首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of superior soft-tissue contrast compared to other imaging techniques, non-invasive abdominal magnetic resonance imaging (MRI) is ideal for monitoring organ regeneration, tissue repair, cancer stage, and treatment effects in a wide variety of experimental animal models. Currently, sophisticated MR protocols, including technically demanding procedures for motion artefact compensation, achieve an MRI resolution limit of < 100 microm under ideal conditions. However, such a high spatial resolution is not required for most experimental rodent studies. This article describes both a detailed imaging protocol for MR data acquisition in a ubiquitously and commercially available 1.5 T MR unit and 3-dimensional volumetry of organs, tissue components, or tumors. Future developments in MR technology will allow in vivo investigation of physiological and pathological processes at the cellular and even the molecular levels. Experimental MRI is crucial for non-invasive monitoring of a broad range of biological processes and will further our general understanding of physiology and disease.  相似文献   

2.
3.
Magnetic resonance (MR) imaging is the most promising new technology to appear in the clinical imaging arena since the advent of x-ray transmission computed tomography in the early 1970s. Five independent tissue characteristics (spin density, spin-lattice and spin-spin relaxation times, flow and spectral shift information) are accessible to MR imaging, and their relative influence in the magnetic resonance image can be varied by appropriate selection of pulse sequences and pulse times. All major organ systems appear to be amenable to MR imaging, and some are revealed with superior definition compared with their appearance in images obtained by alternate imaging technologies. Of particular interest is the superior contrast resolution in MR images of the brain and spinal cord, and the absence of bone- and motion-induced artifacts in images of the abdomen and pelvis. Applications of MR imaging to the heart and great vessels are just developing, as are new types of contrast agents for use in MR imaging. In vivo chemical spectroscopic measurements by magnetic resonance are heralded by some investigators as the most significant contribution that magnetic resonance will make ultimately to clinical diagnosis.At present, the number of MR imaging units is extremely low, and clinical studies are proceeding at a slow rate. Nevertheless, it is possible to provide a preliminary evaluation of the usefulness of MR imaging in a variety of clinical applications. This article is such an evaluation, tempered by the acknowledgement that much additional work remains to be done.  相似文献   

4.
During the past decade, stem cell transplantation has gained increasing interest as primary or secondary therapeutic modality for a variety of diseases, both in preclinical and clinical studies. However, to date results regarding functional outcome and/or tissue regeneration following stem cell transplantation are quite diverse. Generally, a clinical benefit is observed without profound understanding of the underlying mechanism(s). Therefore, multiple efforts have led to the development of different molecular imaging modalities to monitor stem cell grafting with the ultimate aim to accurately evaluate survival, fate and physiology of grafted stem cells and/or their micro-environment. Changes observed in one or more parameters determined by molecular imaging might be related to the observed clinical effect. In this context, our studies focus on the combined use of bioluminescence imaging (BLI), magnetic resonance imaging (MRI) and histological analysis to evaluate stem cell grafting. BLI is commonly used to non-invasively perform cell tracking and monitor cell survival in time following transplantation, based on a biochemical reaction where cells expressing the Luciferase-reporter gene are able to emit light following interaction with its substrate (e.g. D-luciferin). MRI on the other hand is a non-invasive technique which is clinically applicable and can be used to precisely locate cellular grafts with very high resolution, although its sensitivity highly depends on the contrast generated after cell labeling with an MRI contrast agent. Finally, post-mortem histological analysis is the method of choice to validate research results obtained with non-invasive techniques with highest resolution and sensitivity. Moreover end-point histological analysis allows us to perform detailed phenotypic analysis of grafted cells and/or the surrounding tissue, based on the use of fluorescent reporter proteins and/or direct cell labeling with specific antibodies. In summary, we here visually demonstrate the complementarities of BLI, MRI and histology to unravel different stem cell- and/or environment-associated characteristics following stem cell grafting in the CNS of mice. As an example, bone marrow-derived stromal cells, genetically engineered to express the enhanced Green Fluorescent Protein (eGFP) and firefly Luciferase (fLuc), and labeled with blue fluorescent micron-sized iron oxide particles (MPIOs), will be grafted in the CNS of immune-competent mice and outcome will be monitored by BLI, MRI and histology (Figure 1).  相似文献   

5.
In unicellular and multicellular eukaryotes, elaborate gene regulatory mechanisms facilitate a broad range of biological processes from cell division to morphological differentiation. In order to fully understand the gene regulatory networks involved in these biological processes, the spatial and temporal patterns of expression of many thousands of genes will need to be determined in real time in living organisms. Currently available techniques are not sufficient to achieve this goal; however, novel methods based on magnetic resonance (MR) imaging may be particularly useful for sensitive detection of gene expression in opaque tissues. This report describes a novel reporter gene system that monitors gene expression dynamically and quantitatively, in yeast cells, by measuring the accumulation of inorganic polyphosphate (polyP) using MR spectroscopy (MRS) or MR spectroscopic imaging (MRI). Because this system is completely non-invasive and does not require exogenous substrates, it is a powerful tool for studying gene expression in multicellular organisms, as well.  相似文献   

6.
Looking deeper into vertebrate development   总被引:3,自引:0,他引:3  
Magnetic resonance imaging (MRI) is a non-invasive imaging method that provides three-dimensional (3-D) images of the internal structure of opaque objects, such as humans and mice. In optimal situations, spatial resolution can approach the micron level. Arbitrarily oriented single-slice images can be obtained in seconds, with full 3-D volume images taking tens of minutes to collect. The exquisite sensitivity of MRI to the local physical and chemical environment provides a wide range of mechanisms giving rise to intrinsic contrast in the MR experiment, thus providing images with dramatic differences between different tissue types (e.g. white vs grey matter, myelinated vs unmyelinated fibres, and brain parenchyma vs ventricles). The recent advent of physiologically sensitive MRI contrast agents opens up a wealth of new avenues of study, even including the in vivo imaging of gene expression.  相似文献   

7.
Experimental nerve imaging at 1.5-T   总被引:1,自引:0,他引:1  
Experimental lesions of the peripheral nerve system can be visualized in vivo by magnetic resonance imaging (MRI). Many studies of the rat peripheral nervous systems were performed on dedicated animal MR scanners with a high magnetic field strength for good spatial resolution. Here, we present an MR protocol to study experimental lesions of the rat nervous system with clinical 1.5-T MR scanners and commercially available coils. Using a three-sequence approach (T1-weighted imaging, fat-saturated T2-weighted imaging and fat-saturated T1-weighted imaging with Gd-DTPA in the same plane), the relevant signal changes of the lesioned nerve can be visualized and separated from other structures, e.g., blood vessels. Furthermore, we give an overview on different types of contrast agents used for peripheral nerve MR imaging and MR findings in selected experimental models of rat peripheral nerve injury.  相似文献   

8.
Molecular magnetic resonance imaging with targeted contrast agents   总被引:6,自引:0,他引:6  
Magnetic resonance imaging (MRI) produces high-resolution three-dimensional maps delineating morphological features of the specimen. Differential contrast in soft tissues depends on endogenous differences in water content, relaxation times, and/or diffusion characteristics of the tissue of interest. The specificity of MRI can be further increased by exogenous contrast agents (CA) such as gadolinium chelates, which have been successfully used for imaging of hemodynamic parameters including blood perfusion and vascular permeability. Development of targeted MR CA directed to specific molecular entities could dramatically expand the range of MR applications by combining the noninvasiveness and high spatial resolution of MRI with specific localization of molecular targets. However, due to the intrinsically low sensitivity of MRI (in comparison with nuclear imaging), high local concentrations of the CA at the target site are required to generate detectable MR contrast. To meet these requirements, the MR targeted CA should recognize targeted cells with high affinity and specificity. They should also be characterized by high relaxivity, which for a wide variety of CA depends on the number of contrast-generating groups per single molecule of the agent. We will review different designs and applications of targeted MR CA and will discuss feasibility of these approaches for in vivo MRI.  相似文献   

9.

Background

Living tissues contain a range of intrinsic fluorophores and sources of second harmonic generation which provide contrast that can be exploited for fresh tissue imaging. Microscopic imaging of fresh tissue samples can circumvent the cost and time associated with conventional histology. Further, intrinsic contrast can provide rich information about a tissue''s composition, structure and function, and opens the potential for in-vivo imaging without the need for contrast agents.

Methodology/Principal Findings

In this study, we used hyperspectral two-photon microscopy to explore the characteristics of both normal and diseased gastrointestinal (GI) tissues, relying only on their endogenous fluorescence and second harmonic generation to provide contrast. We obtained hyperspectral data at subcellular resolution by acquiring images over a range of two-photon excitation wavelengths, and found excitation spectral signatures of specific tissue types based on our ability to clearly visualize morphology. We present the two-photon excitation spectral properties of four major tissue types that are present throughout the GI tract: epithelium, lamina propria, collagen, and lymphatic tissue. Using these four excitation signatures as basis spectra, linear unmixing strategies were applied to hyperspectral data sets of both normal and neoplastic tissue acquired in the colon and small intestine. Our results show that hyperspectral unmixing with excitation spectra allows segmentation, showing promise for blind identification of tissue types within a field of view, analogous to specific staining in conventional histology. The intrinsic spectral signatures of these tissue types provide information relating to their biochemical composition.

Conclusions/Significance

These results suggest hyperspectral two-photon microscopy could provide an alternative to conventional histology either for in-situ imaging, or intraoperative ‘instant histology’ of fresh tissue biopsies.  相似文献   

10.
Advanced MR imaging methods have an essential role in classification, grading, follow-up and therapeutic management in patients with brain tumors. With the introduction of new therapeutic options, the challenge for better tissue characterization and diagnosis increase, calling for new reliable non-invasive imaging methods. In the current study we evaluated the added value of a combined protocol of blood oxygen level dependent (BOLD) imaging during hyperoxic challenge (termed hemodynamic response imaging (HRI)) in an orthotopic mouse model for glioblastoma under anti-angiogenic treatment with B20-4.1.1, an anti-VEGF antibody. In glioblastoma tumors, the elevated HRI indicated progressive angiogenesis as further confirmed by histology. In the current glioblastoma model, B20-treatment caused delayed tumor progression with no significant changes in HRI yet with slightly reduced tumor vascularity as indicated by histology. Furthermore, fewer apoptotic cells and higher proliferation index were detected in the B20-treated tumors compared to control-treated tumors. In conclusion, HRI provides an easy, safe and contrast agent free method for the assessment of the brain hemodynamic function, an additionally important clinical information.  相似文献   

11.
Stem cell transplantation has been expected to have various applications for regenerative medicine. However, in order to detect and trace the transplanted stem cells in the body, non-invasive and widely clinically available cell imaging technologies are required. In this paper, we focused on magnetic resonance (MR) imaging technology, and investigated whether the trimethylamino dextran-coated magnetic iron oxide nanoparticle -03 (TMADM-03), which was newly developed by our group, could be used for labeling adipose tissue-derived stem cells (ASCs) as a contrast agent. No cytotoxicity was observed in ASCs transduced with less than 100 µg-Fe/mL of TMADM-03 after a one hour transduction time. The transduction efficiency of TMADM-03 into ASCs was about four-fold more efficient than that of the alkali-treated dextran-coated magnetic iron oxide nanoparticle (ATDM), which is a major component of commercially available contrast agents such as ferucarbotran (Resovist), and the level of labeling was maintained for at least two weeks. In addition, the differentiation ability of ASCs labeled with TMADM-03 and their ability to produce cytokines such as hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2), were confirmed to be maintained. The ASCs labeled with TMADM-03 were transplanted into the left kidney capsule of a mouse. The labeled ASCs could be imaged with good contrast using a 1T MR imaging system. These data suggest that TMADM-03 can therefore be utilized as a contrast agent for the MR imaging of stem cells.  相似文献   

12.
Qiao J  Li S  Wei L  Jiang J  Long R  Mao H  Wei L  Wang L  Yang H  Grossniklaus HE  Liu ZR  Yang JJ 《PloS one》2011,6(3):e18103
The application of magnetic resonance imaging (MRI) to non-invasively assess disease biomarkers has been hampered by the lack of desired contrast agents with high relaxivity, targeting capability, and optimized pharmacokinetics. We have developed a novel MR imaging probe targeting to HER2, a biomarker for various cancer types and a drug target for anti-cancer therapies. This multimodal HER20targeted MR imaging probe integrates a de novo designed protein contrast agent with a high affinity HER2 affibody and a near IR fluorescent dye. Our probe can differentially monitor tumors with different expression levels of HER2 in both human cell lines and xenograft mice models. In addition to its 100-fold higher dose efficiency compared to clinically approved non-targeting contrast agent DTPA, our developed agent also exhibits advantages in crossing the endothelial boundary, tissue distribution, and tumor tissue retention over reported contrast agents as demonstrated by even distribution of the imaging probe across the entire tumor mass. This contrast agent will provide a powerful tool for quantitative assessment of molecular markers, and improved resolution for diagnosis, prognosis and drug discovery.  相似文献   

13.
Under magnetic resonance (MR) guidance, high intensity focused ultrasound (HIFU) is capable of precise and accurate delivery of thermal dose to tissues. Given the excellent soft tissue imaging capabilities of MRI, but the lack of data on the correlation of MRI findings to histology following HIFU, we sought to examine tumor response to HIFU ablation to determine whether there was a correlation between histological findings and common MR imaging protocols in the assessment of the extent of thermal damage. Female FVB mice (n = 34), bearing bilateral neu deletion tumors, were unilaterally insonated under MR guidance, with the contralateral tumor as a control. Between one and five spots (focal size 0.5 × 0.5 × 2.5 mm3) were insonated per tumor with each spot receiving approximately 74.2 J of acoustic energy over a period of 7 seconds. Animals were then imaged on a 7T MR scanner with several protocols. T1 weighted images (with and without gadolinium contrast) were collected in addition to a series of T2 weighted and diffusion weighted images (for later reconstruction into T2 and apparent diffusion coefficient maps), immediately following ablation and at 6, 24, and 48 hours post treatment. Animals were sacrificed at each time point and both insonated/treated and contralateral tumors removed and stained for NADH-diaphorase, caspase 3, or with hematoxylin and eosin (H&E). We found the area of non-enhancement on contrast enhanced T1 weighted imaging immediately post ablation correlated with the region of tissue receiving a thermal dose CEM43 ≥ 240 min. Moreover, while both tumor T2 and apparent diffusion coefficient values changed from pre-ablation values, contrast enhanced T1 weighted images appeared to be more senstive to changes in tissue viability following HIFU ablation.  相似文献   

14.
Liver tumors are common and imaging methods, particularly magnetic resonance imaging (MRI), play an important role in their non-invasive diagnosis. Previous studies have shown that detection of liver tumors can be improved by injection of two different MR contrast agents. Here, we developed a new contrast agent, Gd-manganese-doped magnetism-engineered iron oxide (Gd-MnMEIO), with enhancement effects on both T1- and T2-weighted MR images of the liver. A 3.0T clinical MR scanner equipped with transmit/receiver coil for mouse was used to obtain both T1-weighted spoiled gradient-echo and T2-weighted fast spin-echo axial images of the liver before and after intravenous contrast agent injection into Balb/c mice with and without tumors. After pre-contrast scanning, six mice per group were intravenously injected with 0.1 mmol/kg Gd-MnMEIO, or the control agents, i.e., Gd-DTPA or SPIO. The scanning time points for T1-weighted images were 0.5, 5, 10, 15, 20, 25, and 30 min after contrast administration. The post-enhanced T2-weighted images were then acquired immediately after T1-weighted acquisition. We found that T1-weighted images were positively enhanced by both Gd-DTPA and Gd-MnMEIO and negatively enhanced by SPIO. The enhancement by both Gd-DTPA and Gd-MnMEIO peaked at 0.5 min and gradually declined thereafter. Gd-MnMEIO (like Gd-DTPA) enhanced T1-weighted images and (like SPIO) T2-weighted images. Marked vascular enhancement was clearly visible on dynamic T1-weighted images with Gd-MnMEIO. In addition, the T2 signal was significantly decreased at 30 min after administration of Gd-MnMEIO. Whereas the effects of Gd-MnMEIO and SPIO on T2-weighted images were similar (p = 0.5824), those of Gd-MnMEIO and Gd-DTPA differed, with Gd-MnMEIO having a significant T2 contrast effect (p = 0.0086). Our study confirms the feasibility of synthesizing an MR contrast agent with both T1 and T2 shortening effects and using such an agent in vivo. This agent enables tumor detection and characterization in single liver MRI sections.  相似文献   

15.
Tumor extracellular matrix has abundance of cancer related proteins that can be used as biomarkers for cancer molecular imaging. In this work, we demonstrated effective MR cancer molecular imaging with a small molecular peptide targeted Gd-DOTA monoamide complex as a targeted MRI contrast agent specific to clotted plasma proteins in tumor stroma. We performed the experiment of evaluating the effectiveness of the agent for non-invasive detection of prostate tumor with MRI in a mouse orthotopic PC-3 prostate cancer model. The targeted contrast agent was effective to produce significant tumor contrast enhancement at a low dose of 0.03 mmol Gd/kg. The peptide targeted MRI contrast agent is promising for MR molecular imaging of prostate tumor.  相似文献   

16.
Magnetic resonance (MR) tracking of magnetically labeled stem and progenitor cells is an emerging technology, leading to an urgent need for magnetic probes that can make cells highly magnetic during their normal expansion in culture. We have developed magnetodendrimers as a versatile class of magnetic tags that can efficiently label mammalian cells, including human neural stem cells (NSCs) and mesenchymal stem cells (MSCs), through a nonspecific membrane adsorption process with subsequent intracellular (non-nuclear) localization in endosomes. The superparamagnetic iron oxide nanocomposites have been optimized to exhibit superior magnetic properties and to induce sufficient MR cell contrast at incubated doses as low as 1 microg iron/ml culture medium. When containing between 9 and 14 pg iron/cell, labeled cells exhibit an ex vivo nuclear magnetic resonance (NMR) relaxation rate (1/T2) as high as 24-39 s-1/mM iron. Labeled cells are unaffected in their viability and proliferating capacity, and labeled human NSCs differentiate normally into neurons. Furthermore, we show here that NSC-derived (and LacZ-transfected), magnetically labeled oligodendroglial progenitors can be readily detected in vivo at least as long as six weeks after transplantation, with an excellent correlation between the obtained MR contrast and staining for beta-galactosidase expression. The availability of magnetodendrimers opens up the possibility of MR tracking of a wide variety of (stem) cell transplants.  相似文献   

17.
Magnetic resonance imaging (MRI) is a well known diagnostic tool in radiology that produces unsurpassed images of the human body, in particular of soft tissue. However, the medical community is often not aware that MRI is an important yet limited segment of magnetic resonance (MR) or nuclear magnetic resonance (NMR) as this method is called in basic science. The tremendous morphological information of MR images sometimes conceal the fact that MR signals in general contain much more information, especially on processes on the molecular level. NMR is successfully used in physics, chemistry, and biology to explore and characterize chemical reactions, molecular conformations, biochemical pathways, solid state material, and many other applications that elucidate invisible characteristics of matter and tissue. In medical applications, knowledge of the molecular background of MRI and in particular MR spectroscopy (MRS) is an inevitable basis to understand molecular phenomenon leading to macroscopic effects visible in diagnostic images or spectra. This review shall provide the necessary background to comprehend molecular aspects of magnetic resonance applications in medicine. An introduction into the physical basics aims at an understanding of some of the molecular mechanisms without extended mathematical treatment. The MR typical terminology is explained such that reading of original MR publications could be facilitated for non-MR experts. Applications in MRI and MRS are intended to illustrate the consequences of molecular effects on images and spectra.  相似文献   

18.
We compared the anatomic extent and severity of ischemic brain injury shown on diffusion-weighted magnetic resonance (MR) images, with cerebral tissue perfusion deficits demonstrated by a nonionic intravascular T2*-shortening magnetic susceptibility contrast agent used in conjunction with standard T2-weighted spin-echo and gradient-echo echo-planar images. Diffusion-weighted images displayed increased signal intensity in the vascular territory of the middle cerebral artery 25-40 min after permanent occlusion, whereas T2-weighted images without contrast were negative or equivocal for at least 2-3 h after stroke was induced. Contrast-enhanced T2-weighted and echo-planar images revealed perfusion deficits that were spatially closely related to the anatomic regions of ischemic tissue injury. These data indicate that diffusion-weighted MR images are very sensitive to early onset pathophysiologic changes induced by acute cerebral ischemia. Combined sequential diffusion-perfusion imaging enables noninvasive in vivo examination of the relationship between hypoperfusion and evolving ischemic brain injury.  相似文献   

19.
Histology on a core or open biopsy is considered the gold standard for the diagnosis of tumours. While the non-invasive technique of magnetic resonance imaging can direct some of the decision diagnostic making, it has limitations and disadvantages, that can be partly overcome with the use of in vivo magnetic resonance spectroscopy (MRS). In vivo MRS is able to provide a specific biochemical profile on tumour tissue, compared with normal tissue. The capability of this technique is demonstrated here by the long-term development of hepatocellular carcinoma in an animal model. It allows the observation of the biochemical changes that occur in tumour tissue during its progression from preneoplastic nodules to hepatocellular carcinoma. Specifically the changes in the lipid profiles of tumour tissue at various stages of development are observed with proton (1H) MRS. Significant increases occurred in the lipid acyl chain methylene and methyl hydrogens during the early developmental stages of hepatocarcinogenesis, whereas during later stages associated with tumour development there was a significant increase in the levels of olefinic acyl chain hydrogens from unsaturated lipids. It is anticipated that this model will precede the application of the same technology to the non-invasive diagnosis and grading of human hepatocellular carcinoma.  相似文献   

20.
Histology on a core or open biopsy is considered the gold standard for the diagnosis of tumours. While the non-invasive technique of magnetic resonance imaging can direct some of the decision diagnostic making, it has limitations and disadvantages, that can be partly overcome with the use of in vivo magnetic resonance spectroscopy (MRS). In vivo MRS is able to provide a specific biochemical profile on tumour tissue, compared with normal tissue. The capability of this technique is demonstrated here by the long-term development of hepatocellular carcinoma in an animal model. It allows the observation of the biochemical changes that occur in tumour tissue during its progression from preneoplastic nodules to hepatocellular carcinoma. Specifically the changes in the lipid profiles of tumour tissue at various stages of development are observed with proton ((1)H) MRS. Significant increases occurred in the lipid acyl chain methylene and methyl hydrogens during the early developmental stages of hepatocarcinogenesis, whereas during later stages associated with tumour development there was a significant increase in the levels of olefinic acyl chain hydrogens from unsaturated lipids. It is anticipated that this model will precede the application of the same technology to the non-invasive diagnosis and grading of human hepatocellular carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号