共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Marta Goberna Alicia Montesinos‐Navarro Alfonso Valiente‐Banuet Yannick Colin Alicia Gmez‐Fernndez Santiago Donat Jose A. Navarro‐Cano Miguel Verdú 《Molecular ecology resources》2019,19(6):1552-1564
Co‐occurrence network analysis based on amplicon sequences is increasingly used to study microbial communities. Patterns of co‐existence or mutual exclusion between pairs of taxa are often interpreted as reflecting positive or negative biological interactions. However, other assembly processes can underlie these patterns, including species failure to reach distant areas (dispersal limitation) and tolerate local environmental conditions (habitat filtering). We provide a tool to quantify the relative contribution of community assembly processes to microbial co‐occurrence patterns, which we applied to explore soil bacterial communities in two dry ecosystems. First, we sequenced a bacterial phylogenetic marker in soils collected across multiple plots. Second, we inferred co‐occurrence networks to identify pairs of significantly associated taxa, either co‐existing more (aggregated) or less often (segregated) than expected at random. Third, we assigned assembly processes to each pair: patterns explained based on spatial or environmental distance were ascribed to dispersal limitation (2%–4%) or habitat filtering (55%–77%), and the remaining to biological interactions. Finally, we calculated the phylogenetic distance between taxon pairs to test theoretical expectations on the linkages between phylogenetic patterns and assembly processes. Aggregated pairs were more closely related than segregated pairs. Furthermore, habitat‐filtered aggregated pairs were closer relatives than those assigned to positive interactions, consistent with phylogenetic niche conservatism and cooperativism among distantly related taxa. Negative interactions resulted in equivocal phylogenetic signatures, probably because different competitive processes leave opposing signals. We show that microbial co‐occurrence networks mainly reflect environmental tolerances and propose that incorporating measures of phylogenetic relatedness to networks might help elucidate ecologically meaningful patterns. 相似文献
3.
Species enter and persist in local communities because of their ecological fit to local conditions, and recently, ecologists have moved from measuring diversity as species richness and evenness, to using measures that reflect species ecological differences. There are two principal approaches for quantifying species ecological differences: functional (trait‐based) and phylogenetic pairwise distances between species. Both approaches have produced new ecological insights, yet at the same time methodological issues and assumptions limit them. Traits and phylogeny may provide different, and perhaps complementary, information about species' differences. To adequately test assembly hypotheses, a framework integrating the information provided by traits and phylogenies is required. We propose an intuitive measure for combining functional and phylogenetic pairwise distances, which provides a useful way to assess how functional and phylogenetic distances contribute to understanding patterns of community assembly. Here, we show that both traits and phylogeny inform community assembly patterns in alpine plant communities across an elevation gradient, because they represent complementary information. Differences in historical selection pressures have produced variation in the strength of the trait‐phylogeny correlation, and as such, integrating traits and phylogeny can enhance the ability to detect assembly patterns across habitats or environmental gradients. 相似文献
4.
Recent investigations of relationships among plant traits have generated important insights into plant form and function. However, relationships involving leaf area, leaf shape and plant height remain poorly resolved. Previous work has also focused on correlations between average trait values for individual species. It is unclear whether similar relationships occur within species. We searched for novel plant trait correlations by comparing leaf area, leaf circularity, specific leaf area (SLA) and plant height among 16 common woody plant species from a temperate forest in New Zealand. Analyses were conducted both within species (intra‐specifically) and among species (inter‐specifically) to determine whether trait correlations were scale dependent. Leaf area was unrelated to other leaf traits inter‐specifically. However, leaf area declined with plant height and increased with SLA intra‐specifically. Leaf circularity decreased with plant height inter‐specifically, but increased with plant height intra‐specifically. SLA increased with plant height both inter‐ and intra‐specifically. Leaf circularity increased with SLA inter‐specifically, but decreased with SLA intra‐specifically. Overall results showed that leaf shape, SLA and plant height are interrelated. However, intra‐specific relationships often differed substantially from inter‐specific relationships, suggesting that the processes shaping relationships between this suite of plant traits are scale‐dependent. 相似文献
5.
Samantha M. Cady Timothy J. O'Connell Scott R. Loss Nick E. Jaffe Craig A. Davis 《Global Change Biology》2019,25(8):2691-2702
Global climate change is increasing the frequency and intensity of weather extremes, including severe droughts in many regions. Drought can impact organisms by inhibiting reproduction, reducing survival and abundance, and forcing range shifts. For birds, considering temporal scale by averaging drought‐related variables over different time lengths (i.e., temporal grains) captures different hydrologic attributes which may uniquely influence food supplies, vegetation greenness/structure, and other factors affecting populations. However, studies examining drought impacts on birds often assess a single temporal grain without considering that different species have different life histories that likely determine the temporal grain of their drought response. Furthermore, while drought is known to influence bird abundance and drive between‐year range shifts, less understood is whether it causes within‐range changes in species distributions. Our objectives were to (a) determine which temporal grain of drought (if any) is most related to bird presence/absence and whether this response is species specific; and (b) assess whether drought alters bird distributions by quantifying probability of local colonization and extinction as a function of drought intensity. We used North American Breeding Bird Survey data collected over 16 years, generalized linear mixed models, and dynamic occupancy models to meet these objectives. Different bird species responded to drought at different temporal grains, with most showing the strongest signal at annual or near‐annual grains. For all drought‐responsive species, increased drought intensity at any temporal grain always correlated with decreased occupancy. Additionally, colonization/extinction analyses indicated that one species, the dickcissel (Spiza americana), is more likely to colonize novel areas within the southern/core portion of its range during drought. Considering drought at different temporal grains, along with hydrologic attributes captured by each grain, may better reveal mechanisms behind drought impacts on birds and other organisms, and therefore improve understanding of how global climate change impacts species and the landscapes they inhabit. 相似文献
6.
7.
Olivier Honnay 《植被学杂志》2015,26(4):617-618
Species richness of habitat fragments is affected by spatial isolation. However, the scale of this phenomenon, and its interactions with the species’ seed dispersal potential has remained underexplored. By integrating seed trap and species distribution data, Koh et al., in this issue of the Journal of Vegetation Science, make a compelling case for scale‐dependent species’ responses to forest fragmentation. 相似文献
8.
9.
Grazing lawns are characteristic for African savanna grasslands, standing out as intensely grazed patches of stoloniferous grazing‐tolerant grass species. Grazing lawn development has been associated with grazing and increased nutrient input by large migratory herds. However, we argue that in systems without mass migrations disturbances, other than direct grazing, drive lawn development. Such disturbances, e.g. termite activity or megaherbivore middens, also increase nutrient input and keep the bunch vegetation down for a prolonged time period. However, field observations show that not all such disturbances lead to grazing lawns. We hypothesize that the initial disturbance has to be of a minimal threshold spatial scale, for grazing intensity to be high enough to induce lawn formation. We experimentally tested this idea in natural tall savanna grassland. We mowed different‐sized plots to simulate initial disturbances of different scales (six times during one year) and applied fertilizer to half of the plots during two years to simulate increased nutrient input by herbivores or termite activity. Allowing grazing by naturally occurring herbivores, we followed the vegetation development over more than three years. Grazing kept bunch grass short in coarser, fertilized plots, while grasses grew out toward their initial height in fine‐scale and unfertilized plots. Moreover, lawn grasses strongly increased in cover in plots with an increased nutrient input but only after coarser scale disturbance. These results support our hypothesis that an increased nutrient input in combination with grazing indeed induces grazing lawn formation, but only above a threshold scale of the initial disturbance. Our results provide an alternative mechanism for the development of grazing lawns in systems that lack mass migrating herds. Moreover, it gives a new spatial dimension to the processes behind grazing lawn development, and hence help to understand how herbivores might create and maintain spatial heterogeneity in grassland systems. 相似文献
10.
A rapidly increasing effort to merge functional community ecology and phylogenetic biology has increased our understanding of community assembly. However, studies using both phylogenetic‐ and trait‐based methods have been mainly conducted in old‐growth forests, with fewer studies in human‐disturbed communities, which play an increasingly important role in providing ecosystem services as primary forests are degraded. We used data from 18 1‐ha plots in tropical old‐growth forests and secondary forests with different disturbance histories (logging and shifting cultivation) and vegetation types (tropical lowland and montane forests) on Hainan Island, southern China. The distributions of 11 functional traits were compared among these six forest types. We used a null model approach to assess the effects of disturbance regimes on variation in response and effect traits and community phylogenetic structure across different stem sizes (saplings, treelets, and adult trees) and spatial scales (10–50 m). We found significant differences in the distribution of functional traits in highly disturbed lowland sites versus other forest types. Many individuals in highly disturbed lowland sites were deciduous, spiny, with non‐fleshy fruits and seeds dispersed passively or by wind, and low SLA. The response traits of coexisting species were clustered in all sites except for highly disturbed lowland sites where evenness was evident. There were different distributions of effect traits for saplings and treelets among different forest types but adult trees showed stronger clustering of trait values with increasing spatial scale among all forest types. Phylogenetic clustering predominated across all size classes and spatial scales in the highly disturbed lowland sites, and evenness in other forest types. High disturbance can lead to abiotic filtering, generating a community dominated by closely related species with disturbance‐adapted traits, where biotic interactions play a relatively minor role. In lightly disturbed and old growth forests, multiple processes simultaneously drive the community assembly, but biotic processes dominate at the fine scale. 相似文献
11.
Successional chronosequences provide a unique opportunity to study the effects of multiple ecological processes on plant community assembly. Using a series of 0.5 × 0.5 m2 plots (n = 30) from five successional sub‐alpine meadow plant communities (ages 3, 5, 9, 12, and undisturbed) in the Qinghai‐Tibetan Plateau, we investigated whether community assembly is stochastic or deterministic for species and functional traits. We tested directional change in species composition, functional trait composition, and then functional trait diversity measured by Rao's quadratic entropy for four traits – plant height, leaf dry matter content, specific leaf area, and seed mass – along two comparable successional chronosequences. We then evaluated the importance of species interactions, habitat filtering and stochasticity by comparing with random communities and partitioning the environmental and spatial components of Rao's quadratic entropy. We found no directional change in species composition, but clear directionality in functional trait composition. None of the abiotic environmental variables (except P) showed linear change with successional age, but soil moisture and nitrogen were positively related to functional diversity within meadows. Functional trait diversity increased significantly with the increase in successional age. Comparison with random communities showed a significant shift from trait divergence in early stages of succession (3‐ and 5‐yr) to convergence in the later stages of succession 9‐, 12‐yr and undisturbed). The relative importance of abiotic variables and spatial structure for functional trait diversity changed in a predictable manner with successional age. Stochasticity at the species level may indicate dispersal limitation, but deterministic effects on functional trait distributions show the role of both habitat effects and biotic interactions. 相似文献
12.
JUSTIN R. MEYER ELLINOR MICHEL PETER B. McINTYRE BRITTANY E. HUNTINGTON DUSTIN J. LONG GENIFER LARA 《Freshwater Biology》2011,56(10):2082-2093
1. Ecologists continue to debate whether the assembly of communities of species is more strongly influenced by dispersal limitations or niche‐based factors. Analytical approaches that account for both mechanisms can help to resolve controls of community assembly. 2. We compared littoral snail assemblages in Lake Tanganyika at three different spatial scales (5–25 m, 0.5–10 km and 0.5–27 km) to test whether spatial distance or environmental differences are better predictors of community similarity. 3. At the finest scale (5–25 m), snail assemblages shifted strongly with depth but not across similar lateral distances, indicating a stronger response to environmental gradients than dispersal opportunities. 4. At the two larger scales (0.5–27 km), both environmental similarity and shoreline distance between sites predicted assemblage similarity across sites. Additionally, canonical correspondence analysis revealed that snail abundances were significantly correlated with algal carbon‐to‐nitrogen ratio and wave energy. 5. Our results indicate that the factors governing assemblage structure are scale dependent; niche‐based mechanisms act across all spatial scales, whereas community similarity declines with distance only at larger spatial separations. 相似文献
13.
Thomas De Solan Ian Renner Marc Cheylan Philippe Geniez Jean‐Yves Barnagaud 《Ecography》2019,42(3):608-620
Although classified among the greatest threats to the world's biodiversity, the effects of land use and their scale dependency are left unexplored in many taxonomic groups. Reptiles are among the most data‐deficient vertebrates in this respect, although their ecological traits make them highly sensitive to habitat modifications. We tested whether land use gradients shape the distributions of Mediterranean reptiles at regional and local scales, and whether species’ ecological traits and phylogeny explain these patterns. Reptiles are generally rare and hard to survey through standardized protocols. We overcame these obstacles by modeling an original data set of 18164 opportunistic occurrence records for 14 reptile species with spatially‐explicit point process models incorporating known sources of sampling heterogeneity and spatially autocorrelated error. At a regional scale, reptiles favored open habitats and tended to avoid urban areas. At a local scale, the persistence of open habitats did better than forest resulting from land abandonment in maintaining reptiles within a heavily anthropogenic matrix. Contrary to our expectations, the absence of any clear trait or phylogenetic signals suggests that these responses are mediated by a complex interplay between species’ ecology and regional biogeographic history. These results demonstrate that reptile responses to land use are scale‐dependent and locally exacerbated when anthropogenic pressure is high. We further show that land abandonment is insufficient to preserve reptiles in the face of anthropogenic pressures unless patches of suitable habitat are effectively maintained. Eventually, our study further illustrates the effectiveness of volunteer‐based opportunistic sampling in testing hypotheses on the determinants of rare species’ distributions. 相似文献
14.
Jonas Schoelynck Toon de Groote Kris Bal Wouter Vandenbruwaene Patrick Meire Stijn Temmerman 《Ecography》2012,35(8):760-768
Spatial self‐organisation of ecosystems is the process by which large‐scale ordered spatial patterns emerge from disordered initial conditions through local feedbacks between organisms and their environment. Such process is considered important for ecosystem functioning, providing increased productivity, resistance and resilience against environmental change. Although spatial self‐organisation has been found for an increasing number of ecosystems, it has never been shown so far for aquatic river vegetation. Here we explore the existence of spatial self‐organisation of freshwater macrophyte patches in a typical lowland river (Belgium), showing that the underlying mechanisms for pattern formation are scale‐dependent feedbacks between plant growth, water flow and local river bed erosion and sedimentation. The mapping of vegetation patches showed that the frequency distribution of patch sizes is governed by a power‐law function, suggesting that the patches are self‐organised. Scale‐dependent feedbacks, likely to lead to this self‐organised pattern, were demonstrated with a mimic experiment. Both positive and negative feedbacks on plants were confirmed by a transplantation experiment. Placing vegetation patch mimics in the river showed experimentally that on a short range (within and behind the mimics) flow reduction and increased sedimentation occurred, while on a larger range (next to patches) the flow was accelerated and decreased sedimentation took place. By transplanting macrophytes within, next to and further away from existing patches, it was proven that the conditions within the patches favoured the survival and growth of transplants (i.e. short‐range positive feedback), while the conditions just next to patches led to decreased survival and growth (i.e. long‐range negative feedback). 相似文献
15.
Integrating phylogenetic and ecological distances reveals new insights into parasite host specificity 下载免费PDF全文
The range of hosts a pathogen infects (host specificity) is a key element of disease risk that may be influenced by both shared phylogenetic history and shared ecological attributes of prospective hosts. Phylospecificity indices quantify host specificity in terms of host relatedness, but can fail to capture ecological attributes that increase susceptibility. For instance, similarity in habitat niche may expose phylogenetically unrelated host species to similar pathogen assemblages. Using a recently proposed method that integrates multiple distances, we assess the relative contributions of host phylogenetic and functional distances to pathogen host specificity (functional–phylogenetic host specificity). We apply this index to a data set of avian malaria parasite (Plasmodium and Haemoproteus spp.) infections from Melanesian birds to show that multihost parasites generally use hosts that are closely related, not hosts with similar habitat niches. We also show that host community phylogenetic ß‐diversity (Pßd) predicts parasite Pßd and that individual host species carry phylogenetically clustered Haemoproteus parasite assemblages. Our findings were robust to phylogenetic uncertainty, and suggest that phylogenetic ancestry of both hosts and parasites plays important roles in driving avian malaria host specificity and community assembly. However, restricting host specificity analyses to either recent or historical timescales identified notable exceptions, including a ‘habitat specialist’ parasite that infects a diversity of unrelated host species with similar habitat niches. This work highlights that integrating ecological and phylogenetic distances provides a powerful approach to better understand drivers of pathogen host specificity and community assembly. 相似文献
16.
17.
The response of species diversity to dispersal capability is inherently scale‐dependent: increasing dispersal capability is expected to increase diversity at the local scale, while decreasing diversity at the metacommunity scale. However, these expectations are based on model formulations that neglect dispersal limitation and species segregation at the local scale. We developed a unifying framework of dispersal–diversity relationships and tested the generality of these expectations. For this purpose we used a spatially‐explicit neutral model with various combinations of survey area (local scale) and landscape size (metacommunity scale). Simulations were conducted using landscapes of finite and of conceptually infinite size. We analyzed the scale‐dependence of dispersal‐diversity relationships for exponentially‐bounded versus fat‐tailed dispersal kernels, several levels of speciation rate and contrasting assumptions on recruitment at short dispersal distances. We found that the ratio of survey area to landscape size is a major determinant of dispersal–diversity relationships. With increasing survey‐to‐landscape area ratio the dispersal–diversity relationship switches from monotonically increasing through a U‐shaped pattern (with a local minimum) to a monotonically decreasing pattern. Therefore, we provide a continuous set of dispersal–diversity relationships, which contains the response shapes reported previously as extreme cases. We suggest the mean dispersal distance with the minimum of species diversity (minimizing dispersal distance) for a certain scenario as a key characteristic of dispersal–diversity relationships. We show that not only increasing mean dispersal distances, but also increasing variances of dispersal can enhance diversity at the local scale, given a diverse species pool at the metacommunity scale. In conclusion, the response of diversity to variations of dispersal capability at spatial scales of interest, e.g. conservation areas, can differ more widely than expected previously. Therefore, land use and conservation activities, which manipulate dispersal capability, need to consider the landscape context and potential species pools carefully. 相似文献
18.
Ulrike E. Schlgel Volker Grimm Niels Blaum Pierluigi Colangeli Melanie Dammhahn Jana A. Eccard Sebastian L. Hausmann Antje Herde Heribert Hofer Jasmin Joshi Stephanie Kramer‐Schadt Magdalena Litwin Sissi D. Lozada‐Gobilard Marina E. H. Müller Thomas Müller Ran Nathan Jana S. Petermann Karin Pirhofer‐Walzl Viktoriia Radchuk Matthias C. Rillig Manuel Roeleke Merlin Schfer Cdric Scherer Gabriele Schiro Carolin Scholz Lisa Teckentrup Ralph Tiedemann Wiebke Ullmann Christian C. Voigt Guntram Weithoff Florian Jeltsch 《Biological reviews of the Cambridge Philosophical Society》2020,95(4):1073-1096
Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual‐level movement processes on community‐level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro–macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile‐link‐generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour‐based view on movement becomes important in understanding the responses of communities under ongoing environmental change. 相似文献
19.
Jiaxin Zhang Nathan G. Swenson Jianming Liu Mengting Liu Xiujuan Qiao Mingxi Jiang 《Ecology and evolution》2020,10(15):8091-8104
Despite several decades of study in community ecology, the relative importance of the ecological processes that determine species co‐occurrence across spatial scales remains uncertain. Some of this uncertainty may be reduced by studying the scale dependency of community assembly in the light of environmental variation. Phylogenetic information and functional trait information are often used to provide potentially valuable insights into the drivers of community assembly. Here, we combined phylogenetic and trait‐based tests to gain insights into community processes at four spatial scales in a large stem‐mapped subtropical forest dynamics plot in central China. We found that all of the six leaf economic traits measured in this study had weak, but significant, phylogenetic signal. Nonrandom phylogenetic and trait‐based patterns associated with topographic variables indicate that deterministic processes tend to dominate community assembly in this plot. Specifically, we found that, on average, co‐occurring species were more phylogenetically and functionally similar than expected throughout the plot at most spatial scales and assemblages of less similar than expected species could only be found on finer spatial scales. In sum, our results suggest that the trait‐based effects on community assembly change with spatial scale in a predictable manner and the association of these patterns with topographic variables, indicates the importance of deterministic processes in community assembly relatively to random processes. 相似文献
20.
Spatial heterogeneity and scale‐dependent habitat selection for two sympatric raptors in mixed‐grass prairie 下载免费PDF全文
Sympatric predators are predicted to partition resources, especially under conditions of food limitation. Spatial heterogeneity that influences prey availability might play an important role in the scales at which potential competitors select habitat. We assessed potential mechanisms for coexistence by examining the role of heterogeneity in resource partitioning between sympatric raptors overwintering in the southern Great Plains. We conducted surveys for wintering Red‐tailed hawk (Buteo jamaicensis) and Northern Harrier (Circus cyanea) at two state wildlife management areas in Oklahoma, USA. We used information from repeated distance sampling to project use locations in a GIS. We applied resource selection functions to model habitat selection at three scales and analyzed for niche partitioning using the outlying mean index. Habitat selection of the two predators was mediated by spatial heterogeneity. The two predators demonstrated significant fine‐scale discrimination in habitat selection in homogeneous landscapes, but were more sympatric in heterogeneous landscapes. Red‐tailed hawk used a variety of cover types in heterogeneous landscapes but specialized on riparian forest in homogeneous landscapes. Northern Harrier specialized on upland grasslands in homogeneous landscapes but selected more cover types in heterogeneous landscapes. Our study supports the growing body of evidence that landscapes can affect animal behaviors. In the system we studied, larger patches of primary land cover types were associated with greater allopatry in habitat selection between two potentially competing predators. Heterogeneity within the scale of raptor home ranges was associated with greater sympatry in use and less specialization in land cover types selected. 相似文献