest available dataset is used, Bergmann's rule shows significant phylogenetic signal, indicating species-level heritability. This represents one of the few demonstrations of heritability for an emergent species-level property and the first for an ecogeographic rule. When species are discretely coded as showing either Bergmann's rule or its converse, parsimony reconstructions suggest that: (1) the tendency to follow Bergmann's rule is ancestral for tetrapods, and (2) most extant species that express the rule have retained this tendency from that ancient ancestor. The first inference also generally holds when the discrete data or size-latitude correlation coefficients are analyzed using maximum likelihood, although the results are only statistically significant for some versions of the discrete analyses. The best estimates of ancestral states suggest that the traditional adaptive explanation for Bergmann's rule-conservation of metabolic heat-was not involved in the origin of the trait since that origin predates the evolution of endothermy. A more general thermoregulatory hypothesis could apply to endotherms and some ectotherms, but fails to explain why salamanders have retained Bergmann's rule. Thus, if thermoregulation underlies the origin of a Bergmann's rule tendency, this trait may have been continuously maintained while its cause changed. Alternatively, thermoregulation may not underlie Bergmann's rule in any tetrapod group. The results also suggest that many extinct groups not included in our analyses followed Bergmann's rule.  相似文献   

15.
16.
Choosing the right mate is crucial for successful breeding, particularly in monogamous species with long and extensive bi‐parental care, and when the breeding pair is presumed to last many seasons. We investigated the degree of assortative mating in the Little Auk Alle alle, a long‐lived seabird with long‐term pair bonds and bi‐parental care for fixed (morphological) and labile (physiological, behavioural) traits. Using randomization tests, we suggest assortative mating with respect to wing length, extent of the white area on the upper eyelid and hormonal stress response (the difference between stress‐induced and baseline corticosterone levels). We discuss how the assortative mating patterns that we found in the Little Auk may be adaptive.  相似文献   

17.
Abstract.— Bird song is a sexual trait important in mate choice and known to be shaped by environmental selection. Here we investigate the ecological factors shaping song variation across a rainforest gradient in central Africa. We show that the little greenbul ( Andropadus virens ), previously shown to vary morphologically across the gradient in fitness-related characters, also varies with respect to song characteristics. Acoustic features, including minimum and maximum frequency, and delivery rate of song notes showed significant differences between habitats. In contrast, we found dialectal variation independent of habitat in population-typical songtype sequences. This pattern is consistent with ongoing gene flow across habitats and in line with the view that song variation in the order in which songtypes are produced is not dependent on habitat characteristics in the same way physical song characteristics are. Sound transmission characteristics of the two habitats did not vary significantly, but analyses of ambient noise spectra revealed dramatic and consistent habitat-dependent differences. Matching between low ambient noise levels for low frequencies in the rainforest and lower minimal frequencies in greenbul songs in this habitat suggests that part of the song divergence may be driven by habitat-dependent ambient noise patterns. These results suggest that habitat-dependent selection may act simultaneously on traits of ecological importance and those important in prezygotic isolation, leading to an association between morphological and acoustic divergence. Such an association may promote assortative mating and may be a mechanism driving reproductive divergence across ecological gradients.  相似文献   

18.
Rensch's rule states that degree of sexual dimorphism increases with body size in species with larger males, and decreases with body size in those with larger females. To test this rule, we assessed the pattern of sexual size dimorphism in tinamous using a comparative analysis of independent contrasts. Tinamous are a monophyletic group of primitive birds comprising at least 47 ground dwelling species with prominent or exclusive paternal care of eggs and offspring. Although the size of females exceeded that of males in most considered species, we found an isometric relationship between males and females, instead of the negative allometric one predicted by Rensch's rule. Previous studies in Strigiformes and Falconiformes found positive allometric and isometric relationships respectively, and, considering these findings with our results, we conclude that Rensch's rule is not supported by birds with exclusively female-biased sexual dimorphism in size.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 519–527  相似文献   

19.
The singing honeyeater, a nectar-feeding bird, is common throughout most of Australia. There is considerable geographical variation in weight, the heaviest birds (30 g) living at the highest latitudes (35°S) and the lightest birds (19 g) at the lowest latitudes (16°S). Clinal variation in weight is apparently related to climatic factors (e.g. potential evapotranspiration) in accord with Bergmann's rule. The exceptions are populations on islands and peninsulas which are about 13% heavier than those on the adjacent mainland.  相似文献   

20.
Aim  To test Bergmann's rule (which predicts a larger body size in colder areas within warm-blooded vertebrate species) in three partially sympatric species of larks ( Galerida theklae , Galerida cristata and Galerida randonii ) that occur in Morocco.
Location  Morocco.
Methods  Restriction fragment length polymorphism techniques applied on cytochrome b haplotypes were used to discriminate G. cristata and G. randonii , and to investigate the effects of interspecific hybridization in their contact zone. A comprehensive statistical framework was then designed to test Bergmann's rule in our three Galerida species (using altitude as a proxy for cold temperatures), while controlling for the possible influence of interspecific hybridization and competition and accounting for spatial autocorrelation. The method we propose is conservative in the sense that potentially confounding factors are adjusted so as to maximize their influence on the variable of interest.
Results  Bergmann's rule was strongly supported in G. theklae and G. randonii . However, body size did not respond to altitude in G. cristata , a result that was not simply explained by species-specific differences in geographical ranges and altitudinal span. In G. cristata , we detected a tendency for body size to increase with aridity, in agreement with an alternative definition of Bergmann's rule. However, since G. cristata also hybridizes with G. randonii in a contact zone located in the most arid part of the range of G. cristata , we could not tease apart the relative contribution of selection and hybridization in driving this pattern.
Main conclusions  This study highlights the need for careful statistical designs that allow meaningful variables to be picked out from large sets of potential factors. When taking these factors into account, we found that Bergmann's rule was still strongly supported in two out of the three species examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号