首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
The majority of breast cancer cases ultimately become unresponsive to endocrine therapies, and this progression of breast cancer from hormone-responsive to hormone-independent represents an area in need of further research. Additionally, hormone-independent carcinomas are characterized as being more aggressive and metastatic, key features of more advanced disease. Having previously shown the ability of the stromal-cell derived factor-1 (SDF-1)–CXCR4 signaling axis to promote primary tumorigenesis and hormone independence by overexpressing CXCR4 in MCF-7 cells, in this study we further examined the role of SDF-1/CXCR4 in the endogenously CXCR4-positive, estrogen receptor α (ER-α)-positive breast carcinoma cell line, MDA–MB-361. In addition to regulating estrogen-induced and hormone-independent tumor growth, CXCR4 signaling stimulated the epithelial-to-mesenchymal transition, evidenced by decreased CDH1 expression following SDF-1 treatment. Furthermore, inhibition of CXCR4 with the small molecule inhibitor AMD3100 induced CDH1 gene expression and inhibited CDH2 gene expression in MDA–MB-361 cells. Further, exogenous SDF-1 treatment induced ER-α-phosphorylation in both MDA–MB-361 and MCF-7–CXCR4 cells, demonstrating ligand-independent activation of ER-α through CXCR4 crosstalk. qPCR microRNA array analyses of the MDA–MB-361 and MCF-7–CXCR4 cell lines revealed changes in microRNA expression profiles induced by SDF-1, consistent with a more advanced disease phenotype and further supporting our hypothesis that the SDF-1/CXCR4 signaling axis drives ER-α-positive breast cancer cells to a hormone independent and more aggressive phenotype. In this first demonstration of SDF-1–CXCR4-induced microRNAs in breast cancer, we suggest that this signaling axis may promote tumorigenesis via microRNA regulation. These findings represent future potential therapeutic targets for the treatment of hormone-independent and endocrine-resistant breast cancer.  相似文献   

5.
Estrogen receptors play a key role in breast cancer development and progression. Kruppel-like factor 6 (KLF6) is a tumour-suppressing protein. The aim of this study was to identify the role of KLF6 inhibition in estrogen receptor{alpha} (ERα)-elicited breast cancer development. Protein expression levels were examined by western blot analysis and immunoprecipitation was used to analyse interactions between proteins. An MTT assay was used to study cell proliferation. We found that KLF6 mediates cell growth in ERα-positive breast cancer cells through interaction with the c-Src protein. This interaction causes inactivation of the Erk and Akt proteins. These pathways are critical for the proliferation and survival of breast cancer cells. We also established that KLF6 could not mediate cell growth in ERα-negative cells. We conclude that KLF6 can modulate ERα-mediated cell growth in breast cancer cells. The unique role of KLF6 in mediating cell growth in breast cancer cells opens up the possibility of a new therapeutic strategy for treating breast cancer.  相似文献   

6.
Tamoxifen has been a frontline treatment for estrogen receptor alpha (ERα)-positive breast tumors in premenopausal women. However, resistance to tamoxifen occurs in many patients. ER still plays a critical role in the growth of breast cancer cells with acquired tamoxifen resistance, suggesting that ERα remains a valid target for treatment of tamoxifen-resistant (Tam-R) breast cancer. In an effort to identify novel regulators of ERα signaling, through a small-scale siRNA screen against histone methyl modifiers, we found WHSC1, a histone H3K36 methyltransferase, as a positive regulator of ERα signaling in breast cancer cells. We demonstrated that WHSC1 is recruited to the ERα gene by the BET protein BRD3/4, and facilitates ERα gene expression. The small-molecule BET protein inhibitor JQ1 potently suppressed the classic ERα signaling pathway and the growth of Tam-R breast cancer cells in culture. Using a Tam-R breast cancer xenograft mouse model, we demonstrated in vivo anti-breast cancer activity by JQ1 and a strong long-lasting effect of combination therapy with JQ1 and the ER degrader fulvestrant. Taken together, we provide evidence that the epigenomic proteins BRD3/4 and WHSC1 are essential regulators of estrogen receptor signaling and are novel therapeutic targets for treatment of Tam-R breast cancer.  相似文献   

7.
Indole-3-carbinol (I3C) is a natural anti-carcinogenic compound found at high concentrations in Brassica vegetables. I3C was recently reported to inhibit neutrophil elastase (NE) activity, while consequently limiting the proteolytic processing of full length cyclin E into pro-tumorigenic low molecular weight cyclin E (LMW-E). In this study, we hypothesized that inhibition of NE activity and resultant LMW-E generation is critical to the anti-tumor effects of I3C. LMW-E was predominately expressed by ERα-negative breast cancer cell lines. However, ERα-positive cell lines demonstrated the greatest sensitivity to the anti-tumor effects of I3C and its more potent N-alkoxy derivatives. We found that I3C was incapable of inhibiting NE activity or the generation of LMW-E. Therefore, this pathway did not contribute to the anti-tumor activity of I3C. Gene expression analyzes identified ligand-activated aryl hydrocarbon receptor (AhR), which mediated sensitivity to the anti-tumor effects of I3C in ERα-positive MCF-7 cells. In this model system, the reactive oxygen species (ROS)-induced upregulation of ATF-3 and pro-apoptotic BH3-only proteins (e.g. NOXA) contributed to the sensitivity of ERα-positive breast cancer cells to the anti-tumor effects of I3C. Overexpression of ERα in MDA-MB-231 cells, which normally lack ERα expression, increased sensitivity to the anti-tumor effects of I3C, demonstrating a direct role for ERα in mediating the sensitivity of breast cancer cell lines to I3C. Our results suggest that ERα signaling amplified the pro-apoptotic effect of I3C-induced AhR signaling in luminal breast cancer cell lines, which was mediated in part through oxidative stress induced upregulation of ATF-3 and downstream BH3-only proteins.  相似文献   

8.
Antiestrogen is one type of the endocrine therapeutic agents for estrogen receptor α (ERα)-positive breast cancer. Unfortunately, this treatment alone is insufficient. Here we reported a novel potential anticancer strategy by using histone deacetylase (HDAC) inhibitor to enhance the action of endocrine therapy in ERα-positive breast cancer cell. The well-described HDAC inhibitor, trichostatin A (TSA), and antiestrogen raloxifene were found to, respectively, inhibit E2-induced proliferation of MCF-7 breast cancer cell in a dose-responsive and time-dependent manner. TSA and raloxifene enhanced the antiproliferative activity of each other by promoting cell death via apoptosis and cell cycle arrest. Thus, they displayed better antiproliferative effects in combined treatment than that with either agent alone. The expression level of estrogen receptor β (ERβ) showed a marked increase after TSA or/and raloxifene treatment. Treatments with TSA or/and raloxifene resulting in the up-regulation of ERβ are in accordance with the antiproliferative effects of the two agents. Furthermore, the over-expression of ERβ by adenovirus delivery could inhibit the proliferation of MCF-7 tumor cells and drastically enhanced the antiproliferative effects of TSA and raloxifene. These results demonstrated that the interference of ERβ on the antiproliferative effects of HDAC inhibitor and antiestrogen constitutes a promising approach for breast cancer treatment.  相似文献   

9.
Oxidative stress has been postulated as one of the mechanisms underlying the estrogen carcinogenic effect in breast cancer. Estrogens are known to increase mitochondrial-derived reactive oxygen species (ROS) by an unknown mechanism. Given that uncoupling proteins (UCPs) are key regulators of mitochondrial energy efficiency and ROS production, our aim was to check the presence and activity of UCPs in estrogen receptor (ER)-positive and ER-negative breast cancer cells and tumors, as well as their relation to oxidative stress. Estrogen (1 nM) induced higher oxidative stress in the ER-positive MCF-7 cell line, showing increased mitochondrial membrane potential, H2O2 levels, and DNA and protein damage compared to ER-negative MDA-MB-231 cells. All isoforms of uncoupling proteins were highly expressed in ER-positive breast cancer cells and tumors compared to negative ones. ROS production in mitochondria isolated from MCF-7 was increased by inhibition of UCPs with GDP, but not in mitochondria from MDA-MB-231. Estrogen treatment decreased uncoupling protein and catalase levels in MCF-7 and decreased GDP-dependent ROS production in isolated mitochondria. On the whole, these results suggest that estrogens, through an ER-dependent mechanism, may increase mitochondrial ROS production by repressing uncoupling proteins, which offers a new perspective on the understanding of why estrogens are a risk factor for breast cancer.  相似文献   

10.
Survivin is an oncogenic protein that is highly expressed in breast cancer and has a dual function that is dependent on its subcellular localization. In the cytosol, survivin blocks programmed cell death by inactivating caspase proteins; however, in the nucleus it facilitates cell division by regulating chromosomal movement and cytokinesis. In prior work, we showed that survivin is acetylated by CREB-binding protein (CBP), which restricts its localization to the nuclear compartment and thereby inhibits its anti-apoptotic function. Here, we identify histone deacetylase 6 (HDAC6) as responsible for abrogating CBP-mediated survivin acetylation in the estrogen receptor (ER)-positive breast cancer cell line, MCF-7. HDAC6 directly binds survivin, an interaction that is enhanced by CBP. In quiescent breast cancer cells in culture and in malignant tissue sections from ER+ breast tumors, HDAC6 localizes to a perinuclear region of the cell, undergoing transport to the nucleus following CBP activation where it then deacetylates survivin. Genetically modified mouse embryonic fibroblasts that lack mhdac6 localize survivin predominantly to the nuclear compartment, whereas wild-type mouse embryonic fibroblasts localize survivin to distinct cytoplasmic structures. Together, these data imply that HDAC6 deacetylates survivin to regulate its nuclear export, a feature that may provide a novel target for patients with ER+ breast cancer.  相似文献   

11.
12.
Chan CH  Li CF  Yang WL  Gao Y  Lee SW  Feng Z  Huang HY  Tsai KK  Flores LG  Shao Y  Hazle JD  Yu D  Wei W  Sarbassov D  Hung MC  Nakayama KI  Lin HK 《Cell》2012,149(5):1098-1111
Akt kinase plays a central role in cell growth, metabolism, and tumorigenesis. The TRAF6 E3 ligase orchestrates IGF-1-mediated Akt ubiquitination and activation. Here, we show that Akt ubiquitination is also induced by activation of ErbB receptors; unexpectedly, and in contrast to IGF-1 induced activation, the Skp2 SCF complex, not TRAF6, is a critical E3 ligase for ErbB-receptor-mediated Akt ubiquitination and membrane recruitment in response to EGF. Skp2 deficiency impairs Akt activation, Glut1 expression, glucose uptake and glycolysis, and breast cancer progression in various tumor models. Moreover, Skp2 overexpression correlates with Akt activation and breast cancer metastasis and serves as a marker for poor prognosis in Her2-positive patients. Finally, Skp2 silencing sensitizes Her2-overexpressing tumors to Herceptin treatment. Our study suggests that distinct E3 ligases are utilized by diverse growth factors for Akt activation and that targeting glycolysis sensitizes Her2-positive tumors to Herceptin treatment.  相似文献   

13.
14.

Background

25% of breast cancer patients suffer from aggressive HER2-positive tumours that are characterised by overexpression of the HER2 protein or by its increased tyrosine kinase activity. Herceptin is a major drug used to treat HER2 positive breast cancer. Understanding the molecular events that occur when breast cancer cells are exposed to Herceptin is therefore of significant importance. Dual specificity phosphatases (DUSPs) are central regulators of cell signalling that function downstream of HER2, but their role in the cellular response to Herceptin is mostly unknown. This study aims to model the initial effects of Herceptin exposure on DUSPs in HER2-positive breast cancer cells using Boolean modelling.

Results

We experimentally measured expression time courses of 21 different DUSPs between 0 and 24 h following Herceptin treatment of human MDA-MB-453 HER2-positive breast cancer cells. We clustered these time courses into patterns of similar dynamics over time. In parallel, we built a series of Boolean models representing the known regulatory mechanisms of DUSPs and then demonstrated that the dynamics predicted by the models is in agreement with the experimental data. Furthermore, we used the models to predict regulatory mechanisms of DUSPs, where these mechanisms were partially known.

Conclusions

Boolean modelling is a powerful technique to investigate and understand signalling pathways. We obtained an understanding of different regulatory pathways in breast cancer and new insights on how these signalling pathways are activated. This method can be generalized to other drugs and longer time courses to better understand how resistance to drugs develops in cancer cells over time.
  相似文献   

15.
Lrig1 is the founding member of the Lrig family and has been implicated in the negative regulation of several oncogenic receptor tyrosine kinases including ErbB2. Lrig1 is expressed at low levels in several cancer types but is overexpressed in some prostate and colorectal tumors. Given this heterogeneity, whether Lrig1 functions to suppress or promote tumor growth remains a critical question. Previously, we found that Lrig1 was poorly expressed in ErbB2-positive breast cancer, suggesting that Lrig1 has a growth-inhibitory role in this tumor type. However, breast cancer is a complex disease, with ErbB2-positive tumors accounting for just 25% of all breast cancers. To gain a better understanding of the role of Lrig1 in breast cancer, we examined its expression in estrogen receptor α (ERα)-positive disease which accounts for the majority of breast cancers. We find that Lrig1 is expressed at significantly higher levels in ERα-positive disease than in ERα-negative disease. Our study provides a molecular rationale for Lrig1 enrichment in ERα-positive disease by showing that Lrig1 is a target of ERα. Estrogen stimulates Lrig1 accumulation and disruption of this induction enhances estrogen-dependent tumor cell growth, suggesting that Lrig1 functions as an estrogen-regulated growth suppressor. In addition, we find that Lrig1 expression correlates with prolonged relapse-free survival in ERα-positive breast cancer, identifying Lrig1 as a new prognostic marker in this setting. Finally, we show that ErbB2 activation antagonizes ERα-driven Lrig1 expression, providing a mechanistic explanation for Lrig1 loss in ErbB2-positive breast cancer. This work provides strong evidence for a growth-inhibitory role for Lrig1 in breast cancer.  相似文献   

16.
Hsp90作为热休克蛋白家族中的重要一员,是一种对细胞生存所必需的分子伴侣,它发挥着稳定顾客蛋白构象、维持其功能的作用。许多顾客蛋白在肿瘤中处于过度表达或持续激活状态,与肿瘤的发生发展有着密切的关系。因此,Hsp90在近年的研究中倍受关注,已经发展为抗肿瘤治疗的良好靶点,目前已经有多个Hsp90抑制剂进入临床实验。近年随着肿瘤分子生物学的研究,肿瘤分子靶向治疗已取得明显成果,针对多种癌症已获得了多个用于靶向治疗的单克隆抗体或小分子化学物质,如用于治疗某些HER2阳性乳腺癌的曲妥珠单抗、用于治疗NSCLC的吉非替尼等。然而随着这些药物的应用,肿瘤耐药性不可避免的产生。多方面研究表明Hsp90抑制剂会引起与耐药相关的多个分子的降解,提示其在拮抗耐药方面具有重要的意义。本文就Hsp90分子抑制剂在拮抗肿瘤耐药方面的研究进行综述。  相似文献   

17.
Neutrophils are significant compositions of solid tumors and exert distinct functions in different types of tumors. However, the precise role of neutrophils in the progression of breast cancer (BC) is presently unclear. In this study, by investigating the single-cell RNA sequencing data, we identify a new neutrophil subset, C5aR1-positive neutrophils, that correlates with tumor progression and poor survival for BC patients. Furthermore, it is discovered that C5aR1-positive neutrophils enhance BC cell glycolysis via upregulating ENO1 expression. Mechanically, C5aR1-positive neutrophil-secreted IL1β and TNFα cooperatively activate ERK1/2 signaling, which phosphorylates WTAP at serine341 and thereby stabilizes WTAP protein. The stabilization of WTAP further promotes RNA m6A methylation of ENO1, impacting the glycolytic activity of BC cells. Importantly, C5aR1-positive neutrophils also promote breast cancer growth in vivo, and this effect is abolished by WTAP silencing. In clinical BC samples, increased C5aR1-positive neutrophils correlate with elevated IL1β, TNFα, and ENO1 expression. A high co-expression of C5aR1-positive neutrophil gene signature and ENO1 predicts worse prognosis of BC patients compared with a low co-expression. Collectively, our study reveals a novel subset of C5aR1-positive neutrophils that induces breast cancer glycolysis via increasing ERK1/2-WTAP-dependent m6A methylation of ENO1. These findings support the potential for exploration of C5aR1-positive neutrophils as a therapeutic target in breast cancer.Subject terms: Cancer microenvironment, Breast cancer, Oncogenesis  相似文献   

18.
Ferroptosis is an iron-dependent, oxidative cell death, and is distinct from apoptosis, necrosis and autophagy. In this study, we demonstrated that lysosome disrupting agent, siramesine and a tyrosine kinase inhibitor, lapatinib synergistically induced cell death and reactive oxygen species (ROS) in MDA MB 231, MCF-7, ZR-75 and SKBr3 breast cancer cells over a 24 h time course. Furthermore, the iron chelator deferoxamine (DFO) significantly reduced cytosolic ROS and cell death following treatment with siramesine and lapatinib. Furthermore, we determined that FeCl3 levels were elevated in cells treated with siramesine and lapatinib indicating an iron-dependent cell death, ferroptosis. To confirm this, we treated cells with a potent inhibitor of ferroptosis, ferrastatin-1 that effectively inhibited cell death following siramesine and lapatinib treatment. The increase levels of iron could be due to changes in iron transport. We found that the expression of transferrin, which is responsible for the transport of iron into cells, is increased following treatment with lapatinib alone or in combination with siramesine. Knocking down of transferrin resulted in decreased cell death and ROS after treatment. In addition, ferroportin-1 (FPN) is an iron transport protein, responsible for removal of iron from cells. We found its expression is decreased after treatment with siramesine alone or in combination with lapatinib. Overexpression FPN resulted in decreased ROS and cell death whereas knockdown of FPN increased cell death after siramesine and lapatinib treatment. This indicates a novel induction of ferroptosis through altered iron regulation by treating breast cancer cells with a lysosome disruptor and a tyrosine kinase inhibitor.Ferroptotic cell death is a type of cell death that is morphologically, biochemically and genetically distinct from apoptosis, various forms of necrosis, and autophagy.1, 2 This process is characterized by iron-dependent accumulation of reactive oxygen species (ROS). Unlike other forms of apoptotic and non-apoptotic death,3, 4 this requirement for ROS accumulation appears to be universal. Several genes or proteins responsible for the regulation of iron and ROS metabolism have been implicated in ferroptosis, but the mechanisms to induce and regulate ferroptosis in breast cancer cells remains largely unknown.Lysosomotropic agents are drugs that destabilize the lysosome membrane directly causing leakage of lysosomal content within the cell.5 Siramesine is a sigma-2 receptor ligand that was a lysosomotropic agent and originally developed for treatment of depression.6 Although clinical trials failed to show significant efficacy in patients, there are no toxic side effects. In a variety of cancer cells including breast cancer cells, siramesine was shown to induce cell death. It was further shown to induce a rapid rise in the lysosomal pH followed by lysosomal leakage mediated in part by inhibiting sphingomyelinase (ASM). This destabilizing of lysosome membranes led to cathepsin B release and increased ROS causing cell death. Siramesine-induced cell death was independent of the activation of known caspase cascades since siramesine failed to induce detectable caspase activation and the pharmacologic caspase inhibitor z-VAD-fmk could not block the cell death.7 Lapatinib is a dual tyrosine kinase inhibitor of ErbB1 and ErbB2 tyrosine kinase receptors. Lapatinib has been approved for treatment of ErbB2-positive breast cancer and for other cancers that overexpress ErbB2. In particular, it was adopted as a therapeutic agent for the treatment of patients with ErbB2-positive refractory advanced or metastatic breast cancer, who had received previous failed treatments such as trastuzumab, anthracyclines and taxanes.8, 9 In vitro and in vivo studies demonstrated that lapatinib was able to inhibit proliferation of ErbB2 and epidermal growth factor receptor-overexpressing cancer cells and induce apoptosis.8, 9, 10 Although lapatinib provides a new treatment option for ErbB2-positive cancer, lapatinib monotherapy frequently demonstrated only modest activity in intermediate ErbB2-positive breast cancer cells.11 In this study, we investigated the synergic effects of siramesine and lapatinib on cell death in breast cancer cell lines, and the role of iron regulatory proteins and ROS in regulating ferroptosis in breasts cancer cells.  相似文献   

19.
Patients with ER/HER2-positive breast cancer have a poor prognosis and are less responsive to selective estrogen receptor modulators; this is presumably due to the crosstalk between ER and HER2. Fatty acid synthase (FASN) is essential for the survival and maintenance of the malignant phenotype of breast cancer cells. An intimate relationship exists between FASN, ER and HER2. We hypothesized that FASN may be the downstream effector underlying ER/HER2 crosstalk through the PI3K/AKT/mTOR pathway in ER/HER2-positive breast cancer. The present study implicated the PI3K/AKT/mTOR pathway in the regulation of FASN expression in ER/HER2-positive breast cancer cells and demonstrated that rapamycin, an mTOR inhibitor, inhibited FASN expression. Cerulenin, a FASN inhibitor, synergized with rapamycin to induce apoptosis and inhibit cell migration and tumorigenesis in ER/HER2-positive breast cancer cells. Our findings suggest that inhibiting the mTOR-FASN axis is a promising new strategy for treating ER/HER2-positive breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号