首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
柠檬酸合酶的分子生物学研究进展   总被引:1,自引:0,他引:1  
柠檬酸合酶(citrate synthase,CS)是细胞内多种重要代谢途径的关键酶。CS可催化草酰乙酸和乙酰辅酶A之间的缩合反应生成柠檬酸和辅酶A。通常革兰氏阳性细菌、古菌以及真核细胞的CS为同源二聚体,而革兰氏阴性细菌的CS为同源六聚体。根据其在细胞内的定位不同,CS可分为线粒体CS、乙醛酸循环体CS、过氧化物酶体CS。这些同工酶在能量代谢、植物脂肪的代谢、脂肪酸的氧化及细胞解毒过程中起着重要作用。不同来源的CS空间结构、催化机制和动力学性质十分相似。针对其生化特性、空间结构特点、催化机制以及分子进化等研究进展进行综述。  相似文献   

5.
6.
The citrate synthases of the gram-negative bacteria, Escherichia coli and Acinetobacter anitratum, are allosterically inhibited by NADH. The kinetic properties, however, suggest that the equilibrium between active (R) and inactive (T) conformational states is shifted toward the T state in the E. coli enzyme. We have now manipulated the cloned genes for the two bacterial enzymes to produce two chimeric proteins, in which one folding domain of each subunit is derived from each enzyme. One chimera (the large domain from A. anitratum and the small domain from the E. coli enzyme) is designated CS ACI::eco; the other is called CS ECO::aci. Both chimeras are roughly as active as the wild type parents, but their Km values for both substrates are lower than those for the E. coli enzyme, and NADH inhibition is markedly sigmoid, while that for E. coli citrate synthases is hyperbolic. Curve-fitting to the allosteric equation suggests that these differences are the result of the destabilization of the T state in the chimeras. The ACI::eco chimera exists almost entirely as a hexamer, like the A. anitratum enzyme, while the ECO::aci chimera, like the E. coli synthase, forms three major bands on nondenaturing polyacrylamide gels, two of them hexamers of different net charge, and one a dimer. These findings indicate that subunit interactions leading to hexamer formation in allosteric citrate synthases of gram-negative bacteria involve mainly the large domains. The chimeras are also used to show that the NADH binding site of E. coli citrate synthase is located entirely in the large domain. Sensitivity of the chimeras to denaturation by urea, to which the A. anitratum enzyme is much more resistant than the E. coli enzyme, is determined by the large domains. Sensitivity to inactivation by subtilisin is intermediate between those shown by the E. coli (very sensitive) and A. anitratum (quite resistant) synthases. This result suggests that digestibility by subtilisin is determined by conformational factors as well as the amino acid sequences of the target regions.  相似文献   

7.
8.
1. The imported mitochondrial enzyme citrate synthase can be partially (less than or equal to 45%) reactivated after denaturation in guanidinium chloride, if the concentration of the denaturing agent is lowered by dialysis, rather than by dilution, when essentially no reactivation is observed. 2. The presence of a reducing agent (dithiothreitol) is necessary for regain of activity. 3. Optimum regain of activity occurs at enzyme concentrations of about 10-20 micrograms/ml; at higher concentrations there is significant formation of aggregates.  相似文献   

9.
In this study, the product of the CIT3 gene has been identified as a dual specificity mitochondrial citrate and methylcitrate synthase and that of the CIT1 gene as a specific citrate synthase. Recombinant Cit1p had catalytic activity only with acetyl-CoA whereas Cit3p had similar catalytic efficiency with both acetyl-CoA and propionyl-CoA. Deletion of CIT1 dramatically shifted the ratio of these two activities in whole cell extracts towards greater methylcitrate synthase. Deletion of CIT3 had little effect on either citrate or methylcitrate synthase activities. A Deltacit2Deltacit3 strain showed no methylcitrate synthase activity, suggesting that Cit2p, a peroxisomal isoform, may also have methylcitrate synthase activity. Although wild-type strains of Saccharomyces cerevisiae did not grow with propionate as a sole carbon source, deletion of CIT2 allowed growth on propionate, suggesting a toxic production of methylcitrate in the peroxisomes of wild-type cells. The Deltacit2Deltacit3 double mutant did not grow on propionate, providing further evidence for the role of Cit3p in propionate metabolism. (13)C NMR analysis showed the metabolism of 2-(13)C-propionate to acetate, pyruvate, and alanine in wild-type, Deltacit1 and Deltacit2 cells, but not in the Deltacit3 mutant. (13)C NMR and GC-MS analysis of pyruvate metabolism revealed an accumulation of acetate and of isobutanol in the Deltacit3 mutant, suggesting a metabolic alteration possibly resulting from inhibition of the lipoamide acetyltransferase subunit of the pyruvate dehydrogenase complex by propionyl-CoA. In contrast to Deltacit3, pyruvate metabolism in a Deltapda1 (pyruvate dehydrogenase E1 alpha subunit) mutant strain was only shifted towards accumulation of acetate.  相似文献   

10.
E Holmes  C Boyer    J Preiss 《Journal of bacteriology》1982,151(3):1444-1453
Escherichia coli B glycogen synthase and branching enzyme, although similar in amino acid composition, had no significant immunological cross-reactivity. The N-terminal sequences of the glycogen synthase were rich in hydrophobic residues, whereas branching enzyme had a higher content of acidic and basic residues. However, residues 21 to 28 of glycogen synthase and 7 to 14 of branching enzyme shared six of eight residues in common. Two fractions of branching enzyme, branching enzymes I and II, which can be isolated from E. coli B cell extracts, have been shown to be immunologically identical, suggesting that only one type of branching enzyme activity is present in E. coli B. Evidence has been obtained which indicates that E. coli B glycogen synthase and branching enzyme are antigenically very similar to glycogen synthases and branching enzymes from other enteric bacteria. No cross-reactivity with either enzyme was observed in cell extracts from photosynthetic bacteria.  相似文献   

11.
The activities of a number of enzymes, extracted from Acetobacter xylinum, that are involved in carbohydrate metabolism may be accounted for in situ in permeabilized cells. The kinetic properties of citrate synthase and glycerokinase observed in vitro are also retained in situ. So is the regulatory sensitivity of these enzymes. Both in vitro and in situ, (a) citrate synthase, in contrast with the enzyme for other Gram-negative bacteria, is inhibited by ATP and is insensitive to NADH, and (b) glycerokinase is inhibited by fructose diphosphate and the ratio of its activities towards glycerol and dihydroxyacetone is the same.  相似文献   

12.
The effect of thyroidectomy on oxidative metabolism of rat liver, kidney, and brain mitochondria has been examined. The respiration in liver, kidney, and brain mitochondria was affected differentially after thyroidectomy, the common effect in all the tissues being the impairment in state 3 as well as state 4 rates of succinate oxidation. Thyroidectomy did not have any effect on ADPO ratios; however, compared to normal, respiratory control indexes were, in general, somewhat higher. Thyroidectomy also did not alter total ATPase activity of liver, kidney, and brain mitochondria, although the basal ATPase activity had decreased significantly under these conditions. The cytochrome content of the mitochondria also showed tissue-specific changes after thyroidectomy; however, no significant changes in the absorption characteristics of the cytochromes were seen. The succinate and glutamate dehydrogenase activities of mitochondria from liver, kidney, and brain were not affected by thyroidectomy, thereby ruling out the possibility that the decrease in substrate oxidation may be due to alterations in the primary dehydrogenase levels. It is concluded that thyroid hormone(s) may have a tissue-specific role in regulating the metabolic functions of mitochondria.  相似文献   

13.
When 125I-thrombin was incubated with foreskin fibroblasts, cervical carcinoma cells or fibrosarcoma cells of human origin, or with secondary chick embryo cells or Chinese hamster lung cells, it became directly linked to its cell surface receptors. The thrombin-receptor complex (TH-R) was derived exclusively from a pool of 125I-thrombin that had become specifically bound to the cell surface. The linkage was probably covalent, since the complex was resistant to boiling in sodium dodecyl sulfate and 2-mercaptoethanol. Raising the pH to 12 disrupted TH-R, but did not affect a similar complex between epidermal growth factor and its receptor, suggesting that the linkage of these mitogens to their receptors was different. Mild trypsin treatment removed the ability of cells to form TH-R; however, after a 24-h incubation in serum-free medium, trypsin-treated cells recovered the capacity to form TH-R, suggesting that TH-R resulted from interaction of 125I-thrombin with a cellular rather than a serum component. The mitogenic response of cells to thrombin was inversely related to the fraction of specifically bound 125I-thrombin represented by TH-R. The role of TH-R in mitogenesis may be clarified in future studies by obtaining clones of Chinese hamster lung cells that vary in their capacities to form TH-R and to respond to the mitogenic action of thrombin.  相似文献   

14.
15.
16.
In order to examine the relationship between the intermediate filaments from Purkinje fibres of the cow heart conduction system and five proposed subclasses of mammalian intermediate filaments, the gel electrophoresis-derived enzyme-linked immunosorbent assay (GEDELISA) has been used to examine the specificity and crossreactivity of our antibodies against the Purkinje fibre intermediate filament protein, skeletin. Bovine tissues known to contain intermediate filaments of the five main subclasses were examined with antiskeletin and with preimmune serum and the specific antiserum absorbed with pure skeletin as controls. The antibodies raised against Purkinje fibre skeletin reacted with all three polypeptides of the "neurofilament triplet", with glial fibrillary acidic protein (GFAP), with smooth muscle desmin and also slightly with some prekeratin subunits and with endothelial vimentin. From studies with monoclonal antibodies and amino acid sequencing, certain regions of all intermediate filaments are suggested to be structurally related. Here we show that Purkinje fibre skeletin seems to share antigenic determinants with the proposed five main classes of intermediate filaments. Our antibody is the first carefully controlled experimentally induced antibody having such properties. This might be due to the special attributes of the intermediate filament system in Purkinje fibres, which themselves have unique properties.  相似文献   

17.
Citrate synthase [citrate (si)-synthase] (EC 4.1.3.7) was partially purified from extracts of highly purified typhus rickettsiae (Rickettsia prowazekii). Molecular exclusion and affinity column chromatography were used to prepare 200-fold-purified citrate synthase that contained no detectable malate dehydrogenase (EC 1.1.1.37) activity. Rickettsial malate dehydrogenase also was partially purified (200-fold) via this purification procedure. Catalytically active citrate synthase exhibited a relative molecular weight of approximately 62,000 after elution from a calibrated Sephacryl S-200 column. Acetyl coenzyme A saturation of partially purified enzyme was sensitive to strong competitive inhibition with adenylates (ATP greater than ADP much greater than AMP). [beta,gamma-methylene]ATP, dATP, and dADP also caused strong inhibition, but guanosine and cytosine nucleotides were significantly less inhibitory. Adenylates had no effect on oxalacetate saturation kinetics when acetyl coenzyme A was present in high concentration (greater than or equal to 50 microM). Neither NADH nor alpha-ketoglutarate affected the saturation kinetics of rickettsial citrate synthase. Thus, citrate synthase from R. prowazekii exhibits greater similarity to the eucaryotic and gram-positive procaryotic enzymes than to citrate synthase from free-living gram-negative bacteria. These results represent the first characterization of a highly purified key regulatory enzyme from these obligate intracellular parasitic bacteria.  相似文献   

18.
Citrate synthase [EC 4.1.3.7] was purified from sea urchin eggs about 14-fold with a 23% yield, based on the activity of the crude extract. The molecular weight of the enzyme was about 100,000 as determined by gel filtration. The optimum pH was about 7.8 in 100 mM Tris-HCl. The apparent Km values for acetyl-CoA and for oxaloacetate were 33 and 3.2 muM, respectively. Monovalent and divalent cations inhibited the enzyme. Iodoacetamide, pCMB, EDTA, NaF, and dithiothreitol did not affect the enzyme activity. Oxaloacetate protected the enzyme against heat denaturation. Among nucleotides, ATP was the most potent inhibitor of the enzyme. The inhibition by ATP was competitive with respect to acetyl-CoA and mixed with respect to oxaloacetate.  相似文献   

19.
Eight lysosomal enzymes were measured in different types of rat liver cells. Hepatocytes were purified by low speed centrifugation of a cell suspension obtained by treating the perfused liver with collagenase. Nonparenchymal cells (NPC) were purified by centrifugation after treating the initial cell suspension with pronase, which selectively destroys the parenchymal cells (PC). Kupffer cells were found to attach selectively to tissue culture dishes after overnight culture of an NPC suspension. The specific activity of lysosomal enzymes was generally higher in NPC than in hepatocytes, but the different enzymes were concentrated to different degrees in the NPC. Specific activity of acid phosphatase was 1.7 times higher in NPC than in hepatocytes. Specific activity of acid DNAase, on the other hand, was 8 times higher in NPC than in hepatocytes. Other enzymes showed intermediate values. Assuming that 30% of the liver cells are nonparenchymal it may be calculated that from 7% (acid phosphatase) to 25% (acid DNAase) of the hepatic lysosomal enzymes are present in the NPC. The pattern of lysosomal enzymes in cultured Kupffer cells was similar to that of the NPC from which the Kupffer cells were derived. Cathepsin D and β-glucuronidase were, however, elevated in Kupffer cells as compared with NPC. The enzyme pattern in Kupffer cells was almost identical with that of rat peritoneal macrophages.  相似文献   

20.
In the biosynthesis of fatty acids, the beta-ketoacyl-acyl carrier protein (ACP) synthases catalyze chain elongation by the addition of two-carbon units derived from malonyl-ACP to an acyl group bound to either ACP or CoA. The crystal structure of beta-ketoacyl synthase II from Escherichia coli has been determined with the multiple isomorphous replacement method and refined at 2.4 A resolution. The subunit consists of two mixed five-stranded beta-sheets surrounded by alpha-helices. The two sheets are packed against each other in such a way that the fold can be described as consisting of five layers, alpha-beta-alpha-beta-alpha. The enzyme is a homodimer, and the subunits are related by a crystallographic 2-fold axis. The two active sites are located near the dimer interface but are approximately 25 A apart. The proposed nucleophile in the reaction, Cys163, is located at the bottom of a mainly hydrophobic pocket which is also lined with several conserved polar residues. In spite of very low overall sequence homology, the structure of beta-ketoacyl synthase is similar to that of thiolase, an enzyme involved in the beta-oxidation pathway, indicating that both enzymes might have a common ancestor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号