首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dehydrins are a family of heat-soluble, hydrophilic proteins that share a considerable degree of sequence homology. Their expression has been reported in numerous plant species in response to a multitude of environmental stresses including low temperature, freezing, and desiccation. It has also been established that exposing plant tissues to freezing temperatures generates desiccation stress. We observed differential accumulation of a dehydrin-like protein and corresponding mRNA in three-day-old maize (Zea mays L) seedlings germinated under favorable environmental conditions from seed that had been exposed to freezing temperatures during maturation. This represents the first documented situation in which a dehydrin-like protein differentially accumulates under favorable environmental conditions. We believe that the dehydrin-like protein and corresponding mRNA are synthesized de novo in seedlings that are germinated from seed that have been exposed to freezing in response to desiccation-like stress that persists under favorable environmental conditions resulting from freeze-induced damage sustained by the ungerminated embryo.  相似文献   

2.
The stress inducibility of dehydrin protein production in seedlingsof castor bean was analysed by subjecting them to ABA and variouswater-deficit-related treatments including desiccation, waterstress, high salt, high osmolarity, and low temperature. A furthergoal was to determine whether the immature seed (at stages priorto major dehydrin synthesis) would respond in a similar mannerto these stresses. A number of dehydrin-like proteins increasedin seedlings subjected to the various stress treatments. Inthe endosperm, these appear to be different from the dehydrin-relatedpolypeptides that are induced during late seed development andwhich persist following germination/growth of mature seeds.In the endosperm of seedlings, ABA, water stress and desiccationinduced the same dehydrin polypeptides, while high osmolarity,high salt and low temperature induced a different set. Stress-specificdifferences in dehydrin synthesis were also found in the cotyledonsand radicle of castor bean seedlings; however, dehydrins indu-cibleby exogenous ABA were consistently produced. Immature seedstreated with ABA or subjected to stress responded by producingdehydrin-like proteins associated with late development; however,the same proteins were induced following detachment of immatureseeds from the parent plant and maintenance on water. When seedlingswere exposed simultaneously to GA and either ABA, high salt,or low temperature, dehydrin production was suppressed. It isconcluded that dehydrin production in castor bean is tissue-specificand is dependent upon the physiological stage of the seed. Inthe endosperm, the response to different stresses may rely uponmore than one signal trans-duction pathway. Key words: Dehydrin, castor bean, ABA, desiccation  相似文献   

3.
Proteome analysis of grain filling and seed maturation in barley   总被引:18,自引:0,他引:18       下载免费PDF全文
In monocotyledonous plants, the process of seed development involves the deposition of reserves in the starchy endosperm and development of the embryo and aleurone layer. The final stages of seed development are accompanied by an increase in desiccation tolerance and drying out of the mature seed. We have used two-dimensional gel electrophoresis for a time-resolved study of the changes in proteins that occur during seed development in barley (Hordeum vulgare). About 1,000 low-salt extractable protein spots could be resolved on the two-dimensional gels. Protein spots were divided into six categories according to the timing of appearance or disappearance during the 5-week period of comparison. Nineteen different proteins or protein fragments in 36 selected spots were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry (MS) or nano-electrospray tandem MS/MS. Some proteins were present throughout development (for example, cytosolic malate dehydrogenase), whereas others were associated with the early grain filling (ascorbate peroxidase) or desiccation (Cor14b) stages. Most noticeably, the development process is characterized by an accumulation of low-M(r) alpha-amylase/trypsin inhibitors, serine protease inhibitors, and enzymes involved in protection against oxidative stress. We present examples of proteins not previously experimentally observed, differential extractability of thiol-bound proteins, and possible allele-specific spot variation. Our results both confirm and expand on knowledge gained from previous analyses of individual proteins involved in grain filling and maturation.  相似文献   

4.
A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development.  相似文献   

5.
Development of yellow cedar seeds is completed by about 17-21 months after pollination. Following dispersal from the parent plant, the seeds exhibit a low capacity for germination and typically require an additional year to meet their moist chilling requirements and break dormancy. Biochemical analyses were undertaken in order to address whether seed dormancy is imposed and maintained because the embryo or megagametophyte is immature at the time of seed shedding and hence requires time to complete developmental events before dormancy can be terminated. Major protein reserves of the embryo and megagametophyte are the buffer-insoluble crystalloid (legumin) storage proteins and the water-soluble albumin proteins. SDS-PAGE, fluorography of in vivo synthesized proteins and Western blot analyses showed that the greatest increase in protein reserve synthesis and accumulation occurred between the first and second years of development; deposition of soluble and insoluble storage protein was largely completed in seeds of second-year cones by August, 2-3 months prior to seed dispersal. The period associated with greatest accumulation of storage proteins was accompanied by an increased accumulation of two ER-resident proteins associated with post-translational maturation of storage proteins (binding protein and protein disulphide isomerase). Accumulation of proteins implicated in the acquisition of desiccation tolerance (dehydrins and the tonoplast intrinsic protein, -TiP) occurred between the first and second years of development. Several heat-stable proteins and some of the proteins associated with late development continued to be synthesized after seed shedding and in 13 d moist-chilled mature seeds. However, this did not include the major dehydrin-like protein of yellow cedar seeds. Further, the continued synthesis of heat-stable proteins does not appear to be a factor preventing the germination of yellow cedar seeds following dispersal from the parent plant; rather, the mechanism of dormancy is primarily coat-imposed.  相似文献   

6.
Germination of barley is accompanied by changes in water-soluble seed proteins. 2-DE was used to describe spatio-temporal proteome differences in dissected seed tissues associated with germination and the subsequent radicle elongation. Protein identification by MS enabled assignment of proteins and functions to the seed embryo, aleurone, and endosperm. Abundance in 2-DE patterns was monitored for 48 different proteins appearing in 79 gel spots at 8 time-points up to 72 h post imbibition (PI). In embryo, a beta-type proteasome subunit and a heat shock protein 70 fragment were among the earliest proteins to appear (at 4 h PI). Other early changes were observed that affected spots containing desiccation stress-associated late embryogenesis abundant and abscisic acid (ABA)-induced proteins. From 12 h PI proteins characteristic for desiccation stress disappeared rapidly, as did a putative embryonic protein and an ABA-induced protein, suggesting that these proteins are also involved in desiccation stress. Several redox-related proteins differed in spatio-temporal patterns at the end of germination and onset of radicle elongation. Notably, ascorbate peroxidase that was observed only in the embryo, increased in abundance at 36 h PI. The surprisingly early changes seen in the protein profiles already 4 h after imbibition indicate that germination is programmed during seed maturation.  相似文献   

7.
This study was aimed at the characterization of the major storage proteins in Arabidopsis thaliana. Two major protein fractions, i.e., the fraction Ⅰ and Ⅱ proteins, were isolated from the extract of mature seeds of this plant by molecular seive gel filtration chromatography. Various polyacrylarnide gel electrophoretic techniques were used to study the properties and polypeptide compositions of these two protein fractions. In was shown that during the SDS gel electrophoresis, fraction Ⅰ protein was separated into 6 major bands with the mol. was. of 34, 31, 29, 28 and 19-20 kD, respectively, whereas Fraction Ⅱ protein migrated as 3 low mol. wt. bands (10-12 kD) on the same gel. Non-denaturing native gel electrophoresis revealed that fraction Ⅰ was a neutral protein and Fraction Ⅱ was a positively charged basic protein with an isoelectric point (pI) higher than 8.8. Fraction I protein was further separated into at least 16 polypeptides in isoelectric focusing/SDS two-dimensional gel electrophoresis, i.e. each SDS band contained 3-4 polypeptides with the same mol. wt. but different pis. This suggested a more complex polypeptide composition of this protein. The properties of fraction Ⅰ and Ⅱ proteins were in good accordance with that of the 12s and 1.7s storage globulins in seeds of many other dicotyledonous plants, and therefore had been characterized as the two major seed storage proteins in this species. These two storage globulins were shown to be accumulated within a defined period during the late stage of seed development (12-14 DAF) and became predominant protein components in mature seeds. In the mean time, a few points in relation to the polypeptide composition and subunit molecular configuration of the 12s globulin were noted.  相似文献   

8.
The acquisition of desiccation tolerance (DT) in developing beech (Fagus sylvatica L.) seeds and the role of a dehydrin protein in this process were investigated. DT was determined by measurement of electrolyte leakage and germination capacity after drying to 10–12% moisture content (MC). In addition to mass maturity, the presence of heat-stable proteins, dehydrin accumulation and the peak of ABA content were measured in relation to the acquisition of DT. Mass maturity was achieved at 16 weeks after flowering (WAF). The germination capacity increased from 8% at 12 WAF to 80–90% after 16 WAF. Cell membrane integrity, measured as a decrease in electrolyte leakage after desiccation, was acquired at 16 WAF. Additionally, the ratio of heat-stable to soluble proteins was the highest at 16 WAF. One dehydrin-like protein with a molecular mass 44 kDa, named DHN44, was detected in embryonic axes at 16 WAF and in cotyledons at 17 WAF, and its gradual accumulation was observed in mature seeds. With regard to the acquisition of DT, the strongest correlations were detected between electrolyte leakage, DHN44 accumulation, and the percentage of heat-stable proteins. These results suggest that developing beech seeds become tolerant to desiccation at 16 WAF. The effect of desiccation and ABA treatment on DHN44 synthesis was tested before (14 WAF) and after the DT acquisition (18 WAF). Depending on the maturation stage desiccation and ABA treatment can induce or enlarge DHN44 expression.  相似文献   

9.
10.
Soluble sugars, starch, soluble nitrogen and protein nitrogen were studied in developing seeds of 3 cultivars of pigeonpea. When expressed on a per seed basis soluble sugars increased up to 35 days after flowering and then declined slightly. Rapid starch accumulation was observed between 14 and 28 days after flowering. The levels of soluble nitrogen and protein nitrogen underwent rapid changes during the same period. Amino-acid composition of seed protein was also studied at different stages of maturation. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of salt-soluble proteins revealed that seed storage globulins are formed after 14 days of flowering and do not change much during later stages of maturation.  相似文献   

11.
Most seeds are anhydrobiotes, relying on an array of protective and repair mechanisms, and seed mitochondria have previously been shown to harbor stress proteins probably involved in desiccation tolerance. Since temperature stress is a major issue for germinating seeds, the temperature response of pea (Pisum sativum) seed mitochondria was examined in comparison with that of mitochondria from etiolated epicotyl, a desiccation-sensitive tissue. The functional analysis illustrated the remarkable temperature tolerance of seed mitochondria in response to both cold and heat stress. The mitochondria maintained a well-coupled respiration between -3.5 degrees C and 40 degrees C, while epicotyl mitochondria were not efficient below 0 degrees C and collapsed above 30 degrees C. Both mitochondria exhibited a similar Arrhenius break temperature at 7 degrees C, although they differed in phospholipid composition. Seed mitochondria had a lower phosphatidylethanolamine-to-phosphatidylcholine ratio, fewer unsaturated fatty acids, and appeared less susceptible to lipid peroxidation. They also accumulated large amounts of heat shock protein HSP22 and late-embryogenesis abundant protein PsLEAm. The combination of membrane composition and stress protein accumulation required for desiccation tolerance is expected to lead to an unusually wide temperature tolerance, contributing to the fitness of germinating seeds in adverse conditions. The unique oxidation of external NADH at low temperatures found with several types of mitochondria may play a central role in maintaining energy homeostasis during cold shock, a situation often encountered by sessile and ectothermic higher plants.  相似文献   

12.
An increase in energy intake and/or a decrease in energy expenditure lead to fat storage, causing overweight and obesity phenotypes. The objective of this review was to analyse, for the first time using a systematic approach, all published evidence from the past 8 years regarding the molecular pathways linking non‐shivering thermogenesis and obesity in mammals, focusing on mechanisms involved in brown adipose tissue development. Two major databases were scanned from 2006 to 2013 using ‘brown adipose tissue’ AND ‘uncoupling protein‐1’ AND ‘mammalian thermoregulation’ AND ‘obesity’ as key words. A total of 61 articles were retrieved using the search criteria. The available research used knockout methodologies, various substances, molecules and agonist treatments, or different temperature and diet conditions, to assess the molecular pathways linking non‐shivering thermogenesis and obesity. By integrating the results of the evaluated animal and human studies, our analysis identified specific molecules that enhance non‐shivering thermogenesis and metabolism by: (i) stimulating ‘brite’ (brown‐like) cell development in white adipose tissue; (ii) increasing uncoupling protein‐1 expression in brite adipocytes; and (iii) augmenting brown and/or brite adipose tissue mass. The latter can be also increased through low temperature, hibernation and/or molecules involved in brown adipocyte differentiation. Cold stimuli and/or certain molecules activate uncoupling protein‐1 in the existing brown adipocytes, thus increasing total energy expenditure by a magnitude proportional to the number of available brown adipocytes. Future research should address the interplay between body mass, brown adipose tissue mass, as well as the main molecules involved in brite cell development.  相似文献   

13.
Total protein was extracted from zygotic embryos and from somatic embryos of Picea abies (L.) Karst. (Norway spruce) cultured in vitro at different times during their development. An analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 2-dimensional gel electrophoresis of the protein extracts showed that protein composition and the temporal changes in protein abundance were very similar in the two embryo types. Both zygotic and somatic embryos accumulated storage proteins in abundance during their maturation phase of growth; the somatic embryos when cultured on medium containing 90 m M sucrose and 7.6 μ M ABA. The major storage proteins are composed of polypeptides with molecular masses of about 22, 28, 33 and 42 kDa and they are identical in both embryo types according to their molecular mass and average isoelectric points. These proteins are also the most abundant proteins in the female gametophytic tissue of the mature seed.  相似文献   

14.
The rice grains (RG) and rice seed proteins remaining in rice miso were investigated with a view point to the potential allergenicity of rice miso. RG ranging from 36 to 180 mg dry weight per g dry miso were separated from several samples of commercially available rice miso. Scanning electron microscopy of the recovered RG indicated that starch granules disappeared almost completely while protein bodies remained intact in RG. Most of the major seed proteins were extracted from RG by heating with 1% SDS/2% 2-mercaptoethanol and detected by SDS-polyacrylamide gel electrophoresis. Major rice allergenic proteins, 14-16 kDa albumin (Alb14-16) and alpha-globulin (alpha-Glb) were also detected by immunoblotting using the specific antisera, and their contents were estimated to be 1.7 to 9.0 and 1 to 7 mg protein per g dry RG respectively. However, the major rice proteins, including glutelin and prolamin, in RG were insoluble in salt, alcohol, and urea solutions, but soluble in 6 M guanidine hydrochloride (Gu-HCl). By immunoblotting and ELISA, no Alb14-16 and only a slight amount of alpha-Glb were detected even in the 6 M Gu-HCl fraction, indicating that these major allergenic proteins are denatured and are present in an insoluble form in rice miso.  相似文献   

15.
Non-shivering thermogenesis (NST) is a heat generating process controlled by the mitochondria of brown adipose tissue (BAT). In the recent decade, ‘functionally’ acting brown adipocytes in white adipose tissue (WAT) has been identified as well: the so-called process of the ‘browning’ of WAT. While the importance of uncoupling protein 1 (UCP1)-oriented mitochondrial activation has been intensely studied, the role of peroxisomes during the browning of white adipocytes is poorly understood. Here, we assess the change in peroxisomal membrane proteins, or peroxins (PEXs), during cold stimulation and importantly, the role of PEX13 in the cold-induced remodeling of white adipocytes. PEX13, a protein that originally functions as a docking factor and is involved in protein import into peroxisome matrix, was highly increased during cold-induced recruitment of beige adipocytes within the inguinal WAT of C57BL/6 mice. Moreover, beige-induced 3 T3-L1 adipocytes and stromal vascular fraction (SVF) cells by exposure to the peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone showed a significant increase in mitochondrial thermogenic factors along with peroxisomal proteins including PEX13, and these were confirmed in SVF cells with the beta 3 adrenergic receptor (β3AR)-selective agonist CL316,243. To verify the relevance of PEX13, we used the RNA silencing method targeting the Pex13 gene and evaluated the subsequent beige development in SVF cells. Interestingly, siPex13 treatment suppressed expression of thermogenic proteins such as UCP1 and PPARγ coactivator 1 alpha (PGC1α). Overall, our data provide evidence supporting the role of peroxisomal proteins, in particular PEX13, during beige remodeling of white adipocytes.  相似文献   

16.
A polyclonal antisera against rat brown adipose tissue mitochondrial uncoupling protein was used to examine mitochondrial samples from liver and white and brown adipose tissue from several mammalian species. A sodium dodecyl sulfate--polyacrylamide gel electrophoretic separation of proteins combined with an immunochemical method allowed for visualization of antigen--antibody complexes on nitrocellulose blots. Hamster, cavy, monkey, and mouse brown adipose tissue mitochondrial samples cross-reacted with the antisera. Mitochondria prepared from white fat obtained from young swine and sheep contained two closely migrating, antigenically active proteins. Hepatic mitochondria samples did not contain antigenically active protein. Reflectance densitometry was used for quantitation of the uncoupling protein in various mitochondrial samples. In rats fed diets low in protein, there appears to be a dissociation between the concentration of uncoupling protein and the number of nucleotide binding sites as given by the [3H]GDP binding assay. These results are indicative of a physiological activation of the uncoupling protein.  相似文献   

17.
In contrast to wild-type seeds of Arabidopsis thaliana and to seeds deficient in (aba) or insensitive to (abi3) abscisic acid (ABA), maturing seeds of recombinant (aba,abi3) plants fail to desiccate, remain green, and lose viability upon drying. These double-mutant seeds acquire only low levels of the major storage proteins and are deficient in several low mol wt polypeptides, both soluble and bound, and some of which are heat stable. A major heat-stable glycoprotein of more than 100 kilodaltons behaves similarly; during seed development, it shows a decrease in size associated with the abi3 mutation. In seeds of the double mutant from 14 to 20 days after pollination, the low amounts of various maturation-specific proteins disappear and many higher mol wt proteins similar to those occurring during germination are induced, but no visible germination is apparent. It appears that in the aba,abi3 double mutant seed development is not completed and the program for seed germination is initiated prematurely in the absence of substances protective against dehydration. Seeds may be made desiccation tolerant by watering the plants with the ABA analog LAB 173711 or by imbibition of isolated immature seeds, 11 to 15 days after pollination, with ABA and sucrose. Whereas sucrose stimulates germination and may protect dehydration-sensitive structures from desiccation damage, ABA inhibits precocious germination and is required to complete the program for seed maturation and the associated development of desiccation tolerance.  相似文献   

18.
Red and white muscles are faced with very different energetic demands. However, it is unclear whether relative mitochondrial protein expression is different between muscle types. Mitochondria from red and white porcine skeletal muscle were isolated with a Percoll gradient. Differences in protein composition were determined using blue native (BN)-PAGE, two-dimensional differential in gel electrophoresis (2D DIGE), optical spectroscopy, and isobaric tag for relative and absolute quantitation (iTRAQ). Complex IV and V activities were compared using BN-PAGE in-gel activity assays, and maximal mitochondrial respiration rates were assessed using pyruvate (P) + malate (M), glutamate (G) + M, and palmitoyl-carnitine (PC) + M. Without the Percoll step, major cytosolic protein contamination was noted for white mitochondria. Upon removal of contamination, very few protein differences were observed between red and white mitochondria. BN-PAGE showed no differences in the subunit composition of Complexes I-V or the activities of Complexes IV and V. iTRAQ analysis detected 358 mitochondrial proteins, 69 statistically different. Physiological significance may be lower: at a 25% difference, 48 proteins were detected; at 50%, 14 proteins were detected; and 3 proteins were detected at a 100%. Thus any changes could be argued to be physiologically modest. One area of difference was fat metabolism where four β-oxidation enzymes were ~25% higher in red mitochondria. This was correlated with a 40% higher rate of PC+M oxidation in red mitochondria compared with white mitochondria with no differences in P+M and G+M oxidation. These data suggest that metabolic demand differences between red and white muscle fibers are primarily matched by the number of mitochondria and not by significant alterations in the mitochondria themselves.  相似文献   

19.
Wild and cultivated maize, sorghum, rice, amaranth, soybean, and cassava were screened for variability in seed storage proteins. Total seed proteins, albumin (Alb-1 and Alb-2), globulin, alcohol-soluble (A1 and A2), and glutelin (G1 and G2) fractions were investigated by means of sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE). The comparison was done by the obtained protein patterns and their relative amounts. Using quantitative analysis of the protein composition and the electrophoretic patterns, the relationships between total proteins and amount of individual proteins were determined. Electrophoretic patterns of extracted proteins from investigated samples showed that the main protein subunits were concentrated between 10 and 45 kDa. Variation was found in major fractions and minor bands. Electrophoretic patterns of the protein fractions are directly related to the genetic background of the protein and can be identified and used to certify the genetic makeup of wild, cultivated, or newly derived cereals and plants.  相似文献   

20.
Water absorption is a prerequisite for seed germination. During imbibition, water influx causes the resumption of many physiological and metabolic processes in growing seed. In order to obtain more complete knowledge about the mechanism of seed germination, two‐dimensional gel electrophoresis was applied to investigate the protein profile changes of rice seed during the first 48 h of imbibition. Thirty‐nine differentially expressed proteins were identified, including 19 down‐regulated and 20 up‐regulated proteins. Storage proteins and some seed development‐ and desiccation‐associated proteins were down regulated. The changed patterns of these proteins indicated extensive mobilization of seed reserves. By contrast, catabolism‐associated proteins were up regulated upon imbibition. Semi‐quantitative real time polymerase chain reaction analysis showed that most of the genes encoding the down‐ or up‐regulated proteins were also down or up regulated at mRNA level. The expression of these genes was largely consistent at mRNA and protein levels. In providing additional information concerning gene regulation in early plant life, this study will facilitate understanding of the molecular mechanisms of seed germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号