首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
RNA干扰(RNA interference,RNAi)是指由双链RNA(double-stranded RNA,dsRNA)诱发同源mRNA高效特异性降解的现象,在真核生物中普遍存在且进化保守。RNAi技术作为21世纪初的重大科学成就,目前被广泛应用于疾病防治、基因功能研究、植物改良育种等领域。RNAi技术常与转基因技术结合用于植物改良育种,通过不同的载体设计或作用途径来研发满足生产需要的农业生物技术产品。为了明确现阶段基于RNAi技术的转基因植物育种技术进展,综述了RNAi现象的发现和作用机制、转基因载体设计、小RNA(small RNA,sRNA)的递送方式等方面的研究进展,并阐述了基于RNAi技术的转基因植物的研究实例和商业化情况,以期为相关研究提供参考,从而发挥RNAi技术的最大应用价值,使之服务于新时代的农业发展。  相似文献   

2.
3.
RNA interference: roles in fungal biology   总被引:1,自引:0,他引:1  
The discovery of RNA interference (RNAi) has been the major recent breakthrough in biology. Only a few years after its discovery, RNAi has rapidly become a powerful reverse genetic tool, especially in organisms where gene targeting is inefficient and/or time-consuming. In filamentous fungi, RNAi is not currently used as widely as is gene targeting by homologous recombination that works with practical efficiencies in most model fungal species. However, to explore gene function in filamentous fungi, RNAi has the potential to offer new, efficient tools that gene disruption methods cannot provide. In this review, possible advantages and disadvantages of RNAi for fungal biology in the postgenomics era will be discussed. In addition, we will briefly review recent discoveries on RNAi-related biological phenomena (RNA silencing) in fungi.  相似文献   

4.
The discovery of RNA interference (RNAi) has revolutionized biological research and has a huge potential for therapy. Since small double-stranded RNAs (dsRNAs) are required for various RNAi applications, there is a need for cost-effective methods for producing large quantities of high-quality dsRNA. We present two novel, flexible virus-based systems for the efficient production of dsRNA: (1) an in vitro system utilizing the combination of T7 RNA polymerase and RNA-dependent RNA polymerase (RdRP) of bacteriophage 6 to generate dsRNA molecules of practically unlimited length, and (2) an in vivo RNA replication system based on carrier state bacterial cells containing the 6 polymerase complex to produce virtually unlimited amounts of dsRNA of up to 4.0 kb. We show that pools of small interfering RNAs (siRNAs) derived from dsRNA produced by these systems significantly decreased the expression of a transgene (eGFP) in HeLa cells and blocked endogenous pro-apoptotic BAX expression and subsequent cell death in cultured sympathetic neurons.  相似文献   

5.
RNA interference (RNAi) is a mechanism displayed by most eukaryotic cells to rid themselves of foreign double-stranded RNA molecules. RNAi has now been demonstrated to function in mammalian cells to alter gene expression, and has been used as a means for genetic discovery as well as a possible strategy for genetic correction. RNAi was first described in animal cells by Fire and colleagues in the nematode, Caenorhabditis elegans. Knowledge of RNAi mechanism in mammalian cell in 2001 brought a storm in the field of drug discovery. During the past few years scientists all over the world are focusing on exploiting the therapeutic potential of RNAi for identifying a new class of therapeutics. The applications of RNAi in medicine are unlimited because all cells possess RNAi machinery and hence all genes can be potential targets for therapy. RNAi can be developed as an endogenous host defense mechanism against many infections and diseases. Several studies have demonstrated therapeutic benefits of small interfering RNAs and micro RNAs in animal models. This has led to the rapid advancement of the technique from research discovery to clinical trials.  相似文献   

6.
Environmental RNA interference   总被引:5,自引:0,他引:5  
The discovery of RNA interference (RNAi), the process of sequence-specific gene silencing initiated by double-stranded RNA (dsRNA), has broadened our understanding of gene regulation and has revolutionized methods for genetic analysis. A remarkable property of RNAi in the nematode Caenorhabditis elegans and in some other multicellular organisms is its systemic nature: silencing signals can cross cellular boundaries and spread between cells and tissues. Furthermore, C. elegans and some other organisms can also perform environmental RNAi: sequence-specific gene silencing in response to environmentally encountered dsRNA. This phenomenon has facilitated significant technological advances in diverse fields including functional genomics and agricultural pest control. Here, we describe the characterization and current understanding of environmental RNAi and discuss its potential applications.  相似文献   

7.
RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes. The discovery of natural trans-kingdom RNAi indicated that small RNAs act as signaling molecules and enable communication between organisms in different kingdoms. The phenomenon and potential mechanisms of trans-kingdom RNAi are among the most exciting research topics. To better understand trans-kingdom RNAi, we review the history of the discovery and elucidation of RNAi mechanisms. Based on canonical RNAi mechanisms, we summarize the major points of divergence around RNAi pathways in the main eukaryotes’ kingdoms, including plants, animals, and fungi. We review the representative incidents associated with the mechanisms and applications of trans-kingdom RNAi in crop protection, and discuss the critical factors that should be considered to develop successful trans-kingdom RNAi-based crop protection strategies.  相似文献   

8.
RNAi mechanisms and applications   总被引:19,自引:0,他引:19  
Kim D  Rossi J 《BioTechniques》2008,44(5):613-616
Within the past two decades we have become increasingly aware of the roles that RNAs play in regulation of gene expression. The RNA world was given a booster shot with the discovery of RNA interference (RNAi), a compendium of mechanisms involving small RNAs (less than 30 bases long) that regulate the expression of genes in a variety of eukaryotic organisms. Rapid progress in our understanding of RNAi-based mechanisms has led to applications of this powerful process in studies of gene function as well as in therapeutic applications for the treatment of disease. RNAi-based therapies involve two-dimensional drug designs using only identification of good Watson-Crick base pairing between the RNAi guide strand and the target, thereby resulting in rapid design and testing of RNAi triggers. To date there are several clinical trials using RNAi, and we should expect the list of new applications to grow at a phenomenal rate. This article summarizes our current knowledge about the mechanisms and applications of RNAi.  相似文献   

9.
The discovery of RNA interference (RNAi) and the development of technologies exploiting its biology have enabled scientists to rapidly examine the consequences of depleting a particular gene product in a cell or an animal. The availability of genome-wide RNAi libraries targeting the mouse and human genomes has made it possible to carry out large scale, phenotype-based screens, which have yielded seminal information on diverse cellular processes ranging from virology to cancer biology. Today, several strategies are available to perform RNAi screens, each with their own technical and monetary considerations. Special care and budgeting must be taken into account during the design of these screens in order to obtain reliable results. In this review, we discuss a number of critical aspects to consider when planning an effective RNAi screening strategy, including selecting the right biological system, designing an appropriate selection scheme, optimizing technical aspects of the screen, and validating and verifying the hits. Similar to an artistic production, what happens behind the screen has a direct impact on its success.  相似文献   

10.
在秀丽隐杆线虫中首次发现双链RNA(dsRNA)能特异性地导致基因沉默(RNAi)现象后,人们开始大量地研究RNAi技术,并将其应用于功能基因的研究,来提高作物的抗性和改良遗传育种等。本文详细介绍了RNAi的技术原理,并且对RNAi技术与传统转基因技术的区别进行分析,阐述了该技术具有重要的生物学意义,以及在农作物害虫防治领域的占据独特优势。基于RNAi技术存在的潜在脱靶效应,从改良植物、靶标生物和生态环境的3个方面具体分析该技术可能存在的风险,为RNAi技术的风险评估提供参考。由于RNAi技术仍存在风险,为了维护生态多样性和保障人们的人身安全,应尽快建立起符合实际需求的安全性评价方法,本文针对RNAi转基因作物的环境安全和食用安全2个方面的评估方案进行概述。RNAi技术对减少害虫数量、提高水稻产量、降低种植成本以及减少化学农药污染、促进农业可持续发展来说具有重要意义,但该技术仍存在风险,需要进一步监管和研究,建立完善的生态评价系统,让RNAi技术在农业生产上发挥作用。  相似文献   

11.
Over the last few years, RNA Interference (RNAi), a naturally occurring mechanism of gene regulation conserved in plant and mammalian cells, has opened numerous novel opportunities for basic research across the field of biology. While RNAi has helped accelerate discovery and understanding of gene functions, it also has great potential as a therapeutic and potentially prophylactic modality. Challenging diseases failing conventional therapeutics could become treatable by specific silencing of key pathogenic genes. More specifically, therapeutic targets previously deemed “undruggable” by small molecules, are now coming within reach of RNAi based therapy. For RNAi to be effective and elicit gene silencing response, the double-stranded RNA molecules must be delivered to the target cell. Unfortunately, delivery of these RNA duplexes has been challenging, halting rapid development of RNAi-based therapies. In this review we present current advancements in the field of siRNA delivery methods, including the pros and cons of each method.  相似文献   

12.
RNA interference (RNAi) can achieve sequence-selective inactivation of gene expression in a wide variety of eukaryotes by introducing double-stranded RNA corresponding to the target gene. Here we explore the potential of RNAi as a therapy for amyotrophic lateral sclerosis (ALS) caused by mutations in the Cu, Zn superoxide dismutase (SOD1) gene. Although the mutant SOD1 is toxic, the wild-type SOD1 performs important functions. Therefore, the ideal therapeutic strategy should be to selectively inhibit the mutant, but not the wild-type SOD1 expression. Because most SOD1 mutations are single nucleotide changes, to selectively silence the mutant requires single-nucleotide specificity. By coupling rational design of small interfering RNAs (siRNAs) with their validation in RNAi reactions in vitro and in vivo, we have identified siRNA sequences with this specificity. A similarly designed sequence, when expressed as small hairpin RNA (shRNA) under the control of an RNA polymerase III (pol III) promoter, retains the single-nucleotide specificity. Thus, RNAi is a promising therapy for ALS and other disorders caused by dominant, gain-of-function gene mutations.  相似文献   

13.
Since its discovery 10 years ago, RNA interference (RNAi) has evolved from a research tool into a powerful method for altering the phenotype of cells and whole organisms. Its near universal applicability coupled with its pinpoint accuracy for suppressing target proteins has altered the landscape of many fields. While there is considerable intellectual investment in therapeutics, its potential extends far beyond. In this review, we explore some of these emerging applications--metabolic engineering for enhancing recombinant protein production in both insect and mammalian cell systems, antisense technologies in bacteria as next generation antibiotics, and RNAi in plant biotechnology for improving productivity and nutritional value.  相似文献   

14.
The discovery that RNA interference (RNAi) is functional in mammalian cells led us to form The RNAi Consortium (TRC) with the goal of enabling large-scale loss-of-function screens through the development of genome-scale RNAi libraries and methodologies for their use. These resources form the basis of a loss-of-function screening platform created at the Broad Institute. Our human and mouse libraries currently contain >135,000 lentiviral clones targeting 27,000 genes. Initial screening efforts have demonstrated that these libraries and methods are practical and powerful tools for high-throughput lentivirus RNAi screens.  相似文献   

15.
16.
17.
18.
RNA interference (RNAi) is a cellular process by which an mRNA is targeted for degradation by a small interfering RNA that contains a strand complementary to a fragment of the target mRNA, resulting in sequence specific inhibition of gene expression. The discovery of RNAi enabled the use of loss‐of‐function analyses in many non‐model insects other than Drosophila to elucidate the roles of specific genes. The RNAi approach has been widely used on insects in several fields, including embryogenesis, pattern formation, reproduction, biosynthesis and behavior. The increasing availability of insect genomes has made the RNAi technique an indispensable technique for characterizing gene functions in insects. Here we review the current status of RNAi‐based experiments in insects and the applications of RNAi for species‐specific insecticides, focusing on non‐drosophilid insects. We also identify future applications for RNAi‐based studies in Entomology.  相似文献   

19.
20.
RNA interference (RNAi) is a method for the functional analysis of specific genes, and is particularly well developed in the free-living nematode Caenorhabditis elegans. There have been several attempts to apply this method to parasitic nematodes. In a recent study undertaken in Haemonchus contortus, Geldhof and colleagues concluded that, although a mechanism for RNAi existed, the methods developed for RNAi in C. elegans had variable efficacy in this parasitic nematode. The potential benefits of RNAi are clear; however, further studies are required to characterize the mechanism present in parasitic nematodes, and to improve culture systems for these nematodes to monitor the long-term effects of RNAi. Only then could RNAi become a reliable assay of gene function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号