首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Abstract: Habitat selection among vertebrates entails decision making at a number of spatial scales. An understanding of factors influencing decisions at each of these scales is required for the effective management of wildlife populations. This study investigates the foraging ecology of a population of Glossy Black‐cockatoos in central New South Wales. We took advantage of the characteristic feeding sign produced by Glossy Black‐cockatoos to examine factors influencing habitat selection at multiple spatial scales. Birds preferred to forage at sites where food was abundant and avoided open sites where the predation risk may be greater. Their two food species, Allocasuarina diminuta and Allocasuarina gymnanthera, differed in profitability (kernel intake rate as measured by the ratio of seed weight to total seed and cone weight), as did trees within a species. Both species were utilized extensively, although foraging intensity was greater at sites where the more profitable species was present. In order to maximize their food intake, birds selected individual trees on the basis of cone abundance and profitability. Cones produced in the previous year were preferred.  相似文献   

2.
Life-history theory suggests that iteroparous plants should be flexible in their allocation of resources toward growth and reproduction. Such plasticity could have consequences for herbivores that prefer or specialize on vegetative versus reproductive structures. To test this prediction, we studied the response of the cactus bug (Narnia pallidicornis) to meristem allocation by tree cholla cactus (Opuntia imbricata). We evaluated the explanatory power of demographic models that incorporated variation in cactus relative reproductive effort (RRE; the proportion of meristems allocated toward reproduction). Field data provided strong support for a single model that defined herbivore fecundity as a time-varying, increasing function of host RRE. High-RRE plants were predicted to support larger insect populations, and this effect was strongest late in the season. Independent field data provided strong support for these qualitative predictions and suggested that plant allocation effects extend across temporal and spatial scales. Specifically, late-season insect abundance was positively associated with interannual changes in cactus RRE over 3 years. Spatial variation in insect abundance was correlated with variation in RRE among five cactus populations across New Mexico. We conclude that plant allocation can be a critical component of resource quality for insect herbivores and, thus, an important mechanism underlying variation in herbivore abundance across time and space.  相似文献   

3.
We studied the winter resource selection of muskoxen Ovibos moschatus in the High Arctic using a nested hierarchy of spatial scales 1) population range, 2) travel routes, 3) feeding sites (l e clusters of feeding craters), 4) feeding craters, and 5) diet (I e plant species) We found that, generally, patterns of selection remained consistent across all levels At successively smaller scales, muskoxen selected for higher graminoid abundance and particularly for thinner, softer snow cover, although we did not reject the hypothesis of random travel route selection Muskoxen uncovered forages from beneath the snow cover, by cratering, near the flonstic and nival extremes of availability Selection was consistently biased toward use of water sedge, Carex aquatilis As scale changed, however, muskoxen showed reversals of preference for some other forage species Diet was dominated by C aquatilis and cotton sedge, Eriophorum angustifolium , species characteristic of lowland meadows During spring melt, muskoxen moved to snow-free uplands to feed Dietary quality, as revealed by fecal nitrogen, increased at this time The consistency of the results across scales implied that these local levels of habitat selection occurred within one scaling domain  相似文献   

4.
Naive bumblebee foragers appear to use movement rules at smallspatial and temporal scales, but it is not clear whether theserules determine movement patterns as the scales increase. Onestrategy for efficient foraging used by bumblebees is near-farsearch, involving short flights when in good patches of flowersand longer flights when in poor patches. Bumblebees also demonstratethe use of a spatial memory strategy by returning repeatedlyto patches of flowers, and even following the same route betweenflowers, over periods of days. We attempted to determine atwhat spatial scales bumblebees use spatial memory while foragingwithin a patch and after how many flower visits spatial memoryoutweighs near-far search. Bumblebees in the laboratory foragedon a 4 x 4 array of artificial flowers with distances rangingfrom 10 to 80 cm between flowers in two simple spatial patterns.The proportion of visits to flowers containing a sucrose rewardwas monitored for either 100 or 400 flower visits in two separateexperiments, after which the locations of the rewarding andnonrewarding flowers were interchanged, producing a mirror image.A drop in accuracy after the mirror image switch would indicatethat the bees had memorized the location of rewarding flowers.Mirror image tests, and comparisons to a simulation model ofnear-far search based on actual flight distances, indicate thatnaive bumblebees used near-far search on flowers 10 cm apartbut increasingly used spatial memory as experience and spatialseparation increased. Bumblebees thus have multiple tacticsavailable to forage efficiently in different environments.  相似文献   

5.
Both density dependent and density independent processes such as climate affect population dynamics in large herbivores. Understanding herbivore foraging patterns is essential to identify the underlying mechanisms behind variation in vital rates. However, very little is known about how animals vary their selection of habitat temporally, alone or in interaction with density during summer. At the foraging scale, we tested using a fully replicated experiment whether domestic sheep Ovis aries stocked at high (80  per  km2) and low (25  per  km2) densities (spatial contrasts) varied their habitat selection temporally over a four year period. We predicted reduced selection of high productivity vegetation types with increasing density, and that seasonal and annual variation in climate would affect this density dependent selection pattern by increasing competition for high quality habitats in late grazing season and in years with poor vegetation development and over time related to vegetation responses to grazing. As predicted from the Ideal free distribution model, selection of high productivity habitat decreased at high density. There was also a marked temporal variation in habitat selection. Selection of the most productive vegetation types declined towards the end of each grazing season, but increased over years both at low and high sheep density. There was only weak evidence for interactions, as selection ratio of highly productive habitats tended to increase more over years at low density as compared to high density. Limited interactive effects of density and annual variation on habitat selection during summer may explain why similar interactions in vital rates have rarely been reported for summer seasons. Our results are consistent with the view that variation in habitat selection is a central mechanism for climate and density related variation in vital rates.  相似文献   

6.
7.
Habitat selection is a density‐dependent process, but little is known regarding how this relationship may vary across different temporal scales. Over long time scales, grazing shapes the structure, diversity and functioning of terrestrial ecosystems, and grazing‐induced changes in forage production over time are likely to affect the level of density dependence in habitat selection. In this fully‐replicated, landscape‐scale experiment, we investigated how density‐dependent habitat selection by a large grazing herbivore, sheep Ovis aries, develops over the time scale of a decade. We also address an often‐neglected challenge in habitat selection studies; namely, whether there is variation in use within a particular habitat or vegetation type and why. We found clear evidence of density dependence in habitat selection, with a wider use of habitats at high density. Despite a change in the standing biomass of high‐productivity vegetation at high herbivore density over the years, with herb biomass declining and graminoid biomass increasing, there was no clear evidence that these grazing‐induced changes in habitat over the years were strong enough to affect the level of density‐dependent habitat selection. The difference in selection for high versus low‐productivity habitats remained similar, despite annual fluctuations in the strength of selection. We found strong variation in selection within each vegetation type, even when vegetation types were mapped at a fine‐resolution scale. Our study shows that despite the interactive effects of herbivores and habitats, they are not always sufficiently strong enough to affect the level of density‐dependent habitat selection.  相似文献   

8.
9.
10.
Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.  相似文献   

11.
12.
The responses of animal pollinators to the spatially heterogeneous distribution of floral resources are important for plant reproduction, especially in species‐rich plant communities. We explore how responses of pollinators to floral resources varied across multiple spatial scales and studied the responses of two nectarivorous bird species (Cape sugarbird Promerops cafer, orange‐breasted sunbird Anthobaphes violacea) to resource distributions provided by communities of co‐flowering Protea species (Proteaceae) in South African fynbos. We used highly resolved maps of about 125 000 Protea plants at 27 sites and estimated the seasonal dynamics of standing crop of nectar sugar for each plant to describe the spatiotemporal distribution of floral resources. We recorded avian population sizes and the rates of bird visits to > 1300 focal plants to assess the responses of nectarivorous birds to floral resources at different spatial scales. The population sizes of the two bird species responded positively to the amount of sugar resources at the site scale. Within sites, the effects of floral resources on pollinator visits to plants varied across scales and depended on the resources provided by individual plants. At large scales (radii > 25 m around focal plants), high sugar density decreased per‐plant visitation rates, i.e. plants competed for animal pollinators. At small scales (radii < 5 m around focal plants), we observed either competition or facilitation for pollinators between plants, depending on the sugar amount offered by individual focal plants. In plants with copious sugar, per‐plant visitation rates increased with increasing local sugar density, but visitation rates decreased in plants with little sugar. Our study underlines the importance of scale‐dependent responses of pollinators to floral resources and reveals that pollinators’ responses depend on the interplay between individual floral resources and local resource neighbourhood.  相似文献   

13.
14.
Understanding population dynamics requires spatio‐temporal variation in demography to be measured across appropriate spatial and temporal scales. However, the most appropriate spatial scale(s) may not be obvious, few datasets cover sufficient time periods, and key demographic rates are often incompletely measured. Consequently, it is often assumed that demography will be spatially homogeneous within populations that lack obvious subdivision. Here, we quantify small‐scale spatial and temporal variation in a key demographic rate, reproductive success (RS), within an apparently contiguous population of European starlings. We used hierarchical cluster analysis to define spatial clusters of nest sites at multiple small spatial scales and long‐term data to test the hypothesis that small‐scale spatio‐temporal variation in RS occurred. RS was measured as the number of chicks alive ca. 12 days posthatch either per first brood or per nest site per breeding season (thereby incorporating multiple breeding attempts). First brood RS varied substantially among spatial clusters and years. Furthermore, the pattern of spatial variation was stable across years; some nest clusters consistently produced more chicks than others. Total seasonal RS also varied substantially among spatial clusters and years. However, the magnitude of variation was much larger and the pattern of spatial variation was no longer temporally consistent. Furthermore, the estimated magnitude of spatial variation in RS was greater at smaller spatial scales. We thereby demonstrate substantial spatial, temporal, and spatio‐temporal variation in RS occurring at very small spatial scales. We show that the estimated magnitude of this variation depended on spatial scale and that spatio‐temporal variation would not have been detected if season‐long RS had not been measured. Such small‐scale spatio‐temporal variation should be incorporated into empirical and theoretical treatments of population dynamics.  相似文献   

15.
Monitoring of large herbivores is central to research and management activities in many protected areas. Monitoring programs were originally developed to estimate (trends in) population sizes of individual species. However, emphasis is shifting increasingly towards conservation of diversity and communities instead of individual species, as a growing literature shows the importance of herbivore diversity for ecosystem functioning. We argue that the design of monitoring programs has not yet been adapted well to this new conservation paradigm. Using large herbivore census data from Hluhluwe-iMfolozi Park, South Africa, we studied how monitoring methodology (observational counts vs. dung counts) and spatial scale interact in influencing estimates of large herbivore species richness and diversity. Dung counts resulted in higher herbivore species richness and diversity estimates than direct observational counts, especially at finer monitoring resolutions (grid cells smaller than 25 km2). At monitoring resolutions coarser than 25 km2 both methods gave comparable diversity estimates. The methods also yielded different spatial diversity estimates, especially at finer resolutions. Grid cells with high diversity according to the dung count data did not necessarily have high diversity according to the observational counts, as shown by low correlation of grid cell values of both methods. We discuss these results in the light of estimates of the sampling effort of each method and, hence, suggest new monitoring designs that are more suitable for tracking temporal and spatial trends in large herbivore diversity and community composition.  相似文献   

16.
St-Louis A  Côté SD 《Oecologia》2012,169(1):167-176
Forage abundance, forage quality, and social factors are key elements of the foraging ecology of wild herbivores. For non-ruminant equids, forage-limited environments are likely to impose severe constraints on their foraging behaviour. We used a multi-scale approach to study foraging behaviour in kiang (Equus kiang), a wild equid inhabiting the high-altitude rangelands of the Tibetan Plateau. Using behavioural observations and vegetation sampling, we first assessed how patterns of plant abundance and quality affected (i) the instantaneous forage intake rate (fine scale) and (ii) the proportion of time spent foraging (coarse scale) across seasons. We also tested whether foraging behaviour differed among group types, between sex in adults, and between females of different reproductive status. At a fine scale, intake rate increased linearly with bite size and increased following a type II curvilinear function with biomass on feeding sites. Forage intake rate also increased linearly with plant quality. Male and female kiangs had similar intake rates. Likewise, gravid and lactating females had similar intake rates as barren and non-lactating females. At a coarse scale, kiangs spent longer time feeding in mesic than in xeric habitats, and spent more time feeding in early summer and fall than in late summer. Groups of adults with foals spent less time feeding than male groups and groups of adults without foals. Our findings suggest that kiangs use flexible foraging behaviours in relation to seasonal variations of vegetation quality and abundance, a likely outcome of the extreme seasonal conditions encountered on the Tibetan Plateau.  相似文献   

17.
This paper presents a novel spatio-temporal LSTM (SPATIAL) architecture for time series forecasting applied to environmental datasets. The framework was applied for three different ocean datasets: current speed, temperature, and dissolved oxygen. Network implementation proceeded in two directions that are nominally separated but connected as part of a natural environmental system – across the spatial (between individual sensors) and temporal dimensions of the sensor data. Data from twenty ocean sensors were used to train the model. Results were compared against four baseline models: two machine learning algorithms generated by robust autoML frameworks, and two deep neural networks based on CNN and LSTM, respectively. Results demonstrated ability to accurately replicate complex signals and provide comparable performance to state-of-the-art benchmarks. Learning from multiple sensors simultaneously increased robustness to missing data. This paper addresses two fundamental challenges related to environmental applications of machine learning: 1) data sparsity, particularly in a challenging ocean environment, and 2) environmental datasets are inherently connected in the spatial and temporal directions while classical ML approaches only consider one of these at a time. Furthermore, sharing of parameters across all input steps makes SPATIAL a fast, scalable, and easily-parameterized forecasting framework.  相似文献   

18.
19.
Detection of interspecific competition between insects is often sensitive to scaling. We give an example of scale-dependent interference between the weevil Curculio elephas and the moth Cydia splendana, which both have larvae that develop in the fruits of chestnut Castanea sativa. Measures at three scales were considered: chestnut, husk (with one to three fertile fruits) and tree. Data come from observations in the field over 14 years, complemented by experiments done directly in trees. Data on individual chestnut fruits revealed a marked statistical interference between the two insects. Experiments demonstrated that presence of a moth larva in a fruit usually inhibits weevil egg-laying. Conversely, weevil presence does not strongly modify moth larval behavior. Cases of double infestation often correspond to fruits first attacked by the weevil. With measures on husks, interference between the two insects was observed only in some trees; its intensity was always weaker than in the chestnuts themselves. At the scale of entire trees, rates of infestation by each insect are not correlated. Interference in chestnut fruits is interpreted by assuming that the weevil female either is sensitive to a repellent molecule originating from a moth larva or its frass, or can detect moth larval sounds. Mechanisms governing infestation rates from data per tree are discussed in relation to those found at fruit scale and to plant-insect interactions. The need to estimate available resources both from quantitative and qualitative points of view is emphasized.  相似文献   

20.
生境分化是群落物种缓解种间竞争压力,实现同域稳定共存的重要途径,是群落生态学领域的重要研究内容。同域动物的生境分化是空间尺度依赖的生态过程,从不同空间尺度分层研究物种的生境分化,对于全面了解同域动物的共存模式和机制,以及实现多物种整合保护都具有重要意义。2018年1月至8月,在四川白水河国家级自然保护区对同域分布的红腹锦鸡(Chrysolophus pictus)和红腹角雉(Tragopan temmminckii)进行了野外调查,基于MaxEnt模型和样方法,从宏生境和微生境两个空间尺度对其生境分化进行了研究。结果显示:1)在宏生境尺度,两种雉类的适宜宏生境重叠面积达44.59 km~2,分别占红腹锦鸡和红腹角雉适宜宏生境面积的58.73%和44.3%,表明二者在宏生境尺度上没有发生明显的种间分化;2)微生境尺度是两种雉类生境分化的关键尺度,海拔、坡位、最近水源距离和乔木层盖度4个特征上的显著差异,使二者的微生境发生显著的种间分化;3)虽然在不同空间尺度下具有不同的分化程度和方式,但两种雉类在海拔适应性、人为干扰耐受性以及对水源的依赖性上的差异在两个尺度下表现出了一定的一致性。此外,基于二者生境需求的异同,提出了控制人为干扰、加强宣传教育、维持自然植被多样性和镶嵌格局等针对该区域雉类物种共同保护的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号