首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Western Tethyan areas, the Toarcian stage begins with two important evolutionary events in ammonite faunas: (1) the disruption of Tethyan–Boreal provinciality; (2) a biological crisis linked with the oceanic anoxic event OAE. The analysis of these events has been addressed by constructing curves of ammonoid diversity (species richness, origination and extinction rates) in the Late Pliensbachian (= Domerian)–Early Toarcian interval in selected localities. Two diversity drops are recognized. The first one is recorded at the end of the Dactylioceras mirabile subzone and reflects the disruption of Tethyan–Boreal provinciality, through the progressive extinction of the Boreal endemic family Amaltheidae that occupied the north-western European seas during the whole Pliensbachian on the one hand, and the extinction of Late Domerian Ammonitina endemic to the Mediterranean areas on the other hand. The Early Toarcian homogeneization of Mediterranean and north-western European ammonoid faunas was reached via elimination of both Boreal and Mediterranean endemics with differential rates of extinction in the two palaeogeographic domains and the subsequent geographical expansion of Tethyan-derived ammonoids. The second, dramatic drop in ammonite diversity in the upper part of the Dactylioceras semicelatum subzone coincided with the onset of OAE. It also affected epioceanic ammonoid clades like Phyllocerataceae and Lytocerataceae. These two drops are interpreted as two distinct extinctions and not as episodes of a single, stepwise event. Complex relations between ammonoid diversity and sea-level changes are suggested by trends in endemism, which may be reversed during either a single transgression or a single regression.  相似文献   

2.
3.
《Marine Micropaleontology》1999,37(2):101-116
The integration of palynological and geochemical data from three lower Toarcian successions in central Italy reveals that the composition of organic-walled phytoplankton assemblages were strongly affected by palaeoecological conditions related to bituminous sedimentation which accompanied the global anoxic event. The marked compositional variations of dinoflagellate cysts and prasinophytes, together with geochemical variations, have been linked to changes in surface water habitats during the lower Toarcian transgression. On the basis of the relationships between total organic carbon (TOC) and marine palynomorph assemblage composition, the lower Toarcian evolution of the Umbria-Marche Basin, central Italy, has been divided into four phases. Total organic carbon values rose significantly during the early Toarcian (Lower-middle Dactylioceras tenuicostatum ammonite Zone), and this can be linked to certain dinoflagellate cyst datums, for example the temporary disappearance of Mancodinium semitabulatum and the extinction of Luehndea spinosa. The presence of Umbriadinium mediterraneense and Valvaeodinium spp. accompany these moderately high TOC values. Subsequently, TOC levels increased to over 2% and prasinophytes became abundant in the Middle-upper D. tenuicostatum ammonite Zone. Mancodinium semitabulatum reappeared when TOC values eventually decreased in the Upper D. tenuicostatum ammonite Zone. This analysis has allowed the different sunlight requirements and life strategies of the early Toarcian Tethyan dinoflagellates to be modelled. Due to the cosmopolitan nature of the early Toarcian anoxic event, the principal marine palynological signals observed have been interpreted as sequence stratigraphical and palaeoecological indices. The Transgressive Systems Tract (TST) is accompanied by an increase in dinoflagellate cyst species diversity and a decrease in abundance. The succeeding maximum flooding surface (mfs) corresponds with a prasinophyte acme. During the Highstand Systems Tract (HST), the phytoplankton shows an increase in abundance and a decrease in diversity. The range top of Luehndea spinosa appears to characterise the early Toarcian TST.  相似文献   

4.
Jurassic radiolarians from 220 samples in Queen Charlotte Islands, B.C., Williston Lake, B.C., east-central Oregon, Baja California Sur, southern Spain, Austria, Slovenia, Turkey, Oman, Japan and Argentina were studied in order to construct global zonation for the Pliensbachian, Toarcian and Aalenian stages. Well-preserved faunas from continuous stratigraphic sections in Queen Charlotte Islands provide the most detailed record for this time interval, and all collections are tied to North American ammonite zones or assemblages. Collections from nearly all other areas lack independent dating except for early Toarcian carbon-isotope dating in Slovenia and late Aalenian ammonites in Spain.A database of 197 widely distributed updated taxonomic species was used to construct a Unitary Association (UA) zonation for the interval. A global sequence of 41 UAs was obtained for the top of the Sinemurian to the base of the Bajocian. The first and the last UAs represent the Late Sinemurian and the Early Bajocian respectively. The remaining 39 UAs were merged into nine zones (four Early Pliensbachian, one Late Pliensbachian, one Early Toarcian, one Middle-Late Toarcian, and two Aalenian) according to prominent radiolarian faunal breaks and ammonite data. The new zones are the Canutus tipperi - Katroma clara Zone (latest Sinemurian/earliest Pliensbachian); Zartus mostleri - Pseudoristola megaglobosa, Hsuum mulleri - Trillus elkhornensis and Gigi fustis - Lantus sixi zones (Early Pliensbachian); Eucyrtidiellum nagaiae - Praeparvicingula tlellensis Zone (Late Pliensbachian); Napora relica - Eucyrtidiellum disparile Zone (Early Toarcian); Elodium pessagnoi - Hexasaturnalis hexagonus Zone (Middle and Late Toarcian); Higumastra transversa - Napora nipponica Zone (early Aalenian); and Mirifusus proavus - Transhsuum hisuikyoense Zone (late Aalenian). These zones can be correlated worldwide and link previously established UA zonations for the Hettangian-Sinemurian and the Middle to Upper Jurassic. The new zonation allows high-resolution dating in the studied interval and provides a solid basis for analyzing faunal turnovers and the paleobiogeography of Jurassic radiolarians.  相似文献   

5.
The two Early Toarcian (Early Jurassic) extinction events in ammonoids   总被引:2,自引:0,他引:2  
The Early Toarcian (Early Jurassic) biological crisis was one of the ‘minor’ mass extinctions. It is linked with an oceanic anoxic event. Fossil data from sections located in northwestern European (epicontinental platforms and basins) and Tethyan (distal, epioceanic) areas indicate that Late Pliensbachian–Early Toarcian ammonoids experienced two extinction events during the Early Toarcian. The older one is linked with disruption of the Tethyan–Boreal provinciality, whereas the younger event correlates with the onset of anoxia and corresponds with the Early Toarcian mass‐extinction event. These two extinctions cannot be interpreted as episodes of a single, stepwise, event. Values of the net diversification, more than the number of extinctions, allow the two extinction events to be clearly recognized and distinguished. Values of regional net diversification for northwestern European and Tethyan faunas point to greater evolutionary dynamics in the epioceanic areas. The inclusion of Mediterranean faunas in the database proves that the ammonite turnover at the Early Toarcian mass‐extinction event was more important than previously thought. Progenitor (evolute Neolioceratoides), survivor (Dactylioceras, Polyplectus pluricostatus) and Lazarus (Procliviceras) taxa have been recognized. Different selectivity patterns are shown for the two events. The first one, linked to the disruption of the Tethyan–Boreal provinciality, has mainly affected ammonites adapted to epicontinental platforms. In the mass‐extinction event, no selectivity is recognized, because also Phylloceratina and Lytoceratina were deeply affected at species level, although their wide biogeographical distribution at clade level was a significant buffer against extinction. In contrast to Palaeozoic mass extinctions, ammonoid survivors and Lazarus taxa are characterized by complex sutures: Phylloceratina (long‐ranging ammonoids) and Polyplectus (relatively long‐ranging compared to other Ammonitina).  相似文献   

6.
The early Pliensbachian (Early Jurassic) is known as a time of marked provincialism in the marine realm, notably between the Mediterranean Tethys and North–West Europe. In order to test this observation quantitatively, we compiled 104 locality-level species lists from those areas based on a comprehensive revision of early Pliensbachian ammonites. With this dataset, we also explore the relationship between ammonite richness and biogeography at the scale of the sub-chronozone during the early Pliensbachian. Using various multivariate statistics and rarefaction techniques, we show that: (i) there is a sharp contrast between the NW European (NWE) and the Mediterranean (MED) provinces, although there is some mixing in Austroalpine and Pontic ammonite faunas; (ii) species richness in the MED province is about twice that in the NWE province for each chronozone; (iii) ammonite species richness tends to decrease during the early Pliensbachian, especially at the Ibex–Davoei transition; and (iv) the NWE and MED sensu stricto provinces both record the same pattern of variations in richness despite the fact that their taxonomic compositions have virtually nothing in common at the species level. We suggest that the low ammonite richness of the Davoei chronozone may be related to a coeval warming of seawaters, but that this was insufficient to affect the sharp palaeobiogeographic contrast between the two provinces. This persistent compartmentalisation probably reflects a major palaeogeographical structure, such as an emerged or near-emerged barrier running from the Betic range to the Briançonnais ridge. Overall, it seems that the diversity and distribution of early Pliensbachian ammonite species were simultaneously controlled by climate, palaeogeography and eustasy.  相似文献   

7.
The significant mass extinction attributed to the Early Toarcian anoxic event had a severe impact on the phylum Brachiopoda. Beyond a serious decrease of species diversity, the extinction of the orders Spiriferidina and Athyridida is connected with this episode. The order Athyridida was represented by the family Koninckinidae in the Early Jurassic. The stratigraphical and geographical distribution of the three Early Jurassic koninckinid genera ( Koninckella, Koninckodonta, Amphiclinodonta ) shows a definite radiative pattern. The number of their nominal species increased from 2 to 17 from the Sinemurian to Early Toarcian; in the same time interval, their area increased from the Alpine region to the whole Mediterranean and the NW-European domains. This radiative evolution can be explained as the result of different factors: (1) morphological adaptation to muddy bottoms, (2) fundamental changes in the current pattern in the Tethys/Laurasian Seaway, and, possibly, (3) utilization of methane-based chemosynthesis as alternative food source. The radiation of koninckinids, leading from the cryptic habitats of the Tethyan rocky floors to the extensive muddy bottoms of the open European shelves, was abruptly terminated by the anoxic event in the Early Toarcian Falciferum Zone. The main causes of the extinction might be: (1) the excessive warming of Tethyan deep waters by thermohaline circulation, (2) the anoxic event, which was not survived by the spire-bearers, handicapped by their stiff, calcareous spiralia. Brachiopoda, Early Jurassic, Europe, extinction, Koninckinidae, radiation, Tethys.  相似文献   

8.
This paper describes and characterises the co-occurrence of ammonite and benthic foraminiferal assemblages across the São Gião outcrop (Central Portugal), a reference section for the Lower-Middle Jurassic boundary in the Lusitanian Basin. The upper Toarcian-lower Aalenian marls and marly-limestones in this section provide a precise and detailed ammonite-based biostratigraphic zonation, with a mixed assemblage of northwest European and Mediterranean faunal elements, associated with benthic foraminifera assemblages with northern hemisphere affinities, both correlatable with the Aalenian GSSP at the Fuentelsaz section (Iberian Cordillera, Spain). A total of 447 well-preserved ammonite specimens and 13.116 foraminifera have been studied; no evidence was detected of any taphonomic processes that could have changed the original assemblages. From a biostratigraphic point of view, the ammonite record has enabled four biostratigraphic units to be recognised (the Mactra and Aalensis subzones of the Aalensis Biozone in the upper Toarcian, and the Opalinum and Comptum subzones of the Opalinum Biozone in the lower Aalenian). With regard to the benthic foraminifera, the taxa identified have enabled the Astacolus dorbignyi Zone and 11 bioevents to be identified, most of which representing local biostratigraphic proxies. However, the increase in the relative abundance of Lenticulina exgaleata Dieni from the upper part of the Opalinum Subzone to the lower part of the Comptum Subzone has a regional value. The constant and continuous ammonite record of northwest European taxa, together with typical Mediterranean taxa – namely Grammoceratinae – throughout the section, the high relative abundance of Miliolina representatives – generally interpreted as foraminifers typical of shallow waters – and the absence of foraminiferal forms typical of cool waters, do not support the inference of cool seawater temperatures attributed to the Early Aalenian, or the global character of the “Comptum cooling event”, at least with reference to the Lusitanian Basin.  相似文献   

9.
A fragment of the upper jaw of a crocodilian from the Toarcian of NW Madagascar is referred toSteneosaurus sp. (family Teleosauridae). It is the earliest known crocodilian from Madagascar. It indicates faunal relationships with western Europe and South America. The distribution of late Liassic marine crocodilians, similar to that of the ammoniteBouleiceras, suggests the existence of an epicontinental seaway from the Tethyan region to the southern part of Africa via the Transerythrean Province, which provided a marine connection between western Europe and South America.  相似文献   

10.
In the Jajarm area (eastern Alborz Mountains, NE Iran) the ?Upper Triassic — Lower Bajocian siliciclastic Shemshak Formation is up to 2000 m thick. Whereas the lower third of the formation is nearly exclusively non-marine, the upper two-thirds are fully marine. The middle part is characterized by several levels containing a relatively diverse and well preserved assemblage of ammonites of the Toarcian to Aalenian stages. Two sections of the ammonite-bearing strata, spaced 20 km, are presented and correlated by means of ammonite biostratigraphy. The ammonite fauna consists of 27 taxa, some of which are recorded for the first time from the Alborz Mountains. The ammonites are briefly described and their palaeobiogeographic context is reviewed. The ammonite fauna of the Shemshak Formation at Jajarm, as elsewhere in North and Central Iran, is exclusively Northwestern Tethyan in character and is closely related to the faunas of Northwestern and Central Europe.  相似文献   

11.
A set of published, unpublished, and new clay mineral data from 60 European and Mediterranean localities allows us to test the reliability of clay minerals as palaeoclimatic proxies for the Pliensbachian–Toarcian period (Early Jurassic) by reconstructing spatial and temporal variations of detrital fluxes at the ammonite biochronozone resolution. In order to discuss their palaeoclimatic meaning, a compilation of low-latitude belemnite δ18O, δ13C, Mg/Ca, and 87Sr/86Sr values is presented for the first time for the whole Pliensbachian–Toarcian period. Once diagenetic and authigenic biases have been identified and ruled out, kaolinite content variation is considered as a reliable palaeoclimatic proxy for the Early Jurassic. Major kaolinite enrichments occur during times of low δ18O, high Mg/Ca, and increasing 87Sr/86Sr, implying warm climates and efficient runoffs during the Davoei, Falciferum and Bifrons Zones. Conversely, cooler and drier times such as the Late Pliensbachian or the Late Toarcian are characterized by low hydrolysis of landmasses, and correspond to kaolinite depleted intervals. Secondary factors as modifications of sources or hydrothermalism may sporadically disturb the palaeoclimatic signal (e.g., in the Bakony area during the Late Pliensbachian). In addition, a spatial comparison of clay assemblages displays significant kaolinite enrichments towards northern parts of the Peritethyan Realm, probably related to the latitudinal zonation of hydrolyzing conditions. This implies enhanced runoffs on northern continental landmasses that reworked kaolinite-rich sediments from subtropical soils and/or Palaeozoic substrata.  相似文献   

12.
Martin C. Phelps 《Geobios》1985,18(3):321-367
A refined biostratigraphical scheme is described forthe Ibex and Davoei Zones (Carixian Substage, Lower Jurassic) in NW Europe, and the biostratigraphical details of the Carixian — Domerian boundary are outlined. It is based on detailed stratigraphical collections of ammonites from the major Pliensbachian localities in Britain, France and Germany, with supplementary data from Portugal. The zones and subzones, which are largely unchanged from the well-established scheme described by Dean & alii (1961), are further divided into zonules which can be recognised throughout NW Europe. These zonules, nine for the Ibex Zone and seven for the Davoei Zone, probably represent the greatest biostratigraphical resolution readily obtainable using ammonite faunas. The problems inherent in the precise recognition of the chronostratigraphical Carixian-Domerian boundary, owing to slightly discordant species ranges, are discussed.  相似文献   

13.
This paper documents changes in benthic foraminiferal assemblages compared with high resolution ammonite biozonation along the lower Toarcian to upper Toarcian marine succession of Southern Beaujolais in southeastern France. Eight ammonite and three benthic foraminiferal zones including five subzones are distinguished based on the occurrence of twelve foraminiferal events. Each benthic foraminiferal subzone is characterized by its taxonomic and morphogroup composition, which represents the paleoecological response of these taxa and morphotypes of benthic foraminifera in the Early Jurassic and early Middle Jurassic. Major changes in abundance and diversity occur at the end of the Toarcian Oceanic Anoxic Event (T-OAE) and near the Early-Middle Jurassic transition. The low-abundance foraminiferal assemblages recorded in the Serpentinus ammonite Zone are interpreted as reflecting adverse environmental conditions after the T-OAE. The later recovery and development of the foraminiferal assemblages is documented in the Bifrons up to the Aalensis zones and is attributed to improved bottom water oxygenation. Common occurrences of agglutinated foraminifera represented mostly by Trochammina pulchra Ziegler in the Dispensum Zone point to an influx of cooler water masses during the late Toarcian. The morphogroup analysis carried out on the foraminifera and their paleoecological interpretations shed light on the changes in the stratigraphic record at the end of the T-OAE up to the Toarcian/Aalenian boundary.  相似文献   

14.
《Geobios》2018,51(6):537-557
A comprehensive investigation of the Early Jurassic stratigraphical palynology of the Lusitanian Basin in western Portugal was undertaken, with most emphasis placed on dinoflagellate cysts. A total of 214 samples from an upper Sinemurian to upper Toarcian composite section based on six successions were examined. The Sinemurian material examined was barren of dinoflagellate cysts; however, the Pliensbachian and Toarcian successions are characterised by relatively low diversities where Luehndea spinosa, Mancodinium semitabulatum, Mendicodinium microscabratum, Nannoceratopsis gracilis, Nannoceratopsis senex, and Scriniocassis priscus are relatively common and biostratigraphically significant. Luehndea spinosa dominates the lowermost Toarcian (Dactylioceras polymorphum ammonite Biozone), and is an index species. At the base of the Hildaites levisoni ammonite Biozone, the effects of the Toarcian Oceanic Anoxic Event (T-OAE) caused Luehndea spinosa to become extinct. At the same time, dinoflagellate cyst abundance and diversity markedly decreased. After the T-OAE, during the middle and late Toarcian, phytoplankton recovery was prolonged and slow in the Lusitanian Basin. The Luehndea spinosa and Mendicodinium microscabratum dinoflagellate cyst biozones are defined, both of which are subdivided into two dinoflagellate cyst subbiozones.  相似文献   

15.
From probable Lower Jurassic of Pakistan the new ammonite genusKohaticeras with two new species is described and, despite some remarkable differences, is placed to the subfamily Bouleiceratinae (Toarcian).  相似文献   

16.
Abstract:  The ammonite genus Alocolytoceras Hyatt, 1900 is an uncommon lytoceratid with distinctive shell ornament. A set of 58 specimens, recently collected at Amellago in the central High Atlas (Morocco), has enabled us to trace a succession of three species over eight biozones from the Toarcian to the Aalenian. Two specimens from the Lusitanian Basin are added for comparison. Following a review of the genus, based on original specimens and data from the literature, seven species are considered valid. A palaeobiogeographical synthesis of 13 regions demonstrates irregular distribution patterns over time, with a constant presence in the south-west Tethys and an instance of rapid diversification of an endemic fauna in north-west Europe. Our data challenge the conventional view that lytoceratid ammonite evolution was 'conservative'.  相似文献   

17.
Based on calcareous nannofossil assemblages identified in four expanded and well-dated sections from the Basque-Cantabrian Basin, the main objective of this paper is to improve the knowledge of the Pliensbachian calcareous nannofossil events, and to calibrate these events to the ammonite zones established for this area. The semiquantitative analysis of more than 140 smear slides from the Tudanca and Santotis sections, and the re-analysis of more than 200 smear slides from the Camino and San Andrés sections, have been carried out in order to describe the succession of calcareous nannofossil assemblages. Related to their composition changes, we have recognized and calibrated to the ammonite zones two main events: the first occurrences (FOs) of Similiscutum cruciulus and Lotharingius hauffii, and six secondary events: the FOs of Biscutum novum, Biscutum grande, Biscutum finchii, Lotharingius barozii and the FCOs (first common occurrences) of Calcivascularis jansae and L. hauffii. In the Camino and San Andrés sections, we also identify the FOs of Biscutum dubium, Bussonius prinsii and Lotharingius sigillatus. The obtained data allow us to assess the degree of reproducibility of the Pliensbachian calcareous nannofossil events in the studied area. The biohorizon succession recognized in the Basque-Cantabrian Basin are compared to those proposed for NW Europe, Lusitanian Basin, Italy and Southern France.  相似文献   

18.
Late in summer 2003, extensive mass mortality of at least 25 rocky benthic macro-invertebrate species (mainly gorgonians and sponges) was observed in the entire Northwestern (NW) Mediterranean region, affecting several thousand kilometers of coastline. We were able to characterize the mortality event by studying six areas covering the main regions of the NW Mediterranean basin. The degree of impact on each study area was quantified at 49 sites by estimating the proportion of colonies affected in populations of several gorgonian species compared with reference data obtained in years without mortality signs. According to these data, the western areas (Catalan coast and Balearic Islands) were the least affected, while the central areas (Provence coast and Corsica-Sardinia) showed a moderate impact. The northernmost and eastern areas (Gulf of Genoa and Gulf of Naples) displayed the highest impact, with almost 80% of gorgonian colonies affected. The heat wave of 2003 in Europe caused an anomalous warming of seawater, which reached the highest temperatures ever recorded in the studied regions, between 1 and 3 °C above the climatic values (mean and maximum). Because this exceptional warming was observed in the depth ranges most affected by the mortality, it seems likely that the 2003 anomalous temperature played a key role in the observed mortality event. A correlation analysis between temperature conditions and degree of impact seems to support this hypothesis. Under the present climate warming trend, new mass mortality events may occur in the near future, possibly driving a major biodiversity crisis in the Mediterranean Sea.  相似文献   

19.
Juniperus phoenicea is a tree that can grow on vertical cliff faces in dry and warm Mediterranean climate conditions. These trees are adapted to extreme growing conditions where the main constraints are verticality, compact hard limestone, and low water supply. They respond to these constraints via various specific features and high longevity. The objective of this study is to confirm whether or not their tree-rings are annual in order to specify growth strategies and accurately date these trees. Trunk morphology, anatomical wood anomalies and radial growth were analyzed on 53 trees in the Ardèche canyon. Crossdating of the ring widths using traditional dendrochronological techniques was unsuccessful, so radiocarbon dating of tree pith was used to assess tree age, and wiggle-match dating was used to test for differences between number of rings counted and radiocarbon dates. Radiocarbon dates span the period 2520–685 BP. Minimal difference between radiocarbon dates and ring counts was apparently small—missing rings occur, but not in large numbers. Tree-ring formation is annual and radial growth is low, which creates stunted old trees. Such old living trees are uncommon in the Mediterranean basin, especially at low elevation. They can provide long tree-ring chronologies back to 792–524 cal BC. Results from the radiocarbon dating indicate that accurate annual dating of these rings may be possible by crossdating. J. phoenicea growing on cliffs offer a valuable model to better understand cliff population ecology and the functional responses of trees that can live in harsh environmental conditions.  相似文献   

20.
Abstract:  Abundant and well-preserved Early Jurassic ammonite assemblages occur in the Taseko Lakes map area on the Cadwallader Terrane in the southern Coast Mountains of British Columbia. The ammonite assemblage described herein includes nine genera and 14 species, most of them already known from classical localities of northern and southern Europe. The presence in particular of Caenisites brooki (Sowerby) and C. turneri (Sowerby) permits high-resolution correlation with the Turneri Zone of the north-west European Sinemurian zonation. The specimens were collected at four localities but most come from an olistolith where the ammonite assemblage is dominated by Coroniceras ( Paracoroniceras ) mutabile Macchioni, Smith and Tipper, associated with Lytotropites fucinii (Bonarelli) and Hypasteroceras montii (De Stefani). The latter two species, whose exact age is here established for the first time, have a Mediterranean distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号