首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Habitat selection can be considered as a hierarchical process in which animals satisfy their habitat requirements at different ecological scales. Theory predicts that spatial and temporal scales should co‐vary in most ecological processes and that the most limiting factors should drive habitat selection at coarse ecological scales, but be less influential at finer scales. Using detailed location data on roe deer Capreolus capreolus inhabiting the Bavarian Forest National Park, Germany, we investigated habitat selection at several spatial and temporal scales. We tested 1) whether time‐varying patterns were governed by factors reported as having the largest effects on fitness, 2) whether the trade‐off between forage and predation risks differed among spatial and temporal scales and 3) if spatial and temporal scales are positively associated. We analysed the variation in habitat selection within the landscape and within home ranges at monthly intervals, with respect to land‐cover type and proxys of food and cover over seasonal and diurnal temporal scales. The fine‐scale temporal variation follows a nycthemeral cycle linked to diurnal variation in human disturbance. The large‐scale variation matches seasonal plant phenology, suggesting food resources being a greater limiting factor than lynx predation risk. The trade‐off between selection for food and cover was similar on seasonal and diurnal scale. Habitat selection at the different scales may be the consequence of the temporal variation and predictability of the limiting factors as much as its association with fitness. The landscape of fear might have less importance at the studied scale of habitat selection than generally accepted because of the predator hunting strategy. Finally, seasonal variation in habitat selection was similar at the large and small spatial scales, which may arise because of the marked philopatry of roe deer. The difference is supposed to be greater for wider ranging herbivores.  相似文献   

2.
Understanding population dynamics requires spatio‐temporal variation in demography to be measured across appropriate spatial and temporal scales. However, the most appropriate spatial scale(s) may not be obvious, few datasets cover sufficient time periods, and key demographic rates are often incompletely measured. Consequently, it is often assumed that demography will be spatially homogeneous within populations that lack obvious subdivision. Here, we quantify small‐scale spatial and temporal variation in a key demographic rate, reproductive success (RS), within an apparently contiguous population of European starlings. We used hierarchical cluster analysis to define spatial clusters of nest sites at multiple small spatial scales and long‐term data to test the hypothesis that small‐scale spatio‐temporal variation in RS occurred. RS was measured as the number of chicks alive ca. 12 days posthatch either per first brood or per nest site per breeding season (thereby incorporating multiple breeding attempts). First brood RS varied substantially among spatial clusters and years. Furthermore, the pattern of spatial variation was stable across years; some nest clusters consistently produced more chicks than others. Total seasonal RS also varied substantially among spatial clusters and years. However, the magnitude of variation was much larger and the pattern of spatial variation was no longer temporally consistent. Furthermore, the estimated magnitude of spatial variation in RS was greater at smaller spatial scales. We thereby demonstrate substantial spatial, temporal, and spatio‐temporal variation in RS occurring at very small spatial scales. We show that the estimated magnitude of this variation depended on spatial scale and that spatio‐temporal variation would not have been detected if season‐long RS had not been measured. Such small‐scale spatio‐temporal variation should be incorporated into empirical and theoretical treatments of population dynamics.  相似文献   

3.
Habitat selection is a hierarchical process that may yield various patterns depending on the scales of investigation. We employed satellite radio‐telemetry to examine patterns of habitat selection by female woodland caribou in central Saskatchewan at both coarse (seasonal range) and fine (daily area) scales. At each scale, we converted spatial data describing compositions of available and used habitat to standardised resource selection indices and examined them with multivariate analyses of variance. Seasonal ranges generally showed preferential inclusion of peatlands and black spruce dominated stands relative to recently disturbed stands and early seral stage forests. In all populations, caribou preferred peatlands and black spruce forests to all other habitat types at the daily area scale, in general, these patterns may reveal the effective avoidance of wolves, the primary factor limiting caribou throughout the boreal forest. In three populations where seasonal ranges showed the selective inclusion of either young jack pine stands or clearcuts along with peatlands and black spruce forests, we found a relative avoidance of the clearcuts and young jack pine stands at the daily area scale. As all caribou populations in the area are thought to be relics of a once more continuous distribution, the seasonal range selection by animals in disturbed areas may better describe historic rather than current habitat selection. We found inter‐annual variation in selection at the coarser spatial scale in one population, and inter‐seasonal variation in selection at the finer spatial scale in three populations, indicating that the relative grains of the spatial and temporal scales coincide. We were better able to explain the seasonal variations in finer scale selection by considering available forage, a factor less likely than predation to limit woodland caribou populations. The data agree with the theory that the spatial and temporal hierarchy of habitat selection reflects the hierarchy of factors potentially limiting individual fitness.  相似文献   

4.
Large herbivores are typically confronted by considerable spatial and temporal variation in forage abundance and predation risk. Although animals can employ a range of behaviours to balance these limiting factors, scale-dependent movement patterns are expected to be an effective strategy to reduce predation risk and optimise foraging opportunities. We tested this prediction by quantifying site fidelity of global positioning system-collared, non-migratory female elk (Cervus canadensis manitobensis) across multiple nested temporal scales using a long-established elk–wolf (Canis lupus) system in Manitoba, Canada. Using a hierarchical analytical approach, we determined the combined effect of forage abundance and predation risk on variation in site fidelity within four seasons across four nested temporal scales: monthly, biweekly, weekly, daily. Site fidelity of female elk was positively related to forage-rich habitat across all seasons and most temporal scales. At the biweekly, weekly and daily scales, elk became increasingly attached to low forage habitat when risk was high (e.g. when wolves were close or pack sizes were large), which supports the notion that predator-avoidance movements lead to a trade-off between energetic requirements and safety. Unexpectedly, predation risk at the monthly scale increased fidelity, which may indicate that elk use multiple behavioural responses (e.g. movement, vigilance, and aggregation) simultaneously to dilute predation risk, especially at longer temporal scales. Our study clearly shows that forage abundance and predation risk are important scale-dependent determinants of variation in site fidelity of non-migratory female elk and that their combined effect is most apparent at short temporal scales. Insight into the scale-dependent behavioural responses of ungulate populations to limiting factors such as predation risk and forage variability is essential to infer the fitness costs incurred.  相似文献   

5.
A major challenge in community ecology is to understand the underlying factors driving metacommunity (i.e., a set of local communities connected through species dispersal) dynamics. However, little is known about the effects of varying spatial scale on the relative importance of environmental and spatial (i.e., dispersal related) factors in shaping metacommunities and on the relevance of different dispersal pathways. Using a hierarchy of insect metacommunities at three spatial scales (a small, within‐stream scale, intermediate, among‐stream scale, and large, among‐sub‐basin scale), we assessed whether the relative importance of environmental and spatial factors shaping metacommunity structure varies predictably across spatial scales, and tested how the importance of different dispersal routes vary across spatial scales. We also studied if different dispersal ability groups differ in the balance between environmental and spatial control. Variation partitioning showed that environmental factors relative to spatial factors were more important for community composition at the within‐stream scale. In contrast, spatial factors (i.e., eigenvectors from Moran's eigenvector maps) relative to environmental factors were more important at the among‐sub‐basin scale. These results indicate that environmental filtering is likely to be more important at the smallest scale with highest connectivity, while dispersal limitation seems to be more important at the largest scale with lowest connectivity. Community variation at the among‐stream and among‐sub‐basin scales were strongly explained by geographical and topographical distances, indicating that overland pathways might be the main dispersal route at the larger scales among more isolated sites. The relative effect of environmental and spatial factors on insect communities varied between low and high dispersal ability groups; this variation was inconsistent among three hierarchical scales. In sum, our study indicates that spatial scale, connectivity, and dispersal ability jointly shape stream metacommunities.  相似文献   

6.
Ongoing global landscape change resulting from urbanization is increasingly linked to changes in species distributions and community interactions. However, relatively little is known about how urbanization influences competitive interactions among mammalian carnivores, particularly related to wild felids. We evaluated interspecific interactions between medium‐ and large‐sized carnivores across a gradient of urbanization and multiple scales. Specifically, we investigated spatial and temporal interactions of bobcats and pumas by evaluating circadian activity patterns, broad‐scale seasonal interactions, and fine‐scale daily interactions in wildland–urban interface (WUI), exurban residential development, and wildland habitats. Across levels of urbanization, interspecific interactions were evaluated using two‐species and single‐species occupancy models with data from motion‐activated cameras. As predicted, urbanization increased the opportunity for interspecific interactions between wild felids. Although pumas did not exclude bobcats from areas at broad spatial or temporal scales, bobcats responded behaviorally to the presence of pumas at finer scales, but patterns varied across levels of urbanization. In wildland habitat, bobcats avoided using areas for short temporal periods after a puma visited an area. In contrast, bobcats did not appear to avoid areas that pumas recently visited in landscapes influenced by urbanization (exurban development and WUI habitat). In addition, overlap in circadian activity patterns between bobcats and pumas increased in exurban development compared to wildland habitat. Across study areas, bobcats used sites less frequently as the number of puma photographs increased at a site. Overall, bobcats appear to shape their behavior at fine spatial and temporal scales to reduce encounters with pumas, but residential development can potentially alter these strategies and increase interaction opportunities. We explore three hypotheses to explain our results of how urbanization affected interspecific interactions that consider activity patterns, landscape configuration, and animal scent marking. Altered competitive interactions between animals in urbanized landscapes could potentially increase aggressive encounters and the frequency of disease transmission.  相似文献   

7.
The difficulty of integrating multiple theories, data and methods has slowed progress towards making unified inferences of ecological change generalizable across large spatial, temporal and taxonomic scales. However, recent progress towards a theoretical synthesis now provides a guiding framework for organizing and integrating all primary data and methods for spatiotemporal assemblage‐level inference in ecology. In this paper, we describe how recent theoretical developments can provide an organizing paradigm for linking advances in data collection and methodological frameworks across disparate ecological sub‐disciplines and across large spatial and temporal scales. First, we summarize the set of fundamental processes that determine change in multispecies assemblages across spatial and temporal scales by reviewing recent theoretical syntheses of community ecology. Second, we review recent advances in data and methods across the main sub‐disciplines concerned with ecological inference across large spatial, temporal and taxonomic scales, and organize them based on the primary fundamental processes they include, rather than the spatiotemporal scale of their inferences. Finally, we highlight how iteratively focusing on only one fundamental process at a time, but combining all relevant spatiotemporal data and methods, may reduce the conceptual challenges to integration among ecological sub‐disciplines. Moreover, we discuss a number of avenues for decreasing the practical barriers to integration among data and methods. We aim to reconcile the recent convergence of decades of thinking in community ecology and macroecology theory with the rapid progress in spatiotemporal approaches for assemblage‐level inference, at a time where a robust understanding of spatiotemporal change in ecological assemblages is more crucial than ever to conserve biodiversity.  相似文献   

8.
Factors relevant to resource selection in carnivores may vary across spatial and temporal scales, both in magnitude and rank. Understanding relationships among carnivore occupancy, prey presence, and habitat characteristics, as well as their interactions across multiple scales, is necessary to improve our understanding of resource selection and predict population changes. We used a multi-scale dynamic hierarchical co-occurrence model with camera data to study bobcat and snowshoe hare occupancy in the Upper Peninsula of Michigan during winter 2012–2013. Bobcat presence was influenced at the local scale by snowshoe hare presence, and by road density at the local and larger scale when hare were absent. Hare distribution was related primarily to vegetation cover types, and detectability varied in space and time. Bobcat occupancy dynamics were influenced by different factors depending on the spatial scale considered and the resource availability context. Moreover, considering observed co-occurrence, we suggest that bobcat presence had a greater effect on hare occupancy than hare presence on bobcat occupancy. Our results highlight the importance of studying carnivore distributions in the context of predator-prey relationships and its interactions with environmental covariates at multiple spatial scales. Our approach can be applied to other carnivore species to provide insights beneficial for management and conservation.  相似文献   

9.
Linking moose habitat selection to limiting factors   总被引:7,自引:0,他引:7  
It has been suggested that patterns of habitat selection of animals across spatial scales should reflect the factors limiting individual fitness in a hierarchical fashion. Animals should thus select habitats that permit avoidance of the most important limiting factor at large spatial scales while the influence of less important factors should only be evident at fine scales. We tested this hypothesis by investigating moose Alces alces habitat selection using GPS telemetry in an area where the main factors limiting moose numbers were likely (in order of decreasing importance) predation risk, food availability and snow. At the landscape scale, we predicted that moose would prefer areas where the likelihood of encountering wolves was low or areas where habitats providing protection from predation were dominant. At the home‐range scale, we predicted that moose selection would be driven by food availability and snow depth. Wolf territories were delineated using telemetry locations and the study area was divided into 3 sectors that differed in terms of annual snowfall. Vegetation surveys yielded 6 habitat categories that differed with respect to food availability, and shelter from predation or snow. Our results broadly supported the hypothesis because moose reacted to several factors at each scale. At the landscape scale, moose were spatially segregated from wolves by avoiding areas receiving the lowest snowfall, but they also preferentially established their home range in areas where shelter from snow bordered habitat types providing abundant food. At the home‐range scale, moose also traded off food availability with avoidance of deep snow and predation risk. During winter, moose increased use of stands providing shelter from snow along edges with stands providing abundant food. Habitat selection patterns of females with calves differed from that of solitary moose, the former being associated primarily with habitats providing protection from predation. Animals should attempt to minimize detrimental effects of the main limiting factors when possible at the large scale. However, when the risk associated with several potential limiting factors varies with scale, we should expect animals to make trade‐offs among these.  相似文献   

10.
Abstract. Two prominent conceptual frameworks, environmental gradients and patch hierarchies, are used in combination to describe vegetation patterns along a riparian corridor in a semi‐arid South African system. We adopt both approaches, since riparian corridors are characterized by both strong environmental gradients above, away from and along the river, as well as a mosaic of patches in the geomorphology at multiple hierarchical scales. Constrained and unconstrained ordinations were used to determine the variability in vegetation pattern accounted for by the gradient and the geomorphic patch hierarchy data sets. The gradient data set consisted of vertical, lateral and longitudinal dimensions of the macro‐channel, while the patch hierarchy data set consisted of substratum type, morphological unit and channel type. Elevation up the macro‐channel bank, of the gradient data set, explained the main variation in vegetation pattern, and alluded to overriding processes of flooding frequency and water availability as determinants of vegetation pattern. Along the fluvially dynamic macro‐channel floor (lower elevation range), patchiness at the scale of the morphological unit best explained vegetation pattern. This relationship with morphological units suggests that the formation of well developed alluvial bars, and the degree of bedrock influence are important processes. The nested hierarchical framework used provided a good basis for identifying scale specific pattern in a relational manner. In systems characterized by strong environmental gradients as well as a patch mosaic at different spatial and temporal scales, the combined use of both perspectives to develop a fuller understanding of vegetation pattern is imperative and is encouraged.  相似文献   

11.
Understanding stability across ecological hierarchies is critical for landscape management in a changing world. Recent studies showed that synchrony among lower‐level components is key to scaling temporal stability across two hierarchical levels, whether spatial or organizational. But an extended framework that integrates both spatial scale and organizational level simultaneously is required to clarify the sources of ecosystem stability at large scales. However, such an extension is far from trivial when taking into account the spatial heterogeneities in real‐world ecosystems. In this paper, we develop a partitioning framework that bridges variability and synchrony measures across spatial scales and organizational levels in heterogeneous metacommunities. In this framework, metacommunity variability is expressed as the product of local‐scale population variability and two synchrony indices that capture the temporal coherence across species and space, respectively. We develop an R function ‘var.partition’ and apply it to five types of desert plant communities to illustrate our framework and test how diversity shapes synchrony and variability at different hierarchical levels. As the observation scale increased from local populations to metacommunities, the temporal variability of plant productivity was reduced mainly by factors that decreased species synchrony. Species synchrony decreased from local to regional scales, and spatial synchrony decreased from species to community levels. Local and regional species diversity were key factors that reduced species synchrony at the two scales. Moreover, beta diversity contributed to decreasing spatial synchrony among communities. We conclude that our new framework offers a valuable toolbox for future empirical studies to disentangle the mechanisms and pathways by which ecological factors influence stability at large scales.  相似文献   

12.
13.
Aim Understanding complex ecological phenomena, such as the determinants of species richness, is best achieved by investigating their properties at different spatial scales. Factors significantly affecting the number of species occurring at one scale may not impact on richness at other scales. While this scale dependence has become increasingly recognized, there still remains a need to elucidate exactly how richness is structured across scales, and which mechanisms are influential for determining this important community property. This study explores how woody plant species richness varies in a fragmented system at multiple scales, and which factors are primarily responsible for these patterns. Location The study area is located in the Sonoran Desert within the bounds of metropolitan Phoenix, Arizona, which is the locus of the Central Arizona–Phoenix Long‐Term Ecological Research (CAP‐LTER) site. Methods Estimates of local and fragment plant species richness were generated from field data collected from 22 sites. Independent variables describing fragment sites were also calculated, including area, habitat heterogeneity, density of individuals, mean elevation, and extent of isolation. Structural equation modelling, multiple regression, and analysis of covariance were used to assess the contribution of independent variables to richness at the fragment and local scales. Results Fragment species richness was significantly influenced by area, though not isolation, habitat heterogeneity, mean elevation, or density of individuals. Local richness was not significantly related to fragment area, but was positively related to fragment richness, plant density, and elevation. Main conclusions The fragment species–area effect resulted from larger remnants supporting higher numbers of individuals at comparable densities, increasing richness through either passive sampling of progressively less common species and/or lower extinction rates among larger populations. Without using multi‐temporal data it is not possible to disentangle these mechanisms. We found that patterns evident at one scale are not necessarily apparent at other scales, as elevation and density of individuals significantly affected richness at the local scale but not at the fragment scale. These results lend support to the concept that mechanisms influencing the species richness of natural communities may be operable only within certain domains and that relevant scales should be specified.  相似文献   

14.
Parrotfishes are considered to have a major influence on coral reef ecosystems through grazing the benthic biota and are also primary fishery targets in the Indo‐Pacific. Consequently, the impact of human exploitation on parrotfish communities is of prime interest. As anthropogenic and environmental factors interact across spatial scales, sampling programs designed to disentangle these are required by both ecologists and resource managers. We present a multi‐scale examination of patterns in parrotfish assemblage structure, size distribution and diversity across eight oceanic islands of Micronesia. Results indicate that correlates of assemblage structure are scale‐dependent; biogeographic distributions of species and island geomorphology hierarchically influenced community patterns across islands whereas biophysical features and anthropogenic pressure influenced community assemblage structure at the within‐island scale. Species richness and phylogenetic diversity increased with greater broad‐scale habitat diversity associated with different island geomorphologies. However, within‐island patterns of abundance and biomass varied in response to biophysical factors and levels of human influence unique to particular islands. While the effect of fishing activities on community composition and phylogenetic diversity was obscured across island types, fishing pressure was the primary correlate of mean parrotfish length at all spatial scales. Despite widespread fishery‐induced pressure on Pacific coral reefs, the structuring of parrotfish communities at broad spatial scales remains a story largely dependent on habitat. Thus, we propose better incorporation of scale‐dependent habitat effects in future assessments of overexploitation on reef fish assemblages. However, strong community‐level responses within islands necessitate an improved understanding of the phylogenetic and functional consequences of altering community structure.  相似文献   

15.
Coexistence of ecologically similar species relies on differences in one or more dimensions of their ecological niches, such as space, time and resources in diel and/or seasonal scales. However, niche differentiation may result from other mechanisms such as avoidance of high predation pressure, different adaptations or requirements of ecologically similar species. Stone marten (Martes foina) and pine marten (Martes martes) occur sympatrically over a large area in Central Europe and utilize similar habitats and food, therefore it is expected that their coexistence requires differentiation in at least one of their niche dimensions or the mechanisms through which these dimensions are used. To test this hypothesis, we used differences in the species activity patterns and habitat selection, estimated with a resource selection function (RSF), to predict the relative probability of occurrence of the two species within a large forest complex in the northern geographic range of the stone marten. Stone martens were significantly heavier, have a longer body and a better body condition than pine martens. We found weak evidence for temporal niche segregation between the species. Stone and pine martens were both primarily nocturnal, but pine martens were active more frequently during the day and significantly reduced the duration of activity during autumn-winter. Stone and pine martens utilized different habitats and almost completely separated their habitat niches. Stone marten strongly preferred developed areas and avoided meadows and coniferous or deciduous forests. Pine marten preferred deciduous forest and small patches covered by trees, and avoided developed areas and meadows. We conclude that complete habitat segregation of the two marten species facilitates sympatric coexistence in this area. However, spatial niche segregation between these species was more likely due to differences in adaptation to cold climate, avoidance of high predator pressure and/or food preferences by both species than competitive interaction between them.  相似文献   

16.
Fish species diversity among spatial scales of altered temperate rivers   总被引:1,自引:0,他引:1  
Aim The alteration of flowing systems over the past century has led to significant changes to the processes that drive these complex environments as well as to the scales at which these processes act. Recently, efforts have begun in earnest to restore some semblance of ecosystem diversity, but there is little understanding of exactly on what spatial scale or scales biotic diversity is responding. We investigated the manner in which fish diversity is partitioned at multiple spatial scales in two rivers in the central United States. Location The Missouri and Illinois rivers of the central United States. Methods We analysed how fish diversity was partitioned within the Illinois River and Missouri River systems by sampling each river under hierarchical frameworks that allowed analysis at section (large), reach (intermediate), and site (small) scales. We tested the hypothesis that there are scale‐dependent responses of fish diversity using an additive partitioning approach. Results Site alpha diversity was significantly higher than expected in both the Illinois and Missouri rivers. The relative contribution of alpha diversity to total diversity at a given spatial scale increased for the Illinois River, but not for the Missouri River, in that the highest alpha diversity contribution peaked at the reach scale. Diversity patterns from both rivers suggest that diversity at the site scale plays a significant role in determining the overall diversity in these systems. However, there is a substantial contribution at larger scales that warrants consideration when attempts are being made to protect or restore diversity and other ecosystem parameters. Main conclusions Understanding the variation of diversity in riverine systems is crucial for providing insight not only into how biotic communities respond to scale‐dependent factors, but also into the underlying abiotic and biotic factors that generate patterns of diversity across scales. These insights, in turn, are important for ensuring that restoration and management activities are targeting the appropriate scales for remediation. A lack of understanding of this issue could have negative outcomes for the recovery of a community in a restoration scenario, as well as resulting in a low economic return on restoration investments, which could hinder future efforts.  相似文献   

17.
1. Most studies of intraspecific variation in home range size have investigated only a single or a few factors and often at one specific scale. However, considering multiple spatial and temporal scales when defining a home range is important as mechanisms that affect variation in home range size may differ depending on the scale under investigation. 2. We aim to quantify the relative effect of various individual, forage and climatic determinants of variation in home range size across multiple spatiotemporal scales in a large browsing herbivore, the moose (Alces alces), living at the southern limit of its distribution in Norway. 3. Total home range size and core home range areas were estimated for daily to monthly scales in summer and winter using both local convex hull (LoCoH) and fixed kernel home range methods. Variance in home range size was analysed using linear mixed-effects models for repeated measurements. 4. Reproductive status was the most influential individual-level factor explaining variance in moose home range size, with females accompanied by a calf having smaller summer ranges across all scales. Variation in home range size was strongly correlated with spatiotemporal changes in quantity and quality of natural food resources. Home range size decreased with increasing browse density at daily scales, but the relationship changed to positive at longer temporal scales. In contrast, browse quality was consistently negatively correlated with home range size except at the monthly scale during winter when depletion of high-quality forage occurs. Local climate affected total home range size more than core areas. Temperature, precipitation and snow depth influenced home range size directly at short temporal scales. 5. The relative effects of intrinsic and extrinsic determinants of variation in home range size differed with spatiotemporal scale, providing clear evidence that home range size is scale dependent in this large browser. Insight into the behavioural responses of populations to climatic stochasticity and forage variability is essential in view of current and future climate change, especially for populations with thermoregulatory restrictions living at the southern limit of their distribution.  相似文献   

18.
A key problem faced by foragers is how to forage when resources are distributed heterogeneously in space. This heterogeneity and associated trade‐offs may change with spatial scale. Furthermore, foragers may also have to optimize acquiring multiple resources. Such complexity of decision‐making while foraging is poorly understood. We studied the butterfly Ypthima huebneri to examine how foraging decisions of adults are influenced by spatial scale and multiple resources. We predicted that, at a small‐spatial scale, the time spent foraging in a patch should be proportional to resources in the patch, but at large‐spatial scales, due to limitations arising from large travel costs, this relationship should turn negative. We also predicted that both adult and larval resources should jointly affect foraging butterflies. To test these predictions, we laid eleven plots and sub‐divided them into patches. We mapped nectar and larval resources and measured butterfly behavior in these patches and plots. We found that adult foraging behavior showed contrasting relationships with adult resource density at small versus large‐spatial scales. At the smaller‐spatial scale, butterflies spent more time feeding in resource‐rich patches, whereas at the large‐scale, butterflies spent more time feeding in resource‐poor plots. Furthermore, both adult and larval resources appeared to affect foraging decisions, suggesting that individuals may optimize search costs for different resources. Overall, our findings suggest that the variation in foraging behavior seen in foragers might result from animals responding to complex ecological conditions, such as resource heterogeneity at multiple spatial scales and the challenges of tracking multiple resources.  相似文献   

19.
1. Ecologists continue to debate whether the assembly of communities of species is more strongly influenced by dispersal limitations or niche‐based factors. Analytical approaches that account for both mechanisms can help to resolve controls of community assembly. 2. We compared littoral snail assemblages in Lake Tanganyika at three different spatial scales (5–25 m, 0.5–10 km and 0.5–27 km) to test whether spatial distance or environmental differences are better predictors of community similarity. 3. At the finest scale (5–25 m), snail assemblages shifted strongly with depth but not across similar lateral distances, indicating a stronger response to environmental gradients than dispersal opportunities. 4. At the two larger scales (0.5–27 km), both environmental similarity and shoreline distance between sites predicted assemblage similarity across sites. Additionally, canonical correspondence analysis revealed that snail abundances were significantly correlated with algal carbon‐to‐nitrogen ratio and wave energy. 5. Our results indicate that the factors governing assemblage structure are scale dependent; niche‐based mechanisms act across all spatial scales, whereas community similarity declines with distance only at larger spatial separations.  相似文献   

20.
Aim Analyses of species distributions are complicated by various origins of spatial autocorrelation (SAC) in biogeographical data. SAC may be particularly important for invasive species distribution models (iSDMs) because biological invasions are strongly influenced by dispersal and colonization processes that typically create highly structured distribution patterns. We examined the efficacy of using a multi‐scale framework to account for different origins of SAC, and compared non‐spatial models with models that accounted for SAC at multiple levels. Location We modelled the spatial distribution of an invasive forest pathogen, Phytophthora ramorum, in western USA. Methods We applied one conventional statistical method (generalized linear model, GLM) and one nonparametric technique (maximum entropy, Maxent) to a large dataset on P. ramorum occurrence (n = 3787) to develop four types of model that included environmental variables and that either ignored spatial context or incorporated it at a broad scale using trend surface analysis, a local scale using autocovariates, or multiple scales using spatial eigenvector mapping. We evaluated model accuracies and amounts of explained spatial structure, and examined the changes in predictive power of the environmental and spatial variables. Results Accounting for different scales of SAC significantly enhanced the predictive capability of iSDMs. Dramatic improvements were observed when fine‐scale SAC was included, suggesting that local range‐confining processes are important in P. ramorum spread. The importance of environmental variables was relatively consistent across all models, but the explanatory power decreased in spatial models for factors with strong spatial structure. While accounting for SAC reduced the amount of residual autocorrelation for GLM but not for Maxent, it still improved the performance of both approaches, supporting our hypothesis that dispersal and colonization processes are important factors to consider in distribution models of biological invasions. Main conclusions Spatial autocorrelation has become a paradigm in biogeography and ecological modelling. In addition to avoiding the violation of statistical assumptions, accounting for spatial patterns at multiple scales can enhance our understanding of dynamic processes that explain ecological mechanisms of invasion and improve the predictive performance of static iSDMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号