首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Differentiation events accompanying the larval-adult ovarian transformation in Rhodnius prolixus can be divided into three phases: proliferative phase (unfed to 3 days post-feed or DPF), early differentiation phase (9–15 DPF) and late differentiation phase (16 DPF to moult at 21 DPF). Ovarioles remain morphologically larval until feeding initiates development. The unfed ovariole contains germ cells surrounding a central trophic core region with the ‘germarial lumen’ occupying the basal region of the tropharium immediately above the pre-follicular tissue. Mitosis of germ cells during the proliferative phase results in a progressive increase in tropharial size with no differentiation of tissues. Regional specialization within the ovariole marks the beginning of the early differentiation phase. A zone of oocytes is established at the base of the tropharium with nuclei containing synaptonemal complexes and condensing chromosomes. Nurse cell differentiation is characterized by nucleolar elaboration and nucleo-cytoplasmic transport, the cytoplasm becoming rich in ribosomes. Autoradiographic results suggest that functional nurse cell-oocyte divergence occurs concurrently with morphological divergence. Pre-follicular tissue is divided into apical and basal zones with apical zone differentiation occurring during early and late differentiation phases.  相似文献   

2.
The tropharium of the telotrophic ovarioles of Rhodnius is syncytial with the nurse cell nuclei located in tortuous finger-like projections arborizing from a common cytoplasmic area, the trophic core. The nurse cell nuclei exhibit prominent nucleoli. Located adjacent to the nuclear envelope are masses of granular material both within the nucleus and adjoining cytoplasm. The cytoplasm consists primarily of ribosomes and mitochondria. The trophic core and the trophic cords that connect the core to individual oocytes characteristically possess parallel arrays of microtubules with ribosomes and mitochondria interspersed between. Surrounding the nurse tissue (germarium) is a thin layer of squamous cells comprising the inner sheath. The inner sheath is encompassed by the non-cellular tunica propria superficial to which are two external cellular sheaths. The syncytial nature of the tropharium appears to arise as a result of the fusion of many entangled nurse cell-oocyte complexes during the late fifth instar. The structural similarities, and possible homologies with the polytrophic type of ovariole is discussed.  相似文献   

3.
The tropharium of the common shorebug Saldula saltatoria consists of 2 zones: the apical mitotic region and the distal one comprising numerous mononucleate nurse cells. Each individual nurse cell is connected to the centrally located trophic core by a thin cytoplasmic projection referred to as a trophic process. The accumulations of a dense material interpreted as the remnants of intercellular bridge rim are observed associated with the trophic process membrane. In the light of these results the establishment of telotrophic ovarioles in hemipterans is discussed.  相似文献   

4.
The specialized cell types and two distinct regions of the adult Rhodnius prolixus cement gland develop from a simple pseudostratified epithelial tube during the 20–22 days of the fifth stadium. Feeding initiates the first phase, proliferation. Cells round up and divide tangentially to the lumen. Following the proliferation phase, differentiative mitoses occur and differentiation, resulting in secretory units (consisting of a ductule, gland cell and cuticular lining), ensues in the distal region. Ductule morphogenesis occurs without pseudocilia, thus differing from other insect glands. The complex changes in cell shape and interaction occur during development of the secretory unit. The secretory cell and end-apparatus develop from a double cell unit at the base of elongating ductules. The inner cell produces a complex end-apparatus of epicuticle that mirrors the microvillar pattern and then it degenerates. The ductules are lined by cuticulin and inner epicuticle while the central gland lumen has a layer of endocuticle as well. The epithelium of the proximal region remains simple producing the thick corrugated cuticle characteristic of the adult secretory duct. The mesodermal covering forms a thick longitudinal striated muscle layer that adheres to the epithelium via desmosomes.  相似文献   

5.
Summary Each ovarian follicle of Triops cancriformis is four-celled; these cells (one oocyte and three nurse cells) are interconnected by cytoplasmic bridges. In the course of differentiation, the nurse cells are early recognizable; they increase in size more than the oocyte and their nuclei contain many nucleoli. For the first time in Arthropoda, yolk globules are reported to be present in nurse cell cytoplasm; these globules arise from the smooth endoplasmic reticulum. The functional significance of the intercellular bridges and the trophic role of the nurse cells are discussed.The authors are grateful to Dr. Bruno Sabelli for his support and to Mr. Francesco Monte for his technical assistance  相似文献   

6.
Bug ovaries are of the telotrophic meroistic type. Nurse cells are restricted to the anterior tropharium and are in syncytial connection with the oocytes via the acellular trophic core region into which cytoplasmic projections of oocytes and nurse cells open. The origin of intercellular connections in bug ovaries is not well understood. In order to elucidate the cellular processes underlying the emergence of the syncytium, we analysed the development of the ovary of Dysdercus intermedius throughout the five larval instars. Up to the third instar, the germ cell population of an ovariole anlage forms a single, tight rosette. In the center of the rosette, phosphotyrosine containing proteins and f-actin accumulate. This center is filled with fusomal cytoplasm and closely interdigitating cell membranes known as the membrane labyrinth. With the molt to the fourth instar germ cells enhance their mitotic activity considerably. As a rule, germ cells divide asynchronously. Simultaneously, the membrane labyrinth expands and establishes a central column within the growing tropharium. In the fifth instar the membrane labyrinth retracts to an apical position, where it is maintained even in ovarioles of adult females. The former membrane labyrinth in middle and posterior regions of the tropharium is replaced by the central core to which nurse cells and oocytes are syncytially connected. Germ cells in the most anterior part of the tropharium, i.e. those in close proximity to the membrane labyrinth remain proliferative. The posterior-most germ cells enter meiosis and become oocytes. The majority of the ovarioles' germ cells, located in between these two populations, endopolyploidize and function as nurse cells. We conclude that the extensive multiplication of germ cells and their syncytial assembly during larval development is achieved by incomplete cytokineses followed by massive membrane production. Membranes are degraded as soon as the trophic core develops. For comparative reasons, we also undertook a cursory examination of early germ cell development in Dysdercus intermedius males. All results were compatible with the known basic patterns of early insect spermatogenesis. Germ cells run through mitotic and meiotic divisions in synchronous clusters emerging from incomplete cytokineses. During the division phase, the germ cells of an individual cluster are connected by a polyfusome rich in f-actin.  相似文献   

7.
W C Choi  W Nagl 《Cytobios》1976,17(65):47-62
The differentiation of oogonia and oocytes, and of trophocytes, from undifferentiated germ line cells has been studied in Gerris najas, a pond skater, from the fourth instar to the adult animal. For the first time criteria have been obtained which allow the distinction between poorly differentiated early oogonia and nurse cells. The most important criteria are the size, shape, and structure of nuclei and mucleoli. This is consistent with the different function of these cell types, which is primarily a different nuclear function: meiosis in the oocytes, and RNA synthesis to support the trophic core and the oocytes in the trophocytes.  相似文献   

8.
Summary In the telotrophic ovariole of Dysdercus intermedius the intercellular transport consists of different subsystems. Microinjection of FITC-labeled slowly diffusing proteins with opposite electrical net charges and of mitochondria was used to study the translocation of macromolecules and organelles. a) By intracellular measurements a voltage gradient of about 4 mV between the tropharium as the more negative side and the previtellogenic oocytes could be demonstrated. b) After injection into the tropharium negatively charged proteins migrated according to the electropotential gradient via the trophic cords into the oocytes. Positively charged proteins, however, were retained in the tropharium. c) After injection into previtellogenic oocytes both negatively and positively charged proteins moved into the trophic cords. Thus, the effectiveness of the electropotential gradient on the distribution of charged proteins is more pronounced from the tropharium side. d) Mitochondria microinjected into the trophic core were probably aligned along microtubules and translocated towards the trophic cords. — These results suggest that in the telotrophic bug ovariole a number of intercellular transport subsystems contribute to provide previtellogenic oocytes with nurse cells products. An electrophoretic transport mechanism for soluble proteins acting especially within the tropharium and a microtubule-associated transport for mitochondria could be evidenced.  相似文献   

9.
Glossiphonia heteroclita has paired ovaries whose shape and dimensions change as oogenesis proceeds: during early previtellogenesis they are small and club-shaped, whereas during vitellogenesis they broaden and elongate considerably. During early oogenesis (previtellogenesis), each ovary is composed of an outer envelope (ovisac) that surrounds the ovary cavity and is filled with hemocoelomic fluid, in which a single and very convoluted ovary cord is bathed. The ovary cord consists of germline cells, including nurse cells and young oocytes surrounded by a layer of elongated follicle cells. Additionally, follicle cells with long cytoplasmic projections occur inside the ovary cord, where they separate germ cells from each other. The ovary cord contains thousands of nurse cells. Each nurse cell has one intercellular bridge, connecting it to a central anucleate cytoplasmic mass, the cytophore (rachis); it in turn is connected by one intercellular bridge with each growing oocyte. Numerous mitochondria, RER cisternae, ribosomes, and Golgi complexes are transported from the nurse cells, via the intercellular bridge and cytophore, to the growing oocytes. Oogenesis in G. heteroclita is synchronous with all oocytes in the ovary in the same stage of oogenesis. The youngest observed oocytes are slightly larger than nurse cells, and usually occupy the periphery of the ovary cord. As previtellogenesis proceeds, the oocytes gather a vast amount of cell organelles and become more voluminous. As a result, in late previtellogenesis the oocytes gradually protrude into the ovary cavity. Simultaneously with oocyte growth, the follicle cells differentiate into two subpopulations. The morphology of the follicle cells surrounding the nurse cells and penetrating the ovary cord does not change, whereas those enveloping the growing oocytes become more voluminous. Their plasma membrane invaginates deeply, forming numerous broad vesicles that eventually seem to form channels or conducts through which the hemocoelomic fluid can easily access the growing oocytes.  相似文献   

10.
The flea ovary: ultrastructure and analysis of cell clusters   总被引:1,自引:0,他引:1  
Büning J  Sohst S 《Tissue & cell》1988,20(5):783-795
Panoistic ovarioles are found in the order of fleas (Siphonaptera). Only in some species of the Hystrichopsylloidea do polytrophic meroistic ovaries occur. No stem cells and no dividing cystocytes are found in female imagines of Hystrichopsylla talpae. However, each germ cell cluster consists of 32 cells which are generated by five mitotic cycles during the pupal stage. One of the cells containing five intercellular bridges becomes the oocyte, the others serve as nurse cells. Thus, germ cell cluster formation follows the 2(n)-rule. However, no polyfusome is found and nurse cells do not form a rosette. Furthermore, nurse cells remain small and show the same ultrastructural characters as the oocytes, which became distinguishable from nurse cells only by their enhanced growth during pre-vitellogenesis. The first phase of pre-vitellogenesis is dominated by the production of an unknown cytoplasmatic component, consisting of spherical particles, clearly distinguishable from ribosomes by diameter and contrast. The next phase is characterized by a tremendous increase in the production of ribosomes. During this second phase another cytoplasmic component consisting of ball-like structures becomes prominent. During pre-vitellogenesis, germ cell nuclei undergo a pronounced structural change in which, finally, numerous extranucleolar particles predominate. Thus, H. talpae has a polytrophic meroistic ovary, but its oocyte genomes behave panoistically.  相似文献   

11.
Sialis flavilatera L. (Sialidae, Megaloptera) has telotrophic-meroistic ovarioles. The germ cells of the tropharium are organized into two distinct tissues, the central syncytium and the germ cell tapetum. The central syncytium consists of nurse cell nuclei embedded in a common cytoplasm which is rich in ribosomes and mitochondria. Cell membranes are totally absent. The germ cell tapetum surrounds the syncytium and consists of a monolayer of cells, each of which is connected with the central syncytium by an intercellular bridge. The oocytes differentiate from basal tapetum cells by previtellogenic growth. Their nutritive cords remain connected to the central syncytium by the intercellular bridge. Ovariole development starts soon after hatching with the immigration of germ cells into the ovariole-anlagen and is finished during pupal stages 23 months later. In apical regions of each tropharium, mitoses occur throughout larval life. The descendants enter the prophase of meiosis which lasts until pre-vitellogenesis; thus, a differential gradient of position and time is established. About 12 months after hatching, the central syncytium arises at the base of the tropharium from a membrane labyrinth in which intercellular bridges are entangled. Evidence is presented that endopolyploidization does not occur during germ cell differentiation. Finally, the results are compared with those found in Hemiptera and polyphage Coleoptera. The great diversities are interpreted as an indication for a polyphyletic origin of the telotrophic ovary.  相似文献   

12.
Undifferentiated mesenchymal cells in the limb bud integrate a complex array of local and systemic signals during the process of cell condensation and chondrogenic differentiation. To address the relationship between bone morphogenetic protein (BMP) signaling and gap junction-mediated intercellular communication, we examined the effects of BMP-2 and a gap junction blocker 18 alpha glycyrrhetinic acid (18alpha-GCA) on mesenchymal cell condensation and chondrogenic differentiation in an in vitro chondrogenic model. We find that connexin43 protein expression significantly correlates with early mesenchymal cellular condensation and chondrogenesis in high-density limb bud cell culture. The level of connexin43 mRNA is maximally upregulated 48 h after treatment with recombinant human BMP-2 with corresponding changes in protein expression. Inhibition of gap junction-mediated intercellular communication with 2.5 microM 18alpha-GCA decreases chondrogenic differentiation by 50% at 96 h without effects on housekeeping genes. Exposure to 18alpha-GCA for only the first 24-48 h after plating does not affect condensation or later chondrogenic differentiation suggesting that gap junction-mediated intercellular communication is not critical for the initial phase of condensation but is important for the onset of differentiation. 18alpha-GCA can also block the chondrogenic effects of BMP-2 without effects on cell number or connexin43 expression. These observations demonstrate 18alpha-GCA-sensitive regulation of intercellular communication in limb mesenchymal cells undergoing chondrogenic differentiation and suggest that BMP-2 induced chondrogenic differentiation may be mediated in part through the modulation of connexin43 expression and gap junction-mediated intercellular communication.  相似文献   

13.
ZENGMIBAI  YINGWANG 《Cell research》1993,3(2):141-145
Intercellular communication of notochord cells during their differentiation was studied by microinjection of a fluorescent dye.Lucifer Yellow,Close correlation existed between the incidences of dye coupling and quantitative evaluation of gap junctions.high incidences of dye coupling and of gap junctions occurred at a stage when notochord cells were active in the change of cell shape and cell arrangement.With the subsidence of cell movements,both dye coupling and gap junctions were reduced to lower levels.It was,therefore,Suggested that intercellular communication via gap junctions played an important role in the coordination of notochord cell movements.Gap Junctions of altered configuration occurred in notochord cells in late taibud stage.The comparison of incidences of dye coupling at this stage with those at other stages strongly suggested that the gap junctions of altered configuration functioned just as those of generalized type.  相似文献   

14.
Regulation of assimilation and senescence by the fruit in monocarpic plants   总被引:1,自引:0,他引:1  
Intercellular acidic isoperoxidases (EC 1.11.1.7) isolated from exponentially growing lupin ( Lupinus albus . L. cv. multolupa) hypocotyls are under the control of exogenously applied auxins. Application of auxins leads to a short-term reduction in the level of free intercellular peroxidases, and this effect is associated with a binding of these free peroxidases to the cell walls, probably mediated by an acidification of the cell wall. The ratio of free intercellular peroxidases to the total intercellular peroxidase activity, varies along the axis of exponentially growing hypocotyls. It has a V-shaped distribution with the minimum value in the elongation III-zone, where high levels of auxins have previously been implied in differentiation. This minimum value coincides spatially with the first signs of cell wall thickening in the hypocotyl cells and, paradoxically, it is out of phase with respect to the maximal cell elongation. On the other hand, the ratio of free intercellular peroxidases reaches its maximal values in both the most undiffercntiated phloem cells and the differentiated xylem cells. High levels of free intercellular peroxidase activity in phloem cells are hard to explain, since phloem cell walls remain unlignified during almost all stages of differentiation. However, association of free intercellular peroxidase activity with xylem cells is clearly associated with the lignification of the xylem cell walls. The physiological significance of the binding vs release of intercellular peroxidase is discussed in relation to the catalytic properties and stability at acidic pH of both the bound and free forms of this enzyme.  相似文献   

15.
Roles of cell-to-cell communication in development   总被引:3,自引:0,他引:3  
Possible roles of cell-to-cell communication mediated by intercellular bridges and gap junctions in development of the female gamete and embryo are discussed. Synchronization of cell cycle events is presumably a role for intercellular bridges between germ cells. The follicle of the Cecropia moth reveals that an electrical polarity exists between nurse cells and oocytes which are connected by intercellular bridges and this polarity may generate differences that result in differentiation of the oogonia to become either the oocyte or nurse cells. Gap junction-mediated transfer of cyclic AMP, made in response to gonadotropin stimulation, between granulosa cells is discussed as a mechanism that allows cells within a tissue to respond to an external stimulus even though all cells in that tissue may not be exposed to the stimulus. A nutritional role for heterologous cell communication between follicle cells and the oocyte in oocyte growth is presented as an example of how gap junction-mediated communication can allow one cell type to influence the behavior of another cell type. During development, a restriction in communication between differentiating cells is frequently observed. Examples of this phenomenon in a mammal and an insect are presented.  相似文献   

16.
Ultrastructure and previtellogenic growth of ovaries of Peripsocus phaeopterus (Stephens) and Stenopsocus stigmaticus (Imhof and Labram) (Insecta : Psocoptera) are described. The germ cell cluster formation was analyzed in an ovariole of a nymph using ultrathin serial sectioning. Fifteen germ cell clusters were found; 13 contained 4 cystocytes each, while 2 clusters, situated in the very tip, were composed of 2 cystocytes each. A fully developed cluster rises by 2 synchronized mitotic divisions, each followed by incomplete cytokinesis. Microtubules derived from the preceding mitoses form a transient midbody within the intercellular bridge. Later on, a fusome fills each bridge, while at fusomal rims parallel oriented microtubules are tightly associated. Some of these microtubules stretch to cell membranes nearby. The fusomes fuse into a polyfusome and a rosette is thus formed by which all intercellular bridges are drawn together. All cystocytes enter the prophase of meiosis up to pachynema. One of the 2 inner cells continues meiosis and develops as an oocyte, whereas all others transform into nurse cells. After rosette formation, the polyfusome-associated microtubules vanish and some time later, when the nurse cell-oocyte differentiation becomes apparent, the polyfusome itself becomes destroyed. The intercellular bridge, joining the first nurse cell with the 3rd moves away from the other 2. During previtellogenesis, 5 phases can be distinguished, 2 of which are interpreted as logarithmical growth phases with different slopes. The whole set of characters elaborated here for the polytrophic meroistic ovary of psocopterans is fully consistent with the characters of polytrophic meroistic ovaries of Holometabola, indicating a monophyletic origin.  相似文献   

17.
Ovaries of heteropterans consist of telotrophic meroistic ovarioles that are composed of apically located tropharium and basal vitellarium, containing developing oocytes. The tropharium (trophic chamber) houses trophocytes (nurse cells) that are connected with the centrally located trophic core. The organization of the heteropteran tropharia is highly variable and differs in representatives of primitive versus advanced families. The differences concern the mitotic activity of the apical nurse cells, organization of the trophocytes (individual cells or "syncytial lobes"), their connection with the trophic core and the development of F-actin meshwork around the trophic core. In members of primitive taxa of the Heteroptera, tropharia are composed of individual, usually mononucleate trophocytes. On the contrary, tropharia in advanced heteropterans are built of large "cytoplasmic lobes" that contain several trophocyte nuclei. Mitotic divisions of the trophocytes in the apical part of the trophic chamber are observed in most bugs (except Dipsocoridae, Miridae and Cimicidae). Tropharia of Miridae represent an entirely different organization (they are built of one type of highly polyploid trophocytes). Anagenesis of heteropteran trophic chamber is discussed in the context of presented data.  相似文献   

18.
19.
Microinjection of intracellular tracers fluorescein, Procion Yellow, Lucifer Yellow and horseradish peroxidase unequivocally showed the syncytial structure of the tropharium and its interaction with the oocytes. The tropharium tip is a separate isolated compartment. Finger-like nurse cell projections comprising the syncytial tropharium interact via gap junctions along their abutting membranes and also via large cytoplasmic continuities at the central trophic core. The trophic cords connecting the tropharium to oocyte vary in diameter relative to oocyte stage. Continuity of the tropharium with the oocytes is lost at approximately 1000 μm oocyte length and the severed cords then regress from the oocyte to the tropharium base. Variation in cord diameters and timing of cord closure may account for the highly regulated sequential oocyte growth.  相似文献   

20.
In Drosophila oogenesis, the programmed cell death of germline cells occurs predominantly at three distinct stages. These cell deaths are subject to distinct regulatory controls, as cell death during early and midoogenesis is stress-induced, whereas the cell death of nurse cells in late oogenesis is developmentally regulated. In this report, we show that the effector caspase Drice is activated during cell death in both mid- and late oogenesis, but that the level and localization of activity differ depending on the stage. Active Drice formed localized aggregates during nurse cell death in late oogenesis; however, active Drice was found more ubiquitously and at a higher level during germline cell death in midoogenesis. Because Drice activity was limited in late oogenesis, we examined whether another effector caspase, Dcp-1, could drive the unique morphological events that occur normally in late oogenesis. We found that premature activation of the effector caspase, Dcp-1, resulted in a disappearance of filamentous actin, rather than the formation of actin bundles, suggesting that Dcp-1 activity must also be restrained in late oogenesis. Overexpression of the caspase inhibitor DIAP1 suppressed cell death induced by Dcp-1 but had no effect on cell death during late oogenesis. This limited caspase activation in dying nurse cells may prevent destruction of the nurse cell cytoskeleton and the connected oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号